
Generalization Error of Random Features Models

A. Definitions of quantities in the main text
A.1. Full definitions of U , T , AU , and AT in Proposition 2

We first define functions m1(·),m2(·), which could be understood as the limiting partial Stieltjes transforms ofA(q) (c.f.
Definition 1).

Definition 3 (Limiting partial Stieltjes transforms). For ξ ∈ C+ and q ∈ Q where

Q = {(s1, s2, t1, t2, p) : |s2t2| ≤ µ2
1(1 + p)2/2}, (25)

define functions F1( · , · ; ξ; q, ψ1, ψ2, µ1, µ?),F2( · , · ; ξ; q, ψ1, ψ2, µ1, µ?) : C× C→ C via:

F1(m1,m2; ξ; q, ψ1, ψ2, µ1, µ?) ≡ ψ1

(
− ξ + s1 − µ2

?m2 +
(1 + t2m2)s2 − µ2

1(1 + p)2m2

(1 + s2m1)(1 + t2m2)− µ2
1(1 + p)2m1m2

)−1
,

F2(m1,m2; ξ; q, ψ1, ψ2, µ1, µ?) ≡ ψ2

(
− ξ + t1 − µ2

?m1 +
(1 + s2m1)t2 − µ2

1(1 + p)2m1

(1 + t2m2)(1 + s2m1)− µ2
1(1 + p)2m1m2

)−1
.

Let m1( · ; q;ψ) m2( · ; q;ψ) : C+ → C+ be defined, for =(ξ) ≥ C a sufficiently large constant, as the unique solution of
the equations

m1 = F1(m1,m2; ξ; q, ψ1, ψ2, µ1, µ?),

m2 = F2(m1,m2; ξ; q, ψ1, ψ2, µ1, µ?)
(26)

subject to the condition |m1| ≤ ψ1/=(ξ), |m2| ≤ ψ2/=(ξ). Extend this definition to =(ξ) > 0 by requiring m1,m2 to be
analytic functions in C+.

We next define the function g(·) that will be shown to be the limiting log determinant ofA(q).

Definition 4 (Limiting log determinants). For q = (s1, s2, t1, t2, p) and ψ = (ψ1, ψ2), define

Ξ(ξ, z1, z2; q;ψ) ≡ log[(s2z1 + 1)(t2z2 + 1)− µ2
1(1 + p)2z1z2]− µ2

?z1z2

+ s1z1 + t1z2 − ψ1 log(z1/ψ1)− ψ2 log(z2/ψ2)− ξ(z1 + z2)− ψ1 − ψ2.
(27)

Letm1(ξ; q;ψ),m2(ξ; q;ψ) be defined as the analytic continuation of solution of Eq. (26) as defined in Definition 3. Define

g(ξ; q;ψ) = Ξ(ξ,m1(ξ; q;ψ),m2(ξ; q;ψ); q;ψ). (28)

We next give the definitions of U , T , AU , and AT .

Definition 5 (U , T , AU , and AT in Proposition 2). For any λ ∈ ΛU , define

AU (λ, ψ1, ψ2) = − lim
u→0+

[
ψ1

(
F 2
1 µ

2
1∂s1s2 + F 2

1 ∂s1p + F 2
1 ∂s1t2 + τ2∂s1t1

)
g(iu; q;ψ)

∣∣∣
q=qU

]
,

U(λ, ψ1, ψ2) = F 2
1 + τ2 − lim

u→0+

[(
F 2
1 µ

2
1∂s2 + F 2

1 ∂p + F 2
1 ∂t2 + τ2∂t1

)
g(iu; q;ψ)

∣∣∣
q=qU

]
,

AT (λ, ψ1, ψ2) = − lim
u→0+

[
ψ1

(
F 2
1 µ

2
1∂s1s2 + F 2

1 ∂s1p + F 2
1 ∂s1t2 + τ2∂s1t1

)
g(iu; q;ψ)

∣∣∣
q=qT

]
,

T (λ, ψ1, ψ2) = F 2
1 + τ2 − lim

u→0+

[(
F 2
1 µ

2
1∂s2 + F 2

1 ∂p + F 2
1 ∂t2 + τ2∂t1

)
g(iu; q;ψ)

∣∣∣
q=qT

]
,

where qU = (µ2
? − λψ1, µ

2
1, ψ2, 0, 0), qT = (µ2

? − λψ1, µ
2
1, 0, 0, 0).

In the following, we give a simplified expression for U and AU .

Remark 2 (Simplification of U and AU ). Define ζ, λ as the rescaled version of µ2
1 and λ

ζ =
µ2
1

µ2
?

, λ =
λ

µ2
?

.
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Let m1( · ;ψ) m2( · ;ψ) : C+ → C+ be defined, for =(ξ) ≥ C a sufficiently large constant, as the unique solution of the
equations

m1 = ψ1

[
−ξ + (1− λψ1)−m2 +

ζ(1−m2)

1 + ζm1 − ζm1m2

]−1
,

m2 = −ψ2

[
ξ + ψ2 −m1 −

ζm1

1 + ζm1 − ζm1m2

]−1
,

(29)

subject to the condition |m1| ≤ ψ1/=(ξ), |m2| ≤ ψ2/=(ξ). Extend this definition to =(ξ) > 0 by requiring m1,m2 to be
analytic functions in C+. Let

m1 = lim
u→∞

m1(iu,ψ),

m2 = lim
u→∞

m2(iu,ψ).

Define
χ1 = m1ζ −m1m2ζ + 1,

χ2 = m1 − ψ2 +
m1ζ

χ1
,

χ3 = λψ1 +m2 − 1 +
ζ (m2 − 1)

χ1
.

Define two polynomials E1, E2 as

E1(ψ1, ψ2, λ, ζ) = ψ2
1(ψ2χ

4
1 + ψ2χ

2
1ζ),

E2(ψ1, ψ2, λ, ζ) = ψ2
1(χ2

1χ
2
2m

2
2ζ − 2χ2

1χ
2
2m2ζ + χ2

1χ
2
2ζ + ψ2χ

2
1 − ψ2m

2
1m

2
2ζ

3 + 2ψ2m
2
1m2ζ

3 − ψ2m
2
1ζ

3 + ψ2ζ),

E3(ψ1, ψ2, λ, ζ) = − χ4
1χ

2
2χ

2
3 + ψ1ψ2χ

4
1 + ψ1χ

2
1χ

2
2m

2
2ζ

2 − 2ψ1χ
2
1χ

2
2m2ζ

2 + ψ1χ
2
1χ

2
2ζ

2

+ ψ2χ
2
1χ

2
3m

2
1ζ

2 + 2ψ1ψ2χ
2
1ζ − ψ1ψ2m

2
1m

2
2ζ

4 + 2ψ1ψ2m
2
1m2ζ

4 − ψ1ψ2m
2
1ζ

4 + ψ1ψ2ζ
2.

Then

U(λ, ψ1, ψ2) = −
(m2 − 1)

(
τ2χ1(ψ1, ψ2, λ, ζ) + F 2

1

)
χ1(ψ1, ψ2, λ, ζ)

,

AU (λ, ψ1, ψ2) =
τ2E1(ψ1, ψ2, λ, ζ) + F 2

1 E1(ψ1, ψ2, λ, ζ)

E2(ψ1, ψ2, λ, ζ)
.

Remark 3 (Simplification of T and AT ). Define ζ, λ as the rescaled version of µ2
1 and λ

ζ =
µ2
1

µ2
?

, λ =
λ

µ2
?

.

Let m1( · ;ψ) m2( · ;ψ) : C+ → C+ be defined, for =(ξ) ≥ C a sufficiently large constant, as the unique solution of the
equations

m1 = ψ1

[
−ξ + (1− λψ1)−m2 +

ζ(1−m2)

1 + ζm1 − ζm1m2

]−1
,

m2 = −ψ2

[
ξ +m1 +

ζm1

1 + ζm1 − ζm1m2

]−1
,

(30)

subject to the condition |m1| ≤ ψ1/=(ξ), |m2| ≤ ψ2/=(ξ). Extend this definition to =(ξ) > 0 by requiring m1,m2 to be
analytic functions in C+. Let

m1 = lim
u→∞

m1(iu,ψ),

m2 = lim
u→∞

m2(iu,ψ).

