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SUPPLEMENTARY FILE
Graph Neural Networks Inspired by Classical Iterative Algorithms

A. Dataset and Experimental Setting Details
Standard Benchmarks In Section 5.1 of the main paper,
we used four datasets, namely Cora, Citeseer, Pubmed and
ogb-arxiv. These four are all citation datasets, i.e. their
nodes represent papers and edges represents citation rela-
tionship. The node features of the former three are bag-of-
words. Following (Yang et al., 2016), we use a fixed spitting
for these three datasets in which there are 20 nodes per class
for training, 500 nodes for validation and 1000 nodes for
testing. For ogbn-arxiv, the features are word2vec vectors.
We use the standard leaderboard splitting for ogbn-arxiv, i.e.
papers published until 2017 for training, papers published
in 2018 for validation, and papers published since 2019 for
testing.

Adversarial Attack Experiments As mentioned in the
main paper, we tested on Cora and Citerseer using Mettack.
We use the DeepRobust library (Li et al., 2020) and apply
the exact same non-targeted attack setting as in (Zhang &
Zitnik, 2020). For all the baseline results in Table 4, we
run the implementation in the DeepRobust library or the
GNNGuard official code. Note the GCN-Jaccard results
differ slightly from those reported in (Zhang & Zitnik, 2020),
likely because of updates in the DeepRobust library and the
fact that (Zhang & Zitnik, 2020) only report results from a
single trial (as opposed to averaged results across multiple
trails as we report).

Heterophily Experiments In Section 5.3, we use four
datasets introduced in (Pei et al., 2019), among which Cor-
nell, Texas, and Wisconsin are web networks datasets, where
nodes correspond to web pages and edges correspond to
hyperlinks. The node features are the bag-of-words rep-
resentation of web pages. In contrast, the Actor dataset
is induced from a film-director-actor-writer network (Tang
et al., 2009), where nodes represent actors and edges de-
note co-occurrences on the same Wikipedia page. The node
features represent some keywords in the Wikipedia pages.
We used the data split, processed node features, and labels
provided by (Pei et al., 2019), where for the former, the
nodes of each class are randomly split into 60%, 20%, and
20% for train, dev and test set respectively.

Long-Range Dependency/Sparse Label Tests In Section
5.4, we adopt the Amazon Co-Purchase dataset, which has

previously been used in (Gu et al., 2020) and (Dai et al.,
2018) for evaluating performance involving long-range de-
pendencies. We use the dataset provided by the IGNN repo
(Gu et al., 2020), including the data-processing and eval-
uation code, in order to obtain a fair comparison. As for
splitting, 10% of nodes are selected as the test set. And
because there is no dev set, we directly report the test result
of the last epoch. We also vary the fraction of training nodes
from 5% to 9%. Additionally, because there are no node fea-
tures, we learn a 128-dim feature vector for each node. All
of these settings from above follow from (Gu et al., 2020).

Summary Statistics Table 5 summarizes the attributes of
each dataset.

Table 5. Dataset statistics. The FEATURES column describes
the dimensionality of node features. Note that the Amazon Co-
Purchase dataset has no node features.

DATASET NODES EDGES FEATURES CLASSES

CORA 2,708 5,429 1,433 7
CITESEER 3,327 4,732 3,703 6
PUBMED 19,717 44,339 500 3
ARXIV 169,343 1,166,243 128 40

TEXAS 183 309 1,703 5
WISCONSIN 251 499 1,703 5
ACTOR 7,600 33,544 931 5
CORNELL 183 295 1,703 5

AMAZON 334,863 2,186,607 - 58

B. Model Specifications
B.1. Basic Architecture Design

The TWIRLS architecture is composed of the input mod-
ule f (X;W ), followed by the unfolded linear propagation
layers defined by (21) interleaved with attention given by
(20), concluding with g(y; θ). Note that the attention only
involves reweighting the edge weights of the graph (i.e., it
does not alter the node embeddings at each layer), and when
no attention is included we obtain TWIRLSbase.

