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A. Uni/Bidirectional Encoding
As mentioned in Section 3.2, we also considered encoding
the architecture in a bidirectional manner where both the
output node hidden vector from the original DAG and the
input node hidden vector from the reversed one are extracted
and then concatenated together. Note that dc in the cross-
attention Transformer encoder will be doubled due to the
concatenation. We compare the results of unidirectional and
bidirectional encodings in Table 1. As shown, bidirectional
encoding does not necessarily improve the results. There-
fore, we keep unidirectional encoding in other experiments
due to its simplicity and better performance.

Encoding NAS-Bench-101 NAS-Bench-301

Unidirectional 5.88 5.28
Bidirectional 5.89 5.30

Table 1. Unidirectional encoding vs. bidirectional encoding. We
report the final NAS test error [%] given 150 queried architectures
on NAS-Bench-101 and 100 queried architectures on NAS-Bench-
301. The result is averaged over 200 independent runs.

B. Architecture Pair Sampling
Hyperparameters

As mentioned in Section 4.4, we randomly sample
1,000,000 architectures in NAS-Bench-301 for pretraining.
We use the same proxy model configuration (i.e. 100 train-
ing epochs, 32 initial channels, 8 cell layers) as used in
NAS-Bench-301 to compute the model FLOPs. We plot the
histogram of model FLOPs of the sampled architectures in
Figure 1. Given that, we experiment different δ and K and
summarize the downstream NAS results in Table 2. Similar
to our reported results on NAS-Bench-101, we find that
strong locality leads to better results.
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Histogram for model FLOPs on NASBench-301

Figure 1. Histogram of model FLOPs on the sampled 1, 000, 000
architectures of NAS-Bench-301.

δ
K 1 2 4 8

5 × 106 5.28 5.29 5.30 5.30
1 × 107 5.30 5.28 5.29 5.31
2 × 107 5.30 5.30 5.31 5.32

Table 2. Effects of δ and K on architecture pair sampling on NAS-
Bench-301. We report the final NAS test error [%] given 100
queried architectures on NAS-Bench-301. The result is averaged
over 200 independent runs.

C. Corruption Rate
By default, we randomly select 20% operations from each
architecture within the pair for masking in the pairwise pre-
training. We also experimented corruption rates of 15%
and 30%. As shown in Table 3, overall, we find that the
corruption rate has a limited effect on the NAS performance.
Note that the number of nodes in our search space is much
smaller compared to the number of tokens in the sequence
modeling tasks. Given that, using larger corruption rate may
slow down the training convergence and result in degraded
performance. Based on these results, we use 20% corruption
rate for other experiments.

D. NAS-Bench-301 Benchmark
NAS-Bench-301 (Siems et al., 2020) is the first surrogate
NAS benchmark to cover the large-scale DARTS search
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Figure 2. A cell transformation example in DARTS search space. The top panel shows the cell. The bottom-left and bottom-right panels
show its corresponding adjacency matrix and operation matrix respectively.

Corruption Rate NAS-Bench-101 NAS-Bench-301

15% 5.89 5.28
20% 5.88 5.28
30% 5.93 5.29

Table 3. NAS results under different corruption rates.

space (Liu et al., 2019). The DARTS search space consists
of two cells: a convolutional cell and a reduction cell, each
with six nodes. For each cell, the first two nodes are the
outputs from the previous two cells. The next four nodes
contain two edges as input, creating a DAG. In total, there
are roughly 1018 DAGs without considering graph isomor-
phism, which is a much larger search space compared to
NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201
(Dong & Yang, 2020).

NAS-Bench-301 is fully trained on around 60k architec-
tures collected by unbiased architecture sampling using
random search as well as biased and dense architecture
sampling in high-performance regions using different NAS
methods and training hyperparameters (including training
time, number of parameters, and number of multiply-adds).
It trains various regression models such as Random Forest
(RF) (Breiman, 2001), Support Vector Regression (SVR)
(Drucker et al., 1997), Graph Isomorphism Network (GIN)
(Xu et al., 2019) and Tree-based gradient boosting model
(e.g. XGBoost (XGB) (Chen & Guestrin, 2016), LGBoost
(LGB) (Ke et al., 2017)) to predict the accuracies of un-

seen architectures. The three best-performing models (GIN,
XGB, LGB) are used to predict the search trajectories in the
benchmark API.

D.1. Cell Transformation

To transform the DARTS search space into one with the
same input format as NAS-Bench-101, we additionally add
a summation node to make nodes to represent operations
and edges to represent data flow. For example, if there is an
edge from node A to node B with operation O, we create an
additional node P, remove the edge 〈A,B〉, and add 2 edges
〈A,P 〉 and 〈P,B〉. The operation on node P is set to be O.
Given that, a 15× 15 upper-triangular binary matrix is used
to encode edges and a 15× 11 operation matrix is used to
encode operations with the order of {ck−2, ck−1, 3× 3 max-
pool, 3 × 3 average-pool, skip connect, 3 × 3 separable
conv, 5× 5 separable conv, 3× 3 dilated conv, 5× 5 dilated
conv, sum, ck}. Following NAS-Bench-301 (Siems et al.,
2020), we do not include zero operator. Following (Liu et al.,
2018), we use the same cell for both normal and reduction
cells. An example of cell transformation is shown in Figure
2.
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