Define

χ4 = m1 +
m1ζ

χ1(m1,m2, ζ)
,
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and
χ1 = m1ζ −m1m2ζ + 1,

χ3 = λψ1 +m2 − 1 +
ζ (m2 − 1)

χ1
,

where the definitions of χ1, χ3 are the same as in Remark 2. Define three polynomials E3, E4, E5 as

E4(ψ1, ψ2, λ, ζ) =ψ1

(
ψ2χ

4
1χ

3
4 + χ4

1χ
2
4m

3
1m

2
2ζ

3 − 2χ4
1χ

2
4m

3
1m2ζ

3 + χ4
1χ

2
4m

3
1ζ

3 + 2χ3
1χ

2
4m

3
1m

2
2ζ

2

− 4χ3
1χ

2
4m

3
1m2ζ

2 + 2χ3
1χ

2
4m

3
1ζ

2 − ψ2χ
3
1χ

2
4m1ζ + χ2

1χ
2
4m

3
1m

2
2ζ − 2χ2

1χ
2
4m

3
1m2ζ

+ χ2
1χ

2
4m

3
1ζ + ψ2χ

2
1χ

2
4m1ζ − ψ2χ

2
1m

5
1m

2
2ζ

5 + 2ψ2χ
2
1m

5
1m2ζ

5 − ψ2χ
2
1m

5
1ζ

5

− 2ψ2χ1m
5
1m

2
2ζ

4 + 4ψ2χ1m
5
1m2ζ

4 − 2ψ2χ1m
5
1ζ

4 − ψ2m
5
1m

2
2ζ

3

+ 2ψ2m
5
1m2ζ

3 − ψ2m
5
1ζ

3
)
,

E5(ψ1, ψ2, λ, ζ) =m1

(
ζ + 1 +m1ζ −m1m2ζ

)2(
− χ4

1χ
2
3χ

2
4m

2
1

+ ψ1ψ2χ
4
1χ

2
4 − 2ψ1ψ2χ

3
1χ4m1ζ + ψ2χ

2
1χ

2
3m

4
1ζ

2 + ψ1χ
2
1χ

2
4m

2
1m

2
2ζ

2

− 2ψ1χ
2
1χ

2
4m

2
1m2ζ

2 + ψ1χ
2
1χ

2
4m

2
1ζ

2 + 2ψ1ψ2χ
2
1χ4m1ζ + ψ1ψ2χ

2
1m

2
1ζ

2

− 2ψ1ψ2χ1m
2
1ζ

2 − ψ1ψ2m
4
1m

2
2ζ

4 + 2ψ1ψ2m
4
1m2ζ

4 − ψ1ψ2m
4
1ζ

4 + ψ1ψ2m
2
1ζ

2
)
,

E6(ψ1, ψ2, λ, ζ) =χ2
1χ

2
4ψ1ψ2

(
χ4χ

2
1 −m1χ1ζ +m1ζ

)(
m1ζ −m1m2ζ + 1

)2
.

Then

T (λ, ψ1, ψ2) = −
(m2 − 1)

(
τ2χ1(ψ1, ψ2, λ, ζ) + F 2

1

)
χ1(ψ1, ψ2, λ, ζ)

,

AT (λ, ψ1, ψ2) = −ψ1
F 2
1 E4(ψ1, ψ2, λ, ζ) + τ2E6(ψ1, ψ2, λ, ζ)

E5(ψ1, ψ2, λ, ζ)
.

A.2. Definitions ofR and A

In this section, we present the expression ofR and A from Mei & Montanari (2019) which are used in our results and plots.

Definition 6 (Formula for the prediction error of minimum norm interpolator). Define

ζ = µ2
1/µ

2
?, ρ = F 2

1 /τ
2

Let the functions ν1, ν2 : C+ → C+ be be uniquely defined by the following conditions: (i) ν1, ν2 are analytic on C+; (ii)
For =(ξ) > 0, ν1(ξ), ν2(ξ) satisfy the following equations

ν1 = ψ1

(
− ξ − ν2 −

ζ2ν2
1− ζ2ν1ν2

)−1
,

ν2 = ψ2

(
− ξ − ν1 −

ζ2ν1
1− ζ2ν1ν2

)−1
;

(31)

(iii) (ν1(ξ), ν2(ξ)) is the unique solution of these equations with |ν1(ξ)| ≤ ψ1/=(ξ), |ν2(ξ)| ≤ ψ2/=(ξ) for =(ξ) > C,
with C a sufficiently large constant.

Let
χ ≡ lim

u→0
ν1(iu) · ν2(iu), (32)

and
E0(ζ, ψ1, ψ2) ≡ − χ5ζ6 + 3χ4ζ4 + (ψ1ψ2 − ψ2 − ψ1 + 1)χ3ζ6 − 2χ3ζ4 − 3χ3ζ2

+ (ψ1 + ψ2 − 3ψ1ψ2 + 1)χ2ζ4 + 2χ2ζ2 + χ2 + 3ψ1ψ2χζ
2 − ψ1ψ2 ,

E1(ζ, ψ1, ψ2) ≡ ψ2χ
3ζ4 − ψ2χ

2ζ2 + ψ1ψ2χζ
2 − ψ1ψ2 ,

E2(ζ, ψ1, ψ2) ≡ χ5ζ6 − 3χ4ζ4 + (ψ1 − 1)χ3ζ6 + 2χ3ζ4 + 3χ3ζ2 + (−ψ1 − 1)χ2ζ4 − 2χ2ζ2 − χ2 .

(33)
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Then the expression for the asymptotic risk of minimum norm interpolator gives

R(ψ1, ψ2) = F 2
1

E1(ζ, ψ1, ψ2)

E0(ζ, ψ1, ψ2)
+ τ2

E2(ζ, ψ1, ψ2)

E0(ζ, ψ1, ψ2)
+ τ2.

The expression for the norm of the minimum norm interpolator gives

A1 =
ρ

1 + ρ

[
− χ2(χζ4 − χζ2 + ψ2ζ

2 + ζ2 − χψ2ζ
4 + 1)

]
+

1

1 + ρ

[
χ2(χζ2 − 1)(χ2ζ4 − 2χζ2 + ζ2 + 1)

]
,

A0 = − χ5ζ6 + 3χ4ζ4 + (ψ1ψ2 − ψ2 − ψ1 + 1)χ3ζ6 − 2χ3ζ4 − 3χ3ζ2

+ (ψ1 + ψ2 − 3ψ1ψ2 + 1)χ2ζ4 + 2χ2ζ2 + χ2 + 3ψ1ψ2χζ
2 − ψ1ψ2,

A(ψ1, ψ2) = ψ1(F 2
1 + τ2)A1/(µ

2
?A0).

B. Experimental setup for simulations in Figure 2
In this section, we present additional details for Figure 2. We choose yi = 〈xi,β〉 for some ‖β‖22 = 1, the ReLU activation
function σ(x) = max{x, 0}, and ψ1 = N/d = 2.5 and ψ2 = n/d = 1.5.

For the theoretical curves (in solid lines), we choose λ ∈ [0.426, 2], so that AU (λ) ∈ [0, 15], and plot the parametric
curve (AU (λ),U(λ) + λAU (λ)) for the uniform convergence. For the uniform convergence over interpolators, we choose
λ ∈ [0.21, 2] so that AT (λ) ∈ [6.4, 15], and plot (AT (λ), T (λ) + λAT (λ)). The definitions of these theoretical predictions
are given in Definition 5, Remark 2 and Remark 3

For the empirical simulations (in dots), first recall that in Proposition 2, we defined

aU (λ) = arg max
a

[
R(a)− R̂n(a)− ψ1λ‖a‖22

]
,

aT (λ) = arg maxa inf
µ

[
R(a)− λψ1‖a‖22 + 2〈µ,Za− y/

√
d 〉
]
.

After picking a value of λ, we sample 20 independent problem instances, with the number of features N = 500, number
of samples n = 300, covariate dimension d = 200. We compute the corresponding (ψ1‖aU‖22, R(aU ) − R̂n(aU )) and
(ψ1‖aT ‖22, R(aT )) for each instance. Then, we plot the empirical mean and 1/

√
20 times the empirical standard deviation

(around the mean) of each coordinate.

C. Proof of Proposition 1
The proof of Proposition 1 contains two parts: standard uniform convergence U and uniform convergence over interpolators
T . The proof for the two cases are essentially the same, both based on the fact that strong duality holds for quadratic program
with single quadratic constraint (c.f. Boyd & Vandenberghe (2004), Appendix A.1).

C.1. Standard uniform convergence U

Recall that the uniform convergence bound U is defined as in Eq. (4)

U(A,N, n, d) = sup
(N/d)‖a‖22≤A

(
R(a)− R̂n(a)

)
.

Since the maximization problem in (4) is a quadratic program with a single quadratic constraint, the strong duality holds. So
we have

sup
(N/d)‖a‖22≤A2

R(a)− R̂n(a) = inf
λ≥0

sup
a

[
R(a)− R̂n(a)− ψ1λ(‖a‖22 − ψ−11 A)

]
.

Finally, by the definition of U as in Eq. (20), we get

U(A,N, n, d) = inf
λ≥0

[
U(λ,N, n, d) + λA

]
.
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C.2. Uniform convergence over interpolators T

Without loss of generality, we consider the regime when N > n.

Recall that the uniform convergence over interpolators T is defined as in Eq. (5)

T (A,N, n, d) = sup
(N/d)‖a‖22≤A,R̂n(a)=0

R(a).