The aggregate design is depicted in in Figure 3. For simplic-
ity, we generally adopt a single attention layer sandwiched
between equal numbers of propagation layers; however, for
heterophily datasets we apply an extra attention layer before
propagation. Additionally, for all experiments except ogbn-
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arxiv, we set g(y; θ) = y (i.e., an identity mapping). For
ogbn-arxiv, we instead set f (X;W ) = X . Hence for every
experiment, TWIRLS restricts all parameters to a single
MLP module (or linear layer for some small datasets; see
hyperparameter details below).

Figure 3. Model Architecture. S is the total number of propagation
steps. K and L are number of MLP layers before and after the
propagation respectively. While not a requirement, in all of our
experiments, either K or L is set to zero, meaning that the MLP
exists on only one side of the propagation layers.

B.2. Specific Attention Formula

While the proposed attention mechanism can in principle
adopt any concave, non-decreasing function ρ, in this work
we restrict ρ to a single functional form that is sufficiently
flexible to effectively accommodate all experimental scenar-
ios. Specifically, we adopt

ρ(z2) =


τ̄p−2z2 if z < τ̄
2
p T̄

p − ρ0 if z > T̄
2
pz
p − ρ0 otherwise,

(26)

where p, T̄ , and τ̄ are non-negative hyperparameters and
ρ0 = 2−p

p τ̄p is a constant that ensures ρ is continuous.
Additionally, the gradient of ρ produces the attention score

function (akin to γ in the main paper) given by

s(z2) ,
∂p(z2)

∂z2
=


τ̄p−2 if z < τ̄

0 if z > T̄

zp−2 otherwise.
(27)

And for convenience and visualization, we also adopt the
reparameterizations τ = τ̄

1
2−p and T = T̄

1
2−p , and plot

ρ(z2) and s(z2) in Figure 4 using p = 0.1, τ = 0.2, T = 2.

0 1.5 3.0τ̄2 ̄T2
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0
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2
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s
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Figure 4. A visualization of attention functions.

Overall, this flexible choice has a natural interpretation in
terms of its differing behavior between the intervals [0, τ̄ ],
(τ̄ , T̄ ), and (T̄ ,∞). For example, in the [0, τ̄ ] interval a
quadratic penalty is applied, which leads to constant atten-
tion independent of z. This is exactly like TWIRLSbase. In
contrast, within the (T̄ ,∞) interval ρ is constant and the
corresponding attention weight is set to zero (truncation),
which is tantamount to edge removal. And finally, the mid-
dle interval provides a natural transition between these two
extremes, with ρ becoming increasingly flat with larger z
values.

Additionally, many familiar special cases emerge for certain
parameter selections. For example T = ∞ corresponds
with no explicit truncation, while p = 2 can instantiate no
attention. And T = τ means we simply truncate those edges
with large distance, effectively keeping the remaining edge
attention weights at 1 (note that there is normalization dur-
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ing propagation, so setting edges to a constant is equivalent
to setting them to 1).

B.3. Hyperparameters

All model structure-related hyperparameters for
TWIRLSbase can be found in Table 6. For experi-
ments with attention, other hyperparameters of the model
are the same as the base version, and additional hyper-
parameters introduced by attention can be found in Table 7.
For training, we use the Adam optimizer for all experiments,
with learning rate = 0.1 for Cora, Citeseer, attacked Cora,
and Texas, and 0.5 for Pubmed and other heterophily
datasets. For ogbn-arxiv and Amazon Co-Purchase, we use
learning rate = 1e-3 and 1e-2 respectively.

DATASET
# PROP
LAYERS

λ α
MLP

LAYERS

HIDDEN
LAYER

SIZE

CORA 16 1 1 2 -
CITESEER 16 1 1 2 -
PUBMED 40 1 1 1 -
ARXIV 7 20 0.05 3 512

ATK-CORA 32 1 1 1 -
ATK-CITE 64 1 1 1 -

WISCONSIN 4 0.001 1 2 64
CORNELL 4 0.001 1 2 64
TEXAS 6 0.001 1 2 64
ACTOR 6 0.001 1 2 64

AMAZON 32 10 0.1 1 128

Table 6. Model hyperparameters for TWIRLSbase.

