
EL-Attention: Memory Efficient Lossless Attention for Generation
Supplementary Material

A. Pseudocode
To better understand differences between EL-attention and
multi-head attention in generation, we list their pseudocode
for the comparison. For simplicity, bias term and some
non-essential operations are omitted.

Algorithm 1 shows the generation process for a typical
encoder-decoder model. First, input is encoded by model,
then decoder starts repetitively executing, one token is gen-
erated per step. The high level logic is the same for both
attention methods, differences are in the cache and compu-
tation.

The generation process with multi-head attention is listed in
Algorithm 2. First, the encoder output is repeated(h) beam
size times to match query’s first dimension. Second, the key
and value cache are built for every layer . So its cache size
is linear to number of the decoder layer L, beam size x and
batch size b.

EL-attention (See Algorithm 3) does not need to repeat the
encoder output and get rid of the per layer cache for storing
key and value. To achieve these benefits, EL-attention shifts
some computation on key and value to the query side. Due
to the length of query is always one which is much shorter
than the length of key and value in most cases, it reduces
the computations significantly.

EL-attention can achieve faster speed due to time saved
from reorder cache() , two torch.bmm operations, and
the ability to use much larger batch size.

B. Proof for EL-Attention
In this section, we will present the proof that EL-attention
can have the same result as multi-head attention via the
choice of FFN functions. And again, there is no explicit
conversion on key and value.

Recall that, by expanding Equation 1 and 2 from the paper,
multi-head attention can be formulated as:

MultiHead(Q,K, V ) =

h∑
i=1

Probi︷ ︸︸ ︷
softmax(

QiK
T
i√

dk
)ViW

O
i

where Qi = QWQ
i + bQi , Ki = KWK

i + bKi ,

Vi = VWV
i + bVi , and H = K = V

(6)

Here, Q ∈R1×dm , H ∈Rn×dm , WQ
i , WK

i , WV
i ∈Rdm×dk

and WO
i ∈ Rdk×dm . We include bias term in this proof, it

is omitted in previous equations for simplification.

The multiplication of single head query and single head key
can be replaced by the multiplication of expanded query and
original key, derived as:

QiK
T
i = (QWQ

i + bQi )(KWK
i + bKi )T

= (QWQ
i + bQi )((KWi)

T

+ (QWQ
i + bQi )(b

K
i )T

= FFNQ
i (Q)KT +Qi(b

K
i )T

where FFNQ
i (Q) = (QWQ

i + bQi )(W
K
i )T

and Qi = QWQ
i + bQi

(7)

Below is the EL-attention conversion from single head at-
tention result to final output in multi-head attention:

Probi · Vi ·WO
i = Probi(VWV

i + bVi )W
O
i

= Probi(VWV
i )WO

i

+ Probi · Repeat(bVi ) ·WO
i

= FFNO
i (X) + bVi W

O
i

where FFNO
i (X) = XWV

i WO
i

and X = Probi · V
and Repeat(bVi ) is broadcasting dim

(8)

To ensure the equivalence to multi-head attention, we adjust
EL-attention as:

EL(Q,K, V ) =

h∑
i=1

FFNO
i (Probi · V ) +

h∑
i=1

bVi W
O
i

where Probi = softmax(
FFNQ

i (Q)KT +Qi(b
K
i )T√

dk
)

and H = K = V

(9)

By leveraging the associative property of matrix multiplica-
tion, Equation 6 and Equation 9 are interchangeable.

Please note that some bias terms can be omitted when train-
ing a new model. Like the bias term bKi that adding the
same value for all attention positions, and bVi that contribut-
ing constant information to the output, it is independent of
query/key/value and the sum of all elements in Probi’s last
dimension is always one.



EL-Attention: Memory Efficient Lossless Attention for Generation

Algorithm 1 Generation Process

Input: data src tokens, beam size x
Output: tokens
encoder outs = forward encoder(src tokens)
Initialize previous output[:] = BOS
Initialize tokens = array
for t = 0 to T do
logits = forward decoder(previous output, encoder outs)
previous output, order index = sample(logit, x)
tokens = reorder(tokens, order index)
tokens[t, :] = previous output

end for

Algorithm 2 forward decoder with multi-head attention

function forward decoder(previous output, h)
if cache is None then

h = repeat(h) {repeat beam size times}
else

reorder cache() {Cache size: O(2BLSD), where B is
beam size, L is decoder layer, S is sequence length, D
is model dimension.}

end if
x = embedding(previous output)
for i = 0 to layers L do
x = self attention(x)
x = encoder decoder attention(x, h, h)
x = mlp(x)

end for
return predict on vocab(x, unembedding weight)

end function

function encoder decoder attention(query, key, value)
{query ∈ [bx, 1, dm]}
if cache[i, k] is None then

cache[i, k] = reshape(torch.mm(key,W i
k))

cache[i, v] = reshape(torch.mm(value,W i
v))

end if
k = cache[i, k] {k ∈ [bxh, dk, n]}
v = cache[i, v] {v ∈ [bxh, n, dk]}
{q ∈ [bxh, 1, dk]}
q = reshape(torch.mm(query,W i

q))

weights = torch.bmm(q, k)

prob = softmax(weights)
attn = torch.bmm(prob, v)

attn = torch.mm(attn,W i
o)

end function

Algorithm 3 forward decoder with EL-attention

function forward decoder(previous output, h)
if cache is not None then

reorder cache() {Cache size: O(SD), where S is se-
quence length, D is model dimension. Which is 2BL
times less. }

end if
k = reshape(h) {k ∈ [b, dm, n]}
v = reshape(h) {v ∈ [b, n, dm]}
x = embedding(previous output)
for i = 0 to layers L do
x = self attention(x)
x = encoder decoder attention(x, k, v)
x = mlp(x)

end for
return predict on vocab(x, unembedding weight)

end function

function encoder decoder attention(query, k, v)
{query ∈ [bx, 1, dm]}
{No heavy op for building multi-head key/value.}
{Encoder output is directly used as key and value, and
shared among all layers.}
q = reshape(torch.mm(query,W i

q)) {q ∈ [bx, h, dk]}
{W i

k ∈ [h, dk, dm]}
q = reshape(torch.bmm(q,W i

k)) {q ∈ [b, hx, dm]}

weights = torch.bmm(q, k)

prob = softmax(weights)
attn = torch.bmm(prob, v) {attn ∈ [b, hx, dm]}
{W i

v ∈ [h, dm, dk]}
attn = reshape(torch.bmm(attn,W i

v))

attn = torch.mm(attn,W i
o)

end function