When the set {a ∈ RN : (N/d)‖a‖22 ≤ A, R̂n(a) = 0} is empty, we have

T (A,N, n, d) = inf
λ≥0

[
T (λ,N, n, d) + λA

]
= −∞.

In the following, we assume that the set {a ∈ RN : (N/d)‖a‖22 ≤ A, R̂n(a) = 0} is non-empty, i.e., there exists a ∈ RN

such that R̂n(a) = 0 and (N/d)‖a‖22 ≤ A.

Let m be the dimension of the null space of Z ∈ Rn×N , i.e. m = dim({u : Zu = 0}). Note that Z ∈ RN×n and N > n,
we must have N − n ≤ m ≤ N . We letR ∈ RN×m be a matrix whose column space gives the null space of matrix Z. Let
a0 be the minimum norm interpolating solution (whose existence is given by the assumption that {a ∈ RN : R̂n(a) = 0}
is non-empty)

a0 = lim
λ→0+

arg min
a∈RN

[
R̂n(a) + λ‖a‖22

]
= arg min

a∈RN :R̂n(a)=0
‖a‖22.

Then we have

{a ∈ RN : R̂n(a) = 0} = {a ∈ RN : y =
√
dZa} = {Ru+ a0 : u ∈ Rm}.

Then T can be rewritten as a maximization problem in terms of u:

sup
(N/d)‖a‖22≤A,R̂n(a)=0

R(a) = sup
u∈Rm:‖Ru+a0‖22≤ψ

−1
1 A

[
〈Ru+ a0,U(Ru+ a0)〉 − 2〈Ru+ a0,v〉+ E(y2)

]
= R(a0) + sup

u∈Rm:‖Ru+a0‖22≤ψ
−1
1 A

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉

]
.

Note that the optimization problem only has non-feasible region when A > (N/d)‖a0‖22. By strong duality of quadratic
programs with a single quadratic constraint, we have

sup
u∈Rm:‖Ru+a0‖22≤ψ

−1
1 A

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉

]
= inf

λ≥0
sup
u∈Rm

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉 − λ(ψ1‖Ru+ a0‖22 −A)

]
.

The maximization over u can be restated as the maximization over a:

R(a0) + sup
u∈Rm

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉 − λψ1‖Ru+ a0‖22

]
= sup
a:R̂n(a)=0

[
R(a)− λψ1‖a‖22

]
.

Moreover, since supa:R̂n(a)=0[R(a)− λψ1‖a‖22] is a quadratic programming with linear constraints, we have

sup
a:R̂n(a)=0

[
R(a)− λψ1‖a‖22

]
= sup

a
inf
µ

[
R(a)− λψ1‖a‖22 + 2〈µ,Za− y/

√
d 〉
]
.
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Combining all the equality above and the definition of T as in Eq. (21), we have

T (A,N, n, d) = sup
(N/d)‖a‖22≤A,R̂n(a)=0

R(a)

= R(a0) + sup
u∈Rm:‖Ru+a0‖22≤ψ

−1
1 A

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉

]
= R(a0) + inf

λ≥0
sup
u

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉 − λ(ψ1‖Ru+ a0‖22 −A)

]
= inf

λ≥0

{
λA+R(a0) + sup

u

[
〈u,RTURu〉+ 2〈Ru,Ua0 − v〉 − λψ1‖Ru+ a0‖22

]}
= inf

λ≥0

{
λA+ sup

a:R̂n(a)=0

[
R(a)− λψ1‖a‖22

]}
= inf

λ≥0

{
λA+ sup

a
inf
µ

[
R(a)− λψ1‖a‖22 + 2〈µ,Za− y/

√
d 〉
]}

= inf
λ≥0

[
T (λ,N, n, d) + λA

]
.

This concludes the proof.

D. Proof of Proposition 2
Note that the definitions of U and T as in Eq. (20) and (21) depend on β = β(d), where β(d) gives the coefficients of
the target function fd(x) = 〈x,β(d)〉. Suppose we explicitly write their dependence on β = β(d), i.e., U(λ,N, n, d) =
U(β, λ,N, n, d) and T (λ,N, n, d) = T (β, λ,N, n, d), then we can see that for any fixed β? and β̃ with ‖β̃‖2 = ‖β?‖2,
we have U(β?, λ,N, n, d)

d
= U(β̃, λ,N, n, d) and T (β?, λ,N, n, d)

d
= T (β̃, λ,N, n, d) where the randomness comes from

X,Θ, ε. This is by the fact that the distribution of xi’s and θa’s are rotationally invariant. As a consequence, for any fixed
deterministic β?, if we take β ∼ Unif(Sd−1(‖β?‖2)), we have

U(β?, λ,N, n, d)
d
= U(β, λ,N, n, d),

T (β?, λ,N, n, d)
d
= T (β, λ,N, n, d).

where the randomness comes fromX,Θ, ε,β.

Consequently, as long as we are able to show the equation

U(β, λ,N, n, d) = U(λ, ψ1, ψ2) + od,P(1)

for random β ∼ Unif(Sn−1(F1)), this equation will also hold for any deterministic β? with ‖β?‖22 = F 2
1 . Vice versa for T ,

‖aU‖22 and ‖aT ‖22.

As a result, in the following, we work with the assumption that β = β(d) ∼ Unif(Sd−1(F1)). That is, in proving
Proposition 2, we replace Assumption 1 by Assumption 6 below. By the argument above, as long as Proposition 2 holds
under Assumption 6, it also holds under the original assumption, i.e., Assumption 1.
Assumption 6 (Linear Target Function). We assume that fd ∈ L2(Sd−1(

√
d)) with fd(x) = 〈β(d),x〉, where β(d) ∼

Unif(Sd−1(F1)).

D.1. Expansions

Denote v = (vi)i∈[N ] ∈ RN and U = (Uij)i,j∈[N ] ∈ RN×N where their elements are defined via

vi ≡ Eε,x[yσ(〈x,θi〉/
√
d)],

Uij ≡ Ex[σ(〈x,θi〉/
√
d)σ(〈x,θj〉/

√
d)].

Here, y = 〈x,β〉 + ε, where β ∼ Unif(Sd−1(F1)), x ∼ Unif(Sd−1(
√
d)), ε ∼ N (0, τ2), and (θj)j∈[N ] ∼iid

Unif(Sd−1(
√
d)) are mutually independent. The expectations are taken with respect to the test sample x ∼ Unif(Sd−1(

√
d))

and ε ∼ N (0, τ2) (especially, the expectations are conditional on β and (θi)i∈[N ]).
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Moreover, we denote y = (y1, . . . , yn)T ∈ Rn where yi = 〈xi,β〉 + εi. Recall that (xi)i∈[n] ∼iid Unif(Sd−1(
√
d))

and (εi)i∈[n] ∼iid N (0, τ2) are mutually independent and independent from β ∼ Unif(Sd−1(
√
d)). We further denote

Z = (Zij)i∈[n],j∈[N ] where its elements are defined via

Zij = σ(〈xi,θj〉/
√
d)/
√
d.

The population risk (1) can be reformulated as

R(a) = 〈a,Ua〉 − 2〈a,v〉+ E[y2],

where a = (a1, . . . , aN ) ∈ RN . The empirical risk (2) can be reformulated as

R̂n(a) = ψ−12 〈a,ZTZa〉 − 2ψ−12

〈ZTy,a〉√
d

+
1

n
‖y‖22.

By the Appendix A in Mei & Montanari (2019) (we include in the Appendix F for completeness), we can expand σ(x) in
terms of Gegenbauer polynommials

σ(x) =

∞∑
k=0

λd,k(σ)B(d, k)Q
(d)
k (
√
d · x),

where Q(d)
k is the k’th Gegenbauer polynomial in d dimensions, B(d, k) is the dimension of the space of polynomials on

Sd−1(
√
d) with degree exactly k. Finally, λd,k(σ) is the k’th Gegenbauer coefficient. More details of this expansion can be

found in Appendix F.

By the properties of Gegenbauer polynomials (c.f. Appendix F.2), we have

Ex∼Unif(Sd−1(
√
d))[xQk(〈x,θi〉)] = 0, ∀k 6= 1,

Ex∼Unif(Sd−1(
√
d))[xQ1(〈x,θi〉)] = θi/d, k = 1.

As a result, we have

vi = Eε,x[yσ(〈x,θi〉/
√
d)] =

∞∑
k=0

λd,k(σ)B(d, k)Ex[〈x,β〉Q(d)
k (
√
d · x)] = λd,1(σ)〈θi,β〉. (34)

D.2. Removing the perturbations

By Lemma 6 and 7 as in Appendix D.6, we have the following decomposition

U = µ2
1Q+ µ2

?IN + ∆, (35)

withQ = ΘΘT/d, E[‖∆‖2op] = od(1), and µ2
1 and µ2

? are given in Assumption 2.