Consistent with prior work, we apply L2 regularization on
model weights, with the corresponding weight decay rate
set to 5e-4 for Cora, Pubmed, Wisconsin and Texas, 1e-3
for Citeseer, attacked citeseer, Cornell and Actor, 5e-5 for
attacked Cora and 0 for others. Again, as in prior work,
we also used dropout as regularization, with dropout rate
set to 0.8 for Cora and Pubmed, 0.5 for Citeseer, ogb-arxiv,
attcked Cora and attacked Citeseer, and 0 for other datasets.

DATASET p τ T

ATK-CORA 0.1 0.2 2
ATK-CITESEER 0.1 0.2 2

WISCONSIN 1 0.1 +∞
CORNELL 0 0.001 +∞
TEXAS 0 10 +∞
GEOM-FILM 1 0.1 +∞

Table 7. Attention Hyperparameters for TWIRLS

C. Model Variations
C.1. Alternative GCN-like Reparameterization

If we define the reparameterized embeddings Z = D̃1/2Y
and left multiply (6) by D̃1/2, we have

Z(k+1) = (1− α)Z(k) + αλD̃−1/2AY (k) + αD̃−1/2f(X;W )

= (1− α)Z(k) + αλD̃−1/2AD̃−1/2Z(k) + αD̃−1Z(0).
(28)

From here, if we choose α = λ = 1, for Z(1) we have that

Z(1) =
(
D̃−1/2AD̃−1/2 + D̃−1

)
Z(0)

= D̃−1/2ÃD̃−1/2Z(0), (29)

which gives the exact single-layer GCN formulation in Z-
space with Z(0) = f(X;W ).

C.2. Normalized Laplacian Unfolding

From another perspective, if we replace L in (1) with a nor-
malized graph Laplacian, and then take gradients steps as
before, there is no need to do preconditioning and reparam-
eterizing. For example, following (5) with L changed to the
symmetrically-normalized version L̃ = I−D̃−1/2ÃD̃−1/2,
we get

Y (k+1) = (1−α−αλ)Y (k)+αλD̃−1/2ÃD̃−1/2Y (k)+αY (0),
(30)

where we set D̃ = I +D. This formula is essentially the
same as (28). The main difference is that there is no D̃−1

in front of X , which indicates an emphasis on the initial
features. We found this version to be helpful on ogbn-arxiv
and Amazon Co-Purchase data. Note however that all of
our theoretical support from the main paper applies equally
well to this normalized version, just with a redefinition of
the gradient steps to include the normalized Laplacian.

C.3. Layer-Dependent Weights

It is also possible to seemlessly address the introduction
of layer/iteration-dependent weights. Within the unfolding
framework, this can be accomplished by simply changing
the specification of the norms used to define `Y (Y ). For ex-
ample, if at each iteration we swap the stated parameter-free
Frobenius norms with the reweighted alternative ‖U‖2

Σ(k) =

trace
[
U>Σ(k)U

]
, where Σ(k) = M (k)(M (k))> for some

matrix M (k), then each term on the r.h.s. of (6) will be
right multiplied by M (k); similarly for (10). This can be
viewed as applying a learnable warping metric to each itera-
tion. While this additional flexibility may at times be useful,
in the interest of simplicity, for the experiments presented
herein we did not include them.
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C.4. Sampling and Spectral Sparsification

The recursive neighborhood expansion across layers poses
time and memory challenges for training large and dense
graphs. In this regard, sparsifying the graph in each layer
by random sampling is an effective technique, which signifi-
cantly reduces training time and memory usage but still
allows for competitive accuracy (Chen et al., 2018a;b).
Edge sampling has also proved to be effective for reliev-
ing over-fitting and over-smoothing in deep GCNs (Rong
et al., 2019).