In the following, we would like to show that ∆ has vanishing effects in the asymptotics of U , T , ‖aU‖22 and ‖aT ‖22.

For this purpose, we denote

Uc = µ2
1Q+ µ2

?IN ,

Rc(a) = 〈a,Uca〉 − 2〈a,v〉+ E[y2],

R̂c,n(a) = 〈a, ψ−12 ZTZa〉 − 2〈a, ψ−12 ZTy/
√
d〉+ E[y2],

U c(λ,N, n, d) = sup
a

(
Rc(a)− R̂c,n(a)− ψ1λ‖a‖22

)
,

T c(λ,N, n, d) = sup
a

inf
µ

[
Rc(a)− λψ1‖a‖22 + 2〈µ,Za− y/

√
d 〉
]
.

(36)
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For a fixed λ ∈ ΛU , note we have

U c(λ,N, n, d) = sup
a

(
〈a, (Uc − ψ−12 ZTZ − ψ1λIN )a〉 − 2〈a,v − ψ−12

ZTy√
d
〉
)

= sup
a

(
〈a,Ma〉 − 2〈a,v〉

) (37)

whereM = Uc−ψ−12 ZTZ−ψ1λIN and v = v−ψ−12 ZTy/
√
d. WhenX,Θ are such that the good event in Assumption

4 happens (which says thatM � −εIN for some ε > 0), the inner maximization can be uniquely achieved at

aU,c(λ) = arg max
a

(
〈a,Ma〉 − 2〈a,v〉

)
= M

−1
v. (38)

and when the good event {‖∆‖op ≤ ε/2} also happens, the maximizer in the definition of U(λ,N, n, d) (c.f. Eq. (20)) can
be uniquely achieved at

aU (λ) = arg max
a

(
〈a, (M + ∆)a〉 − 2〈a,v〉

)
= (M + ∆)−1v.

Note we have
aU (λ)− aU,c(λ) = (M + ∆)−1v −M−1

v = (M + ∆)−1∆M
−1
v,

so by the fact that ‖∆‖op = od,P(1), we have

‖aU (λ)− aU,c(λ)‖2 ≤ ‖(M + ∆)−1∆‖op‖aU,c(λ)‖2 = od,P(1)‖aU,c(λ)‖2.

This gives ‖aU (λ)‖22 = (1 + od,P(1))‖aU,c(λ)‖22.

Moreover, by the fact that ‖∆‖op = od,P(1), we have

U c(λ,N, n, d) = sup
a

(
R(a)− R̂n(a)− ψ1λ‖a‖22 − 〈a,∆a〉

)
+ E[y2]− ‖y‖22/n

= U(λ,N, n, d) + od,P(1)(‖aU,c(λ)‖22 + 1).

As a consequence, as long as we can prove the asymptotics of U c and ‖aU,c(λ)‖22, it also gives the asymptotics of U and
‖aU (λ)‖22. Vice versa for T and ‖aT (λ)‖22.

D.3. The asymptotics of U c and ψ1‖aU,c(λ)‖22
In the following, we derive the asymptotics of U c(λ,N, n, d) and ψ1‖aU,c(λ)‖22. When we refer to aU,c(λ), it is always
well defined with high probability, since it can be well defined under the condition that the good event in Assumption 4
happens. Note that this good event only depend onX,Θ and is independent of β, ε.

By Eq. (37) and (38), simple calculation shows that

U c(λ,N, n, d) ≡ − 〈v,M−1
v〉 = −Ψ1 −Ψ2 −Ψ3,

‖aU,c‖22 ≡ 〈v,M
−2
v〉 = Φ1 + Φ2 + Φ3,

where
Ψ1 = 〈v,M−1

v〉, Φ1 = 〈v,M−2
v〉,

Ψ2 = − 2ψ−12 〈
ZTy√
d
,M

−1
v〉, Φ2 = − 2ψ−12 〈

ZTy√
d
,M

−2
v〉,

Ψ3 = ψ−22 〈
ZTy√
d
,M

−1ZTy√
d
〉, Φ3 = ψ−22 〈

ZTy√
d
,M

−2ZTy√
d
〉.

The following lemma gives the expectation of Ψi’s and Φi’s with respect to β and ε.



Generalization Error of Random Features Models

Lemma 1 (Expectation of Ψi’s and Φi’s). Denote qU (λ,ψ) = (µ2
? − λψ1, µ

2
1, ψ2, 0, 0). We have

Eε,β[Ψ1] = µ2
1F

2
1 ·

1

d
Tr
(
M
−1
Q
)
× (1 + od(1)),

Eε,β[Ψ2] = − 2F 2
1

ψ2
· 1

d
Tr
(
ZM

−1
ZT

1

)
× (1 + od(1)),

Eε,β[Ψ3] =
F 2
1

ψ2
2

· 1

d
Tr
(
ZM

−1
ZTH

)
+
τ2

ψ2
2

· 1

d
Tr
(
ZM

−1
ZT
)
,

Eε,β[Φ1] = µ2
1F

2
1 ·

1

d
Tr
(
M
−2
Q
)
× (1 + od(1)),

Eε,β[Φ2] = − 2F 2
1

ψ2
· 1

d
Tr
(
ZM

−2
ZT

1

)
× (1 + od(1)),

Eε,β[Φ3] =
F 2
1

ψ2
2

· 1

d
Tr
(
ZM

−2
ZTH

)
+
τ2

ψ2
2

· 1

d
Tr
(
ZM

−2
ZT
)
.

Here the definitions ofQ,H , and Z1 are given by Eq. (19).

Furthermore, we have

Eε,β[Ψ1] = µ2
1F

2
1 · ∂s2Gd(0+; qU (λ,ψ))× (1 + od(1)),

Eε,β[Ψ2] = F 2
1 · ∂pGd(0+; qU (λ,ψ))× (1 + od(1)),

Eε,β[Ψ3] = F 2
1 · (∂t2Gd(0+; qU (λ,ψ))− 1) + τ2 · (∂t1Gd(0+; qU (λ,ψ))− 1),

Eε,β[Φ1] = − µ2
1F

2
1 · ∂s1∂s2Gd(0+; qU (λ,ψ))× (1 + od(1)),

Eε,β[Φ2] = − F 2
1 · ∂s1∂pGd(0+; qU (λ,ψ))× (1 + od(1)),

Eε,β[Φ3] = − F 2
1 · ∂s1∂t2Gd(0+; qU (λ,ψ))− τ2 · ∂s1∂t1Gd(0+; qU (λ,ψ)).

The definition of Gd is as in Definition 1, and∇kqGd(0+; q) for k ∈ {1, 2} stands for the k’th derivatives (as a vector or a
matrix) of Gd(iu; q) with respect to q in the u→ 0+ limit (with its elements given by partial derivatives)

∇kqGd(0+; q) = lim
u→0+

∇kqGd(iu; q).

We next state the asymptotic characterization of the log-determinant which was proven in (Mei & Montanari, 2019).

Proposition 3 (Proposition 8.4 in (Mei & Montanari, 2019)). Define

Ξ(ξ, z1, z2; q;ψ) ≡ log[(s2z1 + 1)(t2z2 + 1)− µ2
1(1 + p)2z1z2]− µ2

?z1z2

+ s1z1 + t1z2 − ψ1 log(z1/ψ1)− ψ2 log(z2/ψ2)− ξ(z1 + z2)− ψ1 − ψ2.
(39)

For ξ ∈ C+ and q ∈ Q (c.f. Eq. (25)), let m1(ξ; q;ψ),m2(ξ; q;ψ) be defined as the analytic continuation of solution of
Eq. (26) as defined in Definition 3. Define

g(ξ; q;ψ) = Ξ(ξ,m1(ξ; q;ψ),m2(ξ; q;ψ); q;ψ). (40)

Consider proportional asymptotics N/d→ ψ1, N/d→ ψ2, as per Assumption 3. Then for any fixed ξ ∈ C+ and q ∈ Q,
we have

lim
d→∞

E[|Gd(ξ; q)− g(ξ; q;ψ)|] = 0. (41)

Moreover, for any fixed u ∈ R+ and q ∈ Q, we have

lim
d→∞

E[‖∂qGd(iu; q)− ∂qg(iu; q;ψ)‖2] = 0, (42)

lim
d→∞

E[‖∇2
qGd(iu; q)−∇2

qg(iu; q;ψ)‖op] = 0. (43)

Remark 4. Note that Proposition 8.4 in (Mei & Montanari, 2019) stated that the Eq. (42) and (43) holds at q = 0. However,
by a simple modification of their proof, one can show that these equations also holds at any q ∈ Q.
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Combining Assumption 5 with Proposition 3, we have

Proposition 4. Let Assumption 5 holds. For any λ ∈ ΛU , denote qU = qU (λ,ψ) = (µ2
?− λψ1, µ

2
1, ψ2, 0, 0), then we have,

for k = 1, 2,
‖∇kqGd(0+; qU )− lim

u→0+
∇kqg(iu; qU ;ψ)‖ = od,P(1).

As a consequence of Proposition 4, we can calculate the asymptotics of Ψi’s and Φi’s. Combined with the concentration
result in Lemma 2 latter in the section, the proposition below completes the proof of the part of Proposition 2 regarding the
standard uniform convergence U . Its correctness follows directly from Lemma 1 and Proposition 4.

Proposition 5. Follow the assumptions of Proposition 2. For any λ ∈ ΛU , denote qU (λ,ψ) = (µ2
? − λψ1, µ

2
1, ψ2, 0, 0),

then we have
Eε,β[Ψ1]

P→ µ2
1F

2
1 · ∂s2g(0+; qU (λ,ψ);ψ),

Eε,β[Ψ2]
P→ F 2

1 · ∂pg(0+; qU (λ,ψ);ψ),

Eε,β[Ψ3]
P→ F 2

1 ·
(
∂t2g(0+; qU (λ,ψ);ψ)− 1

)
+ τ2

(
∂t1g(0+; qU (λ,ψ);ψ)− 1

)
,

Eε,β[Φ1]
P→ − µ2

1F
2
1 · ∂s1∂s2g(0+; qU (λ,ψ);ψ),

Eε,β[Φ2]
P→ − F 2

1 · ∂s1∂pg(0+; qU (λ,ψ);ψ),

Eε,β[Φ3]
P→ − F 2

1 · ∂s1∂t2g(0+; qU (λ,ψ);ψ)− τ2 · ∂s1∂t1g(0+; qU (λ,ψ);ψ),

where ∇kqg(0+; q;ψ) for k ∈ {1, 2} stands for the k’th derivatives (as a vector or a matrix) of g(iu; q;ψ) with respect to
q in the u→ 0+ limit (with its elements given by partial derivatives)

∇kqg(0+; q;ψ) = lim
u→0+

∇kqg(iu; q;ψ).

As a consequence, we have

Eε,β[U c(λ,N, n, d)]
P→ U(λ, ψ1, ψ2), Eε,β[ψ1‖aU,c(λ)‖22]

P→ AU (λ, ψ1, ψ2),

where the definitions of U and AU are given in Definition 5. Here P→ stands for convergence in probability as N/d→ ψ1

and n/d→ ψ2 (with respect to the randomness ofX and Θ).

Lemma 2. Follow the assumptions of Proposition 2. For any λ ∈ ΛU , we have

Varε,β[Ψ1],Varε,β[Ψ2],Varε,β[Ψ3] = od,P(1),

Varε,β[Φ1],Varε,β[Φ2],Varε,β[Φ3] = od,P(1),

so that
Varε,β[U c(λ,N, n, d)],Varε,β[‖aU,c(λ)‖22] = od,P(1).

Here, od,P(1) stands for converges to 0 in probability (with respect to the randomness of X and Θ) as N/d → ψ1 and
n/d→ ψ2 and d→∞.

Now, combining Lemma 2 and Proposition 5, we have

U c(λ,N, n, d)
P→ U(λ, ψ1, ψ2), ψ1‖aU,c(λ)‖22

P→ AU (λ, ψ1, ψ2),

Finally, combining with the arguments in Appendix D.2 proves the asymptotics of U and ψ1‖aU (λ)‖22.

D.4. The asymptotics of T c and ψ1‖aT,c(λ)‖22
In the following, we derive the asymptotics of T c(λ,N, n, d) and ψ1‖aT,c(λ)‖22. This follows the same steps as the proof
of the asymptotics of U c and ψ1‖aU,c(λ)‖22. We will give an overview of its proof. The detailed proof is the same as that of
U c, and we will not include them for brevity.
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For a fixed λ ∈ ΛT , recalling that the definition of T c as in Eq. (36), we have

T c(λ,N, n, d) = sup
a

inf
µ

[
Rc(a)− λψ1‖a‖22 + 2〈µ,Za− y/

√
d 〉
]

= sup
a

inf
µ

(
〈a, (Uc − λψ1IN )a〉 − 2〈a,v〉+ 2〈µ,Za〉 − 2〈µ,y/

√
d〉
)

+ E[y2]

= sup√
dZa=y

〈a, (Uc − λψ1IN )a〉 − 2〈a,v〉+ E[y2]

(44)

Whenever the good event in Assumption 4 happens, (Uc − λψ1IN ) is negative definite in null(Z). The optimum of the
above variational equation exists. By KKT condition, the optimal a and dual variable µ satisfies

• Stationary condition: (Uc − λψ1IN )a+ZTµ = v.

• Primal Feasible: Za = y/
√
d.

The two conditions can be written compactly as[
Uc − ψ1λIN ZT

Z 0

] [
a
µ

]
=

[
v

y/
√
d

]
. (45)

We define

M ≡
[
Uc − ψ1λIN ZT

Z 0

]
, v ≡

[
v

y/
√
d

]
. (46)

Under Assumption 4, M is invertible. To see this, suppose there exists vector [aT
1 ,µ

T
1 ]T 6= 0 ∈ RN+n such that

M [aT
1 ,µ

T
1 ]T = 0, then

(Uc − λψ1IN )a1 +ZTµ1 = 0,

Za1 = 0.

As in Assumption 4, let Pnull = IN −Z†Z. We write a1 = Pnullv1 for some v1 6= 0 ∈ RN . Then,

(Uc − λψ1IN )Pnullv1 +ZTµ1 = 0,

⇒ Pnull(Uc − λψ1IN )Pnullv1 + PnullZ
Tµ1 = 0,

⇒ Pnull(Uc − λψ1IN )Pnullv1 = 0,

where the last relation come from the fact that ZPnull = 0. However by Assumption 4, Pnull(Uc−λψ1IN )Pnull is negative
definite, which leads to a contradiction.

In the following, we assume the event in Assumption 4 happens so thatM is invertible. In this case, the maximizer in Eq.
(44) can be well defined as

aT,c(λ) = [IN ,0N×n]M
−1
v.

Moreover, we can write T c as
T c(λ,N, n, d) = E[y2]− vTM−1

v.

We further define

v1 = [vT,0T
n×1]T, v2 = [0T

N×1,y
T/
√
d]T, E ≡

[
IN 0N×n

0n×N 0n×n

]
.

Simple calculation shows that

T c(λ,N, n, d) ≡ E[y2]− 〈v,M−1
v〉 = F 2

1 + τ2 −Ψ1 −Ψ2 −Ψ3,

‖aU,c‖22 ≡ 〈v,M
−1
EM

−1
v〉 = Φ1 + Φ2 + Φ3,

where
Ψ1 = 〈v1,M

−1
v1〉, Φ1 = 〈v1,M

−1
EM

−1
v1〉,

Ψ2 = 2〈v2,M
−1
v1〉, Φ2 = 2〈v2,M

−1
EM

−1
v1〉,

Ψ3 = 〈v2,M
−1
v2〉, Φ3 = 〈v2,M

−1
EM

−1
v2〉.

The following lemma gives the expectation of Ψi’s and Φi’s with respect to β and ε.
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Lemma 3 (Expectation of Ψi’s and Φi’s). Denote qT (λ,ψ) = (µ2
? − λψ1, µ

2
1, 0, 0, 0). We have

Eε,β[Ψ1] = µ2
1F

2
1 · ∂s2Gd(0+; qT (λ,ψ))× (1 + od(1)),

Eε,β[Ψ2] = F 2
1 · ∂pGd(0+; qT (λ,ψ))× (1 + od(1)),

Eε,β[Ψ3] = F 2
1 · ∂t2Gd(0+; qT (λ,ψ)) + τ2 · ∂t1Gd(0+; qT (λ,ψ)),

Eε,β[Φ1] = − µ2
1F

2
1 · ∂s1∂s2Gd(0+; qT (λ,ψ))× (1 + od(1)),

Eε,β[Φ2] = − F 2
1 · ∂s1∂pGd(0+; qT (λ,ψ))× (1 + od(1)),

Eε,β[Φ3] = − F 2
1 · ∂s1∂t2Gd(0+; qT (λ,ψ))− τ2 · ∂s1∂t1Gd(0+; qT (λ,ψ)).

The definition of Gd is as in Definition 1, and∇kqGd(0+; q) for k ∈ {1, 2} stands for the k’th derivatives (as a vector or a
matrix) of Gd(iu; q) with respect to q in the u→ 0+ limit (with its elements given by partial derivatives)

∇kqGd(0+; q) = lim
u→0+

∇kqGd(iu; q).