More specifically, the normalized adjacency matrix Ã can
be sparsified via random sampling. Let Ã′ denote this sparse
version. Then

Z ′(k+1) = ReLU(D̃−1/2Ã′D̃−1/2Z ′(k)) (31)

represents the corresponding GCN embedding update. Note
that the sparse random matrix Ã′ used in each layer will gen-
erally be different i.i.d. samples. It should also be observed
that nonlinear activation functions make the overall function
rather complicated, and in particular, it is difficult to get
unbiased estimators, i.e., Z(k) = E

[
Z ′(k)

]
for all k. To

address this issue, (Chen et al., 2018a) assume that there is a
(possibly infinite) graph G′ with the vertex set V ′ associated
with a probability space (V ′,F ,P), such that for the given
graph G, it is an induced subgraph of G′ and its vertices are
i.i.d. samples of V ′ according to the probability measure
P . But even granted this strong assumption, (Chen et al.,
2018a) were only be able to show that Z ′ is a consistent
estimator of Z, but not necessarily unbiased. Consequently,
it can be argued that the theoretical foundation of why ran-
dom sampling does not significantly impact the accuracy
still remains at least partially unclear.

In this context, the perspective on GCNs from Sections
2.2 (main paper) and C.1 (supplementary) provides a sim-
ple alternative explanation. Let L′ be the Laplacian ma-
trix of the subsampled graph with appropriate scaling such
that we have L = E[L′]. And let `′Y (Y ) = ‖Y −
f(X;W )‖2F + λtr

(
Y TL′Y

)
. It is then easy to check that

`Y (Y ) = E[`′Y (Y )] for all Y . And giving the embeddings

Z = arg min
Y

`Y (Y ), s. t. Y ≥ 0 and

Z ′ = arg min
Y

`′Y (Y ), s. t. Y ≥ 0, (32)

we observe that, even though Z ′ is not an unbiased estimator
of Z, it is nonetheless the optima of an objective function
`′Y (Y ) that is an unbiased estimator of the corresponding
objective for Z.

Additionally, per this interpretation, we can also apply spec-
tral sparsification results to get strong theoretical guarantees
on graph sparsification for GCNs. For dense graphs with
n vertices and m edges, we have that m = Ω(n2), which

is huge for moderately large graphs. However, it has been
proven that there exists a sparse graph G′, with the same set
of vertices and with its edge set a reweighted subset of E ,
satisfying

xTL′x = (1± ε)xTLx for all x, (33)

where L′ is the Laplacian of G′, and the number of edges
in G′ is O

(
n
ε2

)
(Batson et al., 2012). Moreover, G′ can be

computed in near-linear time (Lee & Sun, 2017). From this
result and our interpretation of GCNs, we can always obtain
a sparse GCN with constant number of edges per vertex,
which approximates the GCN defined by the original graph
well. This provides nontrivial theoretical guarantees for
graph sparsification for graph neural networks.

D. Ablation Study
D.1. Varying α and # of Propagation Steps

In the main paper, we interpret α as the gradient step size.
From this viewpoint, if the step size becomes smaller, we
might naturally expect that more steps are needed for the
model to obtain good performance. To verify this interpreta-
tion, we vary α and the number of propagation steps S on
Citeseer and observe the performance of TWIRLSbase. The
results are shown in Table 8. In general, the best results are
arranged on a counter diagonal, which indicates a matching
of α and the number of propagation steps gives the best
result as expected.

S
α

0.1 0.25 0.5 1

8 66.00 67.25 69.51 72.35
16 66.80 69.23 72.56 74.07
32 68.71 72.55 74.00 73.78
64 71.66 73.98 73.84 72.58

Table 8. TWIRLSbase performance on Citeseer as the step size α
and the number of propagation steps S are varied. Note that for
computational efficiency, the number of repeated experiments here
is lower than that of the main paper, so the results are slightly
different (we also omit standard deviations for compactness).

D.2. Varying Truncation Parameter T

We also show how results change when using a different
truncating hyperparameter T on attacked Cora and Citeseer.
The results are reported in Table 9. Overall, the model
performance is relatively stable with respect to T , with the
best performance occurring with T = 2.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Graph Neural Networks Inspired by Classical Iterative Algorithms

T
DATA

ATK-CORA ATK-CITESEER

τ 70.10 ± 1.03 69.56 ± 1.32
2 70.23 ± 1.09 70.63 ± 0.93
+∞ 69.77 ± 1.26 70.51 ± 1.09

Table 9. TWIRLS performance under adversarial attacks with dif-
ferent T .

D.3. Varying MLP Layers

In Table 10 we demonstrate that even with only one MLP
layer (which is linear), the performance of TWIRLSbase is
still competitive.

K
DATA

CORA CITESEER PUBMED

1 83.3 ± 0.3 74.1 ± 0.5 80.7 ± 0.5
2 84.1 ± 0.5 74.2 ± 0.45 80.7 ± 0.4

Table 10. TWIRLSbase performance with different number of MLP
layers before propagetion. Here K denotes the number of MLP
layers before propagation.

E. Additional Empirical Results
E.1. Running Time

The time complexity of our model isO(mdS+Nd2), where
m is the number of edges, S is the number of propagation
steps, N and d are the number of MLP layers and hidden
size respectively. By contrast, the time complexity of a
GCN is O(mdN +Nd2). Moreover, if the MLP layers are
all after propagation (i.e., no parameters before propaga-
tion), the time complexity can be reduced to O(Nd2) by
precomputing the propagation (i.e., the same as an MLP).

To examine empirically, we pick three ogbn-arxiv SOTA
models, as well as common baselines GCN, GAT, and MLP
(no graph). We train each for 100 epochs on ogbn-arxiv
with a single Tesla T4 and report the average time per epoch
in Table 11 (in seconds). For consistency, all models have
three hidden layers and three propagation layers, and we
adjust the hidden size so that the total number of parameters
is roughly equivalent for all models. TWIRLS∗ denotes that
MLP layers are after propagation; otherwise they are before
propagation. Note that for the ogbn-arxiv experiment from
Table 2 we use TWIRLS∗base, so the computational cost is
negligibly different from an MLP, i.e., both are O(Nd2).

Table 11. Running time.

MODEL TRAIN TEST # PARAMETERS

MLP 0.672 0.124 351,272

GCN 0.775 0.192 351,272
GCNII 0.839 0.304 317,776
JKNET 0.998 0.285 362,920
DAGNN 0.769 0.154 351,313
TWIRLSBASE 0.746 0.169 351,272
TWIRLS∗BASE 0.679 0.124 351,272

GAT 1.486 0.266 352,336
TWIRLS 0.814 0.189 351,272
TWIRLS∗ 0.775 0.223 351,272

E.2. Amazon Co-Purchase

In Figure 2 from the main paper, we show the Micro F1
performance of our model on the Amazon Co-Purchase
dataset. Here in Figure 5 we present the corresponding
Macro F1 curve to provide a more detailed picture of our
model’s ability to capture long-range dependencies.
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Figure 5. Amazon Co-Purchase Macro-F1 results.

E.3. Chains Long-Range Dependency Dataset

To further showcase the ability of our model to capture long-
range dependencies, we tested TWIRLS using the Chains
dataset introduced by (Gu et al., 2020). Note that this data
has been explicitly synthesized to introduce long-range de-
pendencies of controllable length. This is accomplished by
constructing a graph formed from several uncrossed chains,
each randomly labeled 0 or 1. There is also a 100-dim fea-
ture for each node. And for the node at one end of the chain,
the first dimension of its feature vector is the label of this
chain; for other nodes the feature vector is a zero vector. See
(Gu et al., 2020) for further details. Figure 6 reveals that
our model can achieve 100% accuracy on this data, unlike
several of the baselines reported in (Gu et al., 2020). Again,
TWIRLS was not designed for this task, but nonetheless
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performs well.
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Figure 6. Results on Chains dataset. TWIRLSbase achieves 100%
accuracy as the long-range dependency is increased by varying
chain lengths.

E.4. Chinese Word Segmentation

Finally, we also observed that TWIRLSbase is even able to
capture long-range dependencies contained within sentences
when we model each sentence as a chain. To demonstrate
this capability, we test our model on a Chinese word seg-
mentation (CWS) dataset, namely the so-called PKU dataset
(Emerson, 2005). Here each sample is a Chinese sentence
with a label for each character, indicating whether this char-
acter is the start of a word, middle of a word, end of a word,
or itself forms a word. The model then needs to predict the
correct labels.