The proof of Lemma 3 follows from direct calculation and is identical to the proof of Lemma 1. Combining Assumption 5
with Proposition 3, we have

Proposition 6. Let Assumption 5 holds. For any λ ∈ ΛT , denote qT = qT (λ,ψ) = (µ2
? − λψ1, µ

2
1, 0, 0, 0), then we have,

for k = 1, 2,
‖∇kqGd(0+; qT )− lim

u→0+
∇kqg(iu; qT ;ψ)‖ = od,P(1).

As a consequence of Proposition 6, we can calculate the asymptotics of Ψi’s and Φi’s.

Proposition 7. Follow the assumptions of Proposition 2. For any λ ∈ ΛT , denote qT (λ,ψ) = (µ2
? − λψ1, µ

2
1, 0, 0, 0), then

we have
Eε,β[Ψ1]

P→ µ2
1F

2
1 · ∂s2g(0+; qT (λ,ψ);ψ),

Eε,β[Ψ2]
P→ F 2

1 · ∂pg(0+; qT (λ,ψ);ψ),

Eε,β[Ψ3]
P→ F 2

1 · ∂t2g(0+; qT (λ,ψ);ψ) + τ2 · ∂t1g(0+; qT (λ,ψ);ψ),

Eε,β[Φ1]
P→ − µ2

1F
2
1 · ∂s1∂s2g(0+; qT (λ,ψ);ψ),

Eε,β[Φ2]
P→ − F 2

1 · ∂s1∂pg(0+; qT (λ,ψ);ψ),

Eε,β[Φ3]
P→ − F 2

1 · ∂s1∂t2g(0+; qT (λ,ψ);ψ)− τ2 · ∂s1∂t1g(0+; qT (λ,ψ);ψ),

where ∇kqg(0+; q;ψ) for k ∈ {1, 2} stands for the k’th derivatives (as a vector or a matrix) of g(iu; q;ψ) with respect to
q in the u→ 0+ limit (with its elements given by partial derivatives)

∇kqg(0+; q;ψ) = lim
u→0+

∇kqg(iu; q;ψ).

As a consequence, we have

Eε,β[T c(λ,N, n, d)]
P→ T (λ, ψ1, ψ2), Eε,β[ψ1‖aT,c(λ)‖22]

P→ AT (λ, ψ1, ψ2),

where the definitions of T and AT are given in Definition 5. Here P→ stands for convergence in probability as N/d→ ψ1

and n/d→ ψ2 (with respect to the randomness ofX and Θ).

The Proposition above suggests that Ψi and Φi concentrates with respect to the randomness inX and Θ. To complete the
concentration proof, we need to show that Ψi and Φi concentrates with respect to the randomness in β and ε.

Lemma 4. Follow the assumptions of Proposition 2. For any λ ∈ ΛT , we have

Varε,β[Ψ1],Varε,β[Ψ2],Varε,β[Ψ3] = od,P(1),

Varε,β[Φ1],Varε,β[Φ2],Varε,β[Φ3] = od,P(1),
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so that
Varε,β[T c(λ,N, n, d)],Varε,β[‖aT,c(λ)‖22] = od,P(1).

Here, od,P(1) stands for converges to 0 in probability (with respect to the randomness of X and Θ) as N/d → ψ1 and
n/d→ ψ2 and d→∞.

Now, combining Proposition 7 and 4, we have

T c(λ,N, n, d)
P→ T (λ, ψ1, ψ2), ψ1‖aT,c(λ)‖22

P→ AT (λ, ψ1, ψ2).

The results above combined with the arguments in Appendix D.2 completes the proof for the asymptotics of T and
ψ1‖aT (λ)‖22.

D.5. Proof of Lemma 1 and Lemma 2

Proof of Lemma 1. Note that by Assumption 4, the matrix M = Uc − ψ−12 ZTZ − ψ1λIN is negative definite (so
that it is invertible) with high probability. Moreover, whenever M is negative definite, the matrix A(qU ) for qU =
(µ2
? − λψ1, µ

2
1, ψ2, 0, 0) is also invertible. In the following, we condition on this good event happens.

From the expansion for vi in (34), we have

Eβ,εΨ1 = Eβ,ε
[
Tr
(
M
−1
vvT

)]
=

1

d
λd,1(σ)2F 2

1 ·
[
Tr
(
M
−1

ΘΘT
)]

=
1

d
µ2
1F

2
1 Tr

(
M
−1 ΘΘT

d

)
× (1 + od(1)),

where we used the relation λd,1 = µ1/
√
d× (1 + od(1)) as in Eq. (66). Similarly, the second term is

Eβ,εΨ2 = − 2

ψ2

√
d
Eβ,ε

[
Tr
(
ZM

−1
vyT

)]
= − 2

ψ2d
√
d
λd,1(σ)F 2

1 · Tr
(
ZM

−1
ΘXT

)
= − 2

ψ2d2
µ1F

2
1 · Tr

(
ZM

−1
ΘXT

)
× (1 + od(1)).

To compute Ψ3, note we have
Eβ,ε[yyT] = F 2

1 · (XXT)/d+ τ2In.

This gives the expansion for Ψ3

Eβ,εΨ3 = ψ−22 d−1Eβ,εTr
(
ZM

−1
ZTyyT

)
= ψ−22 d−2F 2

1 Tr
(
ZM

−1
ZTXXT

)
+ ψ−22 d−1Tr

(
ZM

−1
Z
)
τ2.

Through the same algebraic manipulation above, we have

Eβ,εΦ1 =
1

d
µ2
1F

2
1 Tr

(
M
−2 ΘΘT

d

)
× (1 + od(1)),

Eβ,εΦ2 = − 2

ψ2d2
µ1F

2
1 · Tr

(
ZM

−2
ΘXT

)
× (1 + od(1)),

Eβ,εΦ3 = ψ−22 d−2F 2
1 · Tr

(
ZM

−2
ZTXXT

)
+ ψ−22 d−1τ2Tr

(
ZM

−2
ZT
)
.

Next, we express the trace of matrices products as the derivative of the function Gd(ξ, q) (c.f. Definition 1). The derivatives
of Gd are (which can we well-defined at q = qU = (µ2

? − λψ1, µ
2
1, ψ2, 0, 0) with high probability by Assumption 4)

∂qiGd(0, q) =
1

d
Tr(A(q)−1∂iA(q)), ∂qi∂qjGd(0, q) = −1

d
Tr(A(q)−1∂qiA(q)A(q)−1∂qjA(q)). (47)
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As an example, we consider evaluating ∂s2Gd(0, q) at q = qU ≡ (µ2
? − λψ1, µ

2
1, ψ2, 0, 0). Using the formula for block

matrix inversion, we have

A(µ2
? − λψ1, µ

2
1, ψ2, 0, 0)−1 =

[
(µ2
? − λψ1)IN + µ2

1Q ZT

Z ψ2In

]−1
=

[
(Uc − ψ−12 ZTZ − ψ1λIN )−1 · · ·

· · · · · ·

]
.

Then we have

∂s2Gd(0, qU ) =
1

d
Tr

([
M
−1 · · ·
· · · · · ·

] [
Q 0
0 0

])
= Tr(M

−1
Q)/d.

Applying similar argument to compute other derivatives, we get

1. Tr(M
−1

ΘΘT)/d2 = Tr(M
−1
Q)/d = ∂s2Gd(0, qU ).

2. µ1 · Tr(ZM
−1

ΘXT)/d2 = Tr(M
−1
ZT

1Z)/d = −ψ2∂pGd(0, qU )/2.

3. Tr(ZM
−1
ZTXXT)/d2 = Tr(ZM

−1
ZTH)/d = ψ2

2∂t2Gd(0, qU )− ψ2
2 .

4. Tr(ZM
−1
ZT)/d = ψ2

2∂t1Gd(0, qU )− ψ2
2 .

5. Tr(M
−2
Q)/d = −∂s1∂s2Gd(0, qU ).

6. (2/dψ2) · Tr(ZT
1ZM

−2
) = ∂s1∂pGd(0, qU ).

7. Tr(M
−2
ZTHZ)/(dψ2

2) = −∂s1∂t2Gd(0, qU ).

8. Tr(M
−2
ZTZ)/(dψ2

2) = −∂s1∂t1Gd(0, qU ).

Combining these equations concludes the proof.

Proof of Lemma 2. We prove this lemma by assuming that β follows a different distribution: β ∼ N (0, (‖F1‖22/d)Id). The
case when β ∼ Unif(Sd−1(F1)) can be treated similarly.

By directly calculating the variance, we can show that, there exists scalers (c
(d)
ik )k∈[Ki] with c(d)ik = Θd(1), and matrices

(Aik,Bik)k∈[Ki] ⊆ {IN ,Q,ZTHZ,ZTZ}, such that the variance of Ψi’s can be expressed in form

Varε,β(Ψi) =
1

d

Ki∑
k=1

c
(d)
ik Tr(M

−1
AikM

−1
Bik)/d.