By viewing each Chinese character as a node, and connect-
ing an edge between neighboring characters, we construct
a graph from a sentence in a relatively naive way. We use
a static character embedding trained by FastNLP1 and run
TWIRLSbase on this graph. We simply set α = 0.5, λ = 1,
and apply 8 propagation steps, and use a 2-layer MLP af-
ter propagation with a hidden size of 512. As baselines,
we train a GCN and MLP with the same number of layers
and hidden size. We also include an 8-layer GCN (denoted
by GCN-8), to allow the GCN to have more propagation
steps. And as an additional baseline explicitly designed for
modeling dependencies within text sequences, we include
a bilateral LSTM that includes one LSTM layer and one
linear transform layer.

Table 12 shows the resulting Macro F1 scores, which demon-
strates the ability of TWIRLSbase to handle sentences rea-
sonably well, while the similar performance of GCN and
MLP shows that the former does not have similar ability.
Surprisingly, TWIRLSbase performance is even comparable
with the Bi-LSTM sequence model despite not being de-
signed for this task. And note also, as a quick preliminary
test, we did not tune the hyperparameters, nor finely design

1https://github.com/fastnlp/fastNLP

the model structure and graph construction for this task, so
there are space to further boost performance on this type of
task.

MODEL TEST ACCURACY

MLP 56.68 ± 2.81
GCN 61.95 ± 0.52
GCN-8 37.25 ± 0.62
TWIRLSBASE 84.86 ± 0.39

BI-LSTM 90.75 ± 0.52

Table 12. Performance of different models on the CWS task.
TWIRLSbase outperforms other graph-based models, and is even
competitive with a bilateral LSTM that is explicitly designed to
handle long-range dependencies within sequences.

F. Proof of Technical Results
Lemma 3.1 For any p(Y ) expressible via (13), we have

− log p(Y ) = π (Y ; ρ) ,
∑
{i,j}∈E

ρ
(∥∥yi − yj

∥∥2

2

)

excluding irrelevant constants, where ρ : R+ → R is a
concave non-decreasing function that depends on µ.

Proof : A function f : R+ → R+ is said to be totally
monotone (Widder, 2015) if it is continuous on [0,∞) and
infinitely differentiable on (0,∞), while also satisfying

(−1)n
∂n

∂un
f(z) ≥ 0, ∀ n = 1, 2, . . . . (34)

for all z > 0. Furthermore, a non-negative symmetric
function pz(z) can be expressed as a Gaussian scale mixture,
i.e.,

pz (z) =

∫
N
(
z|0, γ−1I

)
dµ (γ) , (35)

for some positive measure µ, iff pz(
√
z) is a totally mono-

tone function on [0,∞) (Andrews & Mallows, 1974). How-
ever, as shown in (Palmer et al., 2006), any such to-
tally monotone function can be expressed as pz(

√
z) =

exp [−ρ(z)], where ρ is a concave, non-decreasing function.

From these results, and the assignment zij ,
√

u>ijuij =



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Graph Neural Networks Inspired by Classical Iterative Algorithms

‖yi − yj‖2, we can then infer that

− log p(Y )

≡ −
∑
{i,j}∈E

log

∫
N
(
uij |0, γ−1

ij I
)
dµ (γij)

= −
∑
{i,j}∈E

log

∫ (γij
2π

)d/2
exp

[
−γij2 u>ijuij

]
dµ (γij)

= −
∑
{i,j}∈E

log

∫ (γij
2π

)1/2
exp

[
−γij2 z

2
ij

]
dµ′ (γij)

= −
∑
{i,j}∈E

log

∫
N
(
zij |0, γ−1

ij I
)
dµ′ (γij)

= −
∑
{i,j}∈E

log pz (zij)

= −
∑
{i,j}∈E

log pz

(√
‖yi − yj‖22

)
=

∑
{i,j}∈E

ρ
(
‖yi − yj‖22

)
, (36)

where the positive measure µ′ is defined such that
dµ′(γij) =

(γij
2π

)(d−1)/2
dµ(γij), noting that prior results

apply equally well to this updated version for some concave
non-decreasing ρ. Hence Lemma 3.1 directly follows. �

Lemma 3.2 For all {γij}i,j∈E ,

ˆ̀
Y (Y ; Γ, ρ̃) ≥ `Y (Y ; ρ),

with equality2 iff

γij = arg min
{γij>0}

π̃ (Y ; ρ̃, {γij})

=
∂ρ
(
z2
)

∂z2

∣∣∣∣∣
z=‖yi−yj‖2

.