For example, by Lemma 8, we have

Varβ∼N (0,(F 2
1 /d)Id)

(Ψ1) = λd,1(σ)4Varβ∼N (0,(F 2
1 /d)Id))

(βTΘTM
−1

Θβ) = 2λd,1(σ)4F 4
1 ‖ΘTM

−1
Θ‖2F /d2

= c
(d)
1 Tr(M

−1
QM

−1
Q)/d2,

where c(d)1 = 2d2λd,1(σ)4F 4
1 = Od(1). The variance of Ψ2 and Ψ3 can be calculated similarly.

Note that each Tr(M
−1
AikM

−1
Bik)/d can be expressed as an entry of∇2

qGd(0; q) (c.f. Eq. (47)), and by Proposition 4,
they are of order Od,P(1). This gives

Varε,β(Ψi) = od,P(1).

Similarly, for the same set of scalers (c
(d)
ik )k∈[Ki] and matrices (Aik,Bik)k∈[Ki], we have

Varε,β(Φi) =
1

d

Ki∑
k=1

cikTr(M
−2
AikM

−2
Bik)/d.

Note that for two semidefinite matrices A,B, we have Tr(AB) ≤ ‖A‖opTr(B). Moreover, note we have ‖M‖op =
Od,P(1) (by Assumption 4). This gives

Varε,β(Φi) = od,P(1).

This concludes the proof.
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D.6. Auxiliary Lemmas

The following lemma (Lemma 5) is a reformulation of Proposition 3 in (Ghorbani et al., 2019). We present it in a stronger
form, but it can be easily derived from the proof of Proposition 3 in (Ghorbani et al., 2019). This lemma was first proved in
(El Karoui, 2010) in the Gaussian case. (Notice that the second estimate —on Qk(ΘXT)— follows by applying the first
one whereby Θ is replaced byW = [ΘT|XT]T

Lemma 5. Let Θ = (θ1, . . . ,θN )T ∈ RN×d with (θa)a∈[N ] ∼iid Unif(Sd−1(
√
d)) and X = (x1, . . . ,xn)T ∈ Rn×d

with (xi)i∈[n] ∼iid Unif(Sd−1(
√
d)). Assume 1/c ≤ n/d,N/d ≤ c for some constant c ∈ (0,∞). Then

E
[

sup
k≥2
‖Qk(ΘΘT)− IN‖2op

]
= od(1) , (48)

E
[

sup
k≥2
‖Qk(ΘXT)‖2op

]
= od(1). (49)

Notice that the second estimate —on Qk(ΘXT)— follows by applying the first one —Eq. (48)— whereby Θ is replaced
byW = [ΘT|XT]T, and we use ‖Qk(ΘXT)‖op ≤ ‖Qk(WW T)− IN+n‖op.

The following lemma (Lemma 6) can be easily derived from Lemma 5. Again, this lemma was first proved in (El Karoui,
2010) in the Gaussian case.

Lemma 6. Let Θ = (θ1, . . . ,θN )T ∈ RN×d with (θa)a∈[N ] ∼iid Unif(Sd−1(
√
d)). Let activation function σ satisfies

Assumption 2. Assume 1/c ≤ N/d ≤ c for some constant c ∈ (0,∞). Denote

U =
(
Ex∼Unif(Sd−1(

√
d))[σ(〈θa,x〉/

√
d)σ(〈θb,x〉/

√
d)]
)
a,b∈[N ]

∈ RN×N .

Then we can rewrite the matrix U to be

U = λd,0(σ)21N1T
N + µ2

1Q+ µ2
?(IN + ∆),

withQ = ΘΘT/d and E[‖∆‖2op] = od(1).

In the following, we show that, under sufficient regularity condition of σ, we have λd,0(σ) = O(1/d).

Lemma 7. Let σ ∈ C2(R) with |σ′(x)|, |σ′′(x)| < c0e
c1|x| for some c0, c1 ∈ R. Assume that EG∼N (0,1)[σ(G)] = 0. Then

we have
λd,0(σ) ≡ Ex∼Unif(Sd−1(

√
d))[σ(x1)] = O(1/d).

Proof of Lemma 7. Let x ∼ Unif(Sd−1(
√
d)) and γ ∼ χ(d)/

√
d independently. Then we have γx ∼ N (0, Id), so that by

the assumption, we have E[σ(γx1)] = 0.

As a consequence, by the second order Taylor expansion, and by the independence of γ and x, we have (for ξ(x1) ∈ [γ, 1])

|λd,0(σ)| = |E[σ(x1)]| ≤ |E[σ(x1)]− E[σ(γx1)]| ≤
∣∣∣E[σ′(x1)x1]E[γ − 1]

∣∣∣+
∣∣∣(1/2)E[σ′′(ξ(x1)x1)(γ − 1)2]

∣∣∣
≤
∣∣∣E[σ′(x1)x1]

∣∣∣ · ∣∣∣E[γ − 1]
∣∣∣+ (1/2)E

[
sup
u∈[γ,1]

σ′′(ux1)2
]1/2

E[(γ − 1)4]1/2.

By the assumption that |σ′(x)|, |σ′′(x)| < c0e
c1|x| for some c0, c1 ∈ R, there exists constant K that only depends on c0 and

c1 such that

sup
d

∣∣∣E[σ′(x1)x1]
∣∣∣ ≤ K, sup

d

∣∣∣(1/2)E
[

sup
u∈[γ,1]

σ′′(ux1)2
]1/2∣∣∣ ≤ K.

Moreover, by property of the χ distribution, we have

|E[γ − 1]| = O(d−1), E[(γ − 1)4]1/2 = O(d−1).

This concludes the proof.
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The following lemma is a simple variance calculation and can be found as Lemma C.5 in (Mei & Montanari, 2019). We
restate here for completeness.
Lemma 8. Let A ∈ Rn×N and B ∈ Rn×n. Let g = (g1, . . . , gn)T with gi ∼iid Pg, Eg[g] = 0, and Eg[g2] = 1. Let
h = (h1, . . . , hN )T with hi ∼iid Ph, Eh[h] = 0, and Eh[h2] = 1. Further we assume that h is independent of g. Then we
have

Var(gTAh) = ‖A‖2F ,

Var(gTBg) =

n∑
i=1

B2
ii(E[g4]− 3) + ‖B‖2F + Tr(B2).

E. Proof of Theorem 1
Here we give the whole proof for U . The proof for T is the same.

For fixed A2 ∈ ΓU ≡ {AU (λ, ψ1, ψ2) : λ ∈ ΛU}, we denote

λ?(A
2) = inf

λ

{
λ : AU (λ, ψ1, ψ2) = A2

}
.

By the definition of ΓU , the set {λ : AU (λ, ψ1, ψ2) = A2} is non-empty and lower bounded, so that λ?(A2) can be
well-defined. Moreover, we have λ?(A2) ∈ ΛU . It is also easy to see that we have

λ?(A
2) ∈ arg min

λ≥0

[
U(λ, ψ1, ψ2) + λA2

]
. (50)

E.1. Upper bound

Note we have
U(A,N, n, d) = sup

(N/d)‖a‖22≤A2

(
R(a)− R̂n(a)

)
≤ inf

λ
sup

(N/d)‖a‖22≤A2

(
R(a)− R̂n(a)− ψ1λ(‖a‖22 − ψ−11 A2)

)
≤ inf

λ

[
U(λ,N, n, d) + λA2

]
≤ U(λ?(A

2), N, n, d) + λ?(A
2)A2.

Note that λ?(A2) ∈ ΛU , so by Lemma 5, in the limit of Assumption 3, we have

U(A,N, n, d) ≤ U(λ?(A
2), ψ1, ψ2) + λ?(A

2)A2 + od,P(1) = U(A,ψ1, ψ2) + od,P(1),

where the last equality is by Eq. (50). This proves the upper bound.

E.2. Lower bound

For any A2 > 0, we define a random variable λ̂(A2) (which depend onX , Θ, β, ε) by

λ̂(A2) = inf
{
λ : λ ∈ arg min

λ≥0

[
U(λ,N, n, d) + λA2

]}
.

By Proposition 1, the set is should always be non-empty, so that λ̂(A2) can always be well-defined.

Moreover, since λ?(A2) ∈ ΛU , by Assumption 4, as we have shown in the proof in Proposition 2, we can uniquely define
aU (λ?(A

2)) with high probability, where

aU (λ?(A
2)) = arg max

a

[
R(a)− R̂n(a)− ψ1λ?(A

2)‖a‖22
]
.

As a consequence, for a small ε > 0, the following event Eε,d can be well-defined with high probability

Eε,d =
{
ψ1‖aU (λ?(A

2))‖22 ≥ A2 − ε
}
∩
{
λ̂(A2 + ε) ≤ λ?(A2)

}
=
{
A2 − ε ≤ ψ1‖aU (λ?(A

2))‖22 ≤ A2 + ε
}
.
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Now, by Proposition 2, in the limit of Assumption 3, we have

lim
d→∞

PX,Θ,β,ε(Eε,d) = 1, (51)

and we have
U(λ?(A

2), ψ1, ψ2) = U(λ?(A
2), ψ1, ψ2) + od,P(1). (52)

By the strong duality as in Proposition 1, for any A2 ∈ ΓU , we have

U(A,N, n, d) = U(λ̂(A2), N, n, d) + λ̂(A2)A2.

Consequently, for small ε > 0, when the event Eε,d happens, we have

U((A2 + ε)1/2, N, n, d)

= sup
a

(
R(a)− R̂n(a)− ψ1λ̂(A2 + ε) ·

(
‖a‖22 − ψ−11 (A2 + ε)

))
≥ R(aU (λ?(A

2)))− R̂n(aU (λ?(A
2)))− ψ1λ̂(A2 + ε) ·

(
‖aU (λ?(A

2))‖22 − ψ−11 (A2 + ε)
)

≥ R(aU (λ?(A
2)))− R̂n(aU (λ?(A

2)))− ψ1λ̂(A2 + ε) ·
(
‖aU (λ?(A

2))‖22 − ψ−11 (A2 − ε)
)

≥ R(aU (λ?(A
2)))− R̂n(aU (λ?(A

2)))− ψ1λ?(A
2) ·
(
‖aU (λ?(A

2))‖22 − ψ−11 (A2 − ε)
)

= U(λ?(A
2), N, n, d) + λ?(A

2) · (A2 − ε).

As a consequence, by Eq. (51) and (52), we have

U((A2 + ε)1/2, N, n, d) ≥ U(λ?(A
2), ψ1, ψ2) + λ?(A

2) · (A2 − ε)− od,P(1) = U(A,ψ1, ψ2)− ελ?(A2)− od,P(1).

where the last equality is by the definition of U as in Definition 2, and by the fact that λ?(A2) ∈ arg minλ≥0[U(λ, ψ1, ψ2) +
λA2]. Taking ε sufficiently small proves the lower bound. This concludes the proof of Theorem 1.

F. Technical background
In this section we introduce additional technical background useful for the proofs. In particular, we will use decompositions
in (hyper-)spherical harmonics on the Sd−1(

√
d) and in Hermite polynomials on the real line. We refer the readers to

(Efthimiou & Frye, 2014; Szego, Gabor, 1939; Chihara, 2011; Ghorbani et al., 2019; Mei & Montanari, 2019) for further
information on these topics.

F.1. Functional spaces over the sphere

For d ≥ 1, we let Sd−1(r) = {x ∈ Rd : ‖x‖2 = r} denote the sphere with radius r in Rd. We will mostly work with the
sphere of radius

√
d, Sd−1(

√
d) and will denote by γd the uniform probability measure on Sd−1(

√
d). All functions in the

following are assumed to be elements of L2(Sd−1(
√
d), γd), with scalar product and norm denoted as 〈 · , · 〉L2 and ‖ · ‖L2 :

〈f, g〉L2 ≡
∫
Sd−1(

√
d)

f(x) g(x) γd(dx) . (53)

For ` ∈ Z≥0, let Ṽd,` be the space of homogeneous harmonic polynomials of degree ` on Rd (i.e. homogeneous polynomials
q(x) satisfying ∆q(x) = 0), and denote by Vd,` the linear space of functions obtained by restricting the polynomials in Ṽd,`
to Sd−1(

√
d). With these definitions, we have the following orthogonal decomposition

L2(Sd−1(
√
d), γd) =

∞⊕
`=0

Vd,` . (54)

The dimension of each subspace is given by

dim(Vd,`) = B(d, `) =
2`+ d− 2

`

(
`+ d− 3

`− 1

)
. (55)
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For each ` ∈ Z≥0, the spherical harmonics {Y (d)
`j }1≤j≤B(d,`) form an orthonormal basis of Vd,`:

〈Y (d)
ki , Y

(d)
sj 〉L2 = δijδks.

Note that our convention is different from the more standard one, that defines the spherical harmonics as functions on
Sd−1(1). It is immediate to pass from one convention to the other by a simple scaling. We will drop the superscript d and
write Y`,j = Y

(d)
`,j whenever clear from the context.

We denote by Pk the orthogonal projections to Vd,k in L2(Sd−1(
√
d), γd). This can be written in terms of spherical

harmonics as

Pkf(x) ≡
B(d,k)∑
l=1

〈f, Ykl〉L2Ykl(x). (56)

Then for a function f ∈ L2(Sd−1(
√
d)), we have

f(x) =

∞∑
k=0

Pkf(x) =

∞∑
k=0

B(d,k)∑
l=1

〈f, Ykl〉L2Ykl(x).

F.2. Gegenbauer polynomials

The `-th Gegenbauer polynomial Q(d)
` is a polynomial of degree `. Consistently with our convention for spherical harmonics,

we view Q
(d)
` as a function Q(d)

` : [−d, d]→ R. The set {Q(d)
` }`≥0 forms an orthogonal basis on L2([−d, d], τ̃d) (where τ̃d

is the distribution of 〈x1,x2〉 when x1,x2 ∼i.i.d. Unif(Sd−1(
√
d))), satisfying the normalization condition:

〈Q(d)
k , Q

(d)
j 〉L2(τ̃d) =

1

B(d, k)
δjk . (57)

In particular, these polynomials are normalized so that Q(d)
` (d) = 1. As above, we will omit the superscript d when clear

from the context (write it as Q` for notation simplicity).

Gegenbauer polynomials are directly related to spherical harmonics as follows. Fix v ∈ Sd−1(
√
d) and consider the

subspace of V` formed by all functions that are invariant under rotations in Rd that keep v unchanged. It is not hard to see
that this subspace has dimension one, and coincides with the span of the function Q(d)

` (〈v, · 〉).

We will use the following properties of Gegenbauer polynomials

1. For x,y ∈ Sd−1(
√
d)

〈Q(d)
j (〈x, ·〉), Q(d)

k (〈y, ·〉)〉L2(Sd−1(
√
d),γd)

=
1

B(d, k)
δjkQ

(d)
k (〈x,y〉). (58)

2. For x,y ∈ Sd−1(
√
d)

Q
(d)
k (〈x,y〉) =

1

B(d, k)

B(d,k)∑
i=1

Y
(d)
ki (x)Y

(d)
ki (y). (59)

Note in particular that property 2 implies that –up to a constant– Q(d)
k (〈x,y〉) is a representation of the projector onto the

subspace of degree-k spherical harmonics

(Pkf)(x) = B(d, k)

∫
Sd−1(

√
d)

Q
(d)
k (〈x,y〉) f(y) γd(dy) . (60)
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For a function σ ∈ L2([−
√
d,
√
d], τd) (where τd is the distribution of 〈x1,x2〉/

√
d when x1,x2 ∼iid Unif(Sd−1(

√
d))),

denoting its spherical harmonics coefficients λd,k(σ) to be

λd,k(σ) =

∫
[−
√
d,
√
d]

σ(x)Q
(d)
k (
√
dx)τd(x), (61)

then we have the following equation holds in L2([−
√
d,
√
d], τd) sense

σ(x) =

∞∑
k=0

λd,k(σ)B(d, k)Q
(d)
k (
√
dx). (62)

F.3. Hermite polynomials

The Hermite polynomials {Hek}k≥0 form an orthogonal basis of L2(R, µG), where µG(dx) = e−x
2/2dx/

√
2π is the

standard Gaussian measure, and Hek has degree k. We will follow the classical normalization (here and below, expectation
is with respect to G ∼ N(0, 1)):

E
{

Hej(G) Hek(G)
}

= k! δjk . (63)

As a consequence, for any function σ ∈ L2(R, µG), we have the decomposition

σ(x) =

∞∑
k=1

µk(σ)

k!
Hek(x) , µk(σ) ≡ E

{
σ(G) Hek(G)} . (64)

The Hermite polynomials can be obtained as high-dimensional limits of the Gegenbauer polynomials introduced in the
previous section. Indeed, the Gegenbauer polynomials (up to a

√
d scaling in domain) are constructed by Gram-Schmidt

orthogonalization of the monomials {xk}k≥0 with respect to the measure τd, while Hermite polynomial are obtained by
Gram-Schmidt orthogonalization with respect to µG. Since τd ⇒ µG (here⇒ denotes weak convergence), it is immediate
to show that, for any fixed integer k,

lim
d→∞

Coeff{Q(d)
k (
√
dx)B(d, k)1/2} = Coeff

{
1

(k!)1/2
Hek(x)

}
. (65)

Here and below, for P a polynomial, Coeff{P (x)} is the vector of the coefficients of P . As a consequence, for any fixed
integer k, we have

µk(σ) = lim
d→∞

λd,k(σ)(B(d, k)k!)1/2, (66)

where µk(σ) and λd,k(σ) are given in Eq. (64) and (61).