Corollary 3.2.1 For any ρ, there exists a set of attention
weights Γ∗ ≡ {γ∗ij}i,j∈E such that

arg min
Y

`Y (Y ; ρ) = arg min
Y

ˆ̀
Y (Y ; Γ∗, ρ̃).

Proof : Both Lemma 3.2 and Corollary 3.2.1 follow di-
rectly from principles of convex analysis and Fenchel du-
ality (Rockafellar, 1970). In particular, any concave, non-
decreasing function ρ : R+ → R can be expressed via the

2If ρ is not differentiable, then the equality holds for any γij
which is an element of the subdifferential of −ρ(z2) evaluated at
z =

∥∥yi − yj

∥∥
2
.

variational decomposition

ρ
(
z2
)

= min
γ>0

[
γz2 − ρ∗ (γ)

]
≥ γz2 − ρ̃ (γ) , (37)

where γ is a variational parameter whose optimization de-
fines the decomposition, and ρ̃ is the concave conjugate
of ρ. From a visual perspective, (37) can be viewed as
constructing ρ

(
z2
)

as the minimal envelope of a series of
quadratic upper bounds, each defined by a different value
of γ. And for any fixed γ, we obtain a fixed upper bound
once we remove the minimization operator. By adopting
z = ‖yi − yj‖2 for all i, j ∈ E we obtain (16), which by
construction satisfies (17). And (18) follows by noting that
at any optimal γ∗, the upper bound satisfies

γ∗z2 − ρ̃ (γ∗) = ρ
(
z2
)
, (38)

i.e., it is tangent to ρ at z2, in which case γ∗ must be equal
to the stated gradient (or subgradient).

And finally, in terms of Corollary 3.2.1, let Y ∗ =
arg minY `Y (Y ; ρ). We may then simply apply Lemma
3.2 to form the bound

ˆ̀
Y (Y ∗; Γ, ρ̃) ≥ ˆ̀

Y (Y ∗; Γ∗, ρ̃) = `y(Y ∗; ρ), (39)

where Γ∗ denotes a diagonal matrix with optimized
γ∗ij values along the diagonal. Therefore ˆ̀

Y (Y ; Γ∗, ρ̃)
so-defined achieves the stated result. �

Lemma 3.3 Provided that α ≤ 1
2

∥∥λB>Γ(k)B + I
∥∥−1

2
,

the iterations (20) and (21) are such that

`Y (Y (k); ρ) ≥ `Y (Y (k+1); ρ).

Proof : We will first assume that no Jacobi preconditioning
is used (i.e., D̃ ≡ I); later we will address the general case.
Based on Lemma 3.2 and (18), as well as the analogous
update rule for Γ(k+1) from (20), it follows that

ˆ̀
Y

(
Y (k); Γ(k+1), ρ̃

)
= `Y (Y (k); ρ). (40)

Now define Ψ(Y ) , ˆ̀
Y

(
Y ; Γ(k+1), ρ̃

)
and

Ψ̂(Y ) , Ψ
(
Y (k)

)
+ (41)

∇Ψ
(
Y (k)

)> (
Y − Y (k)

)
+ L

2

∥∥∥Y − Y (k)
∥∥∥2

F
,

where Ψ has Lipschitz continuous gradients with Lipschitz
constant L satisfying

‖∇Ψ(Y1)−∇Ψ(Y2)‖F ≤ L‖Ψ(Y1)−Ψ(Y2)‖F (42)
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for all Y1 and Y2. We may then conclude that

Ψ̂(Y ) ≥ Ψ(Y ) ≥ `Y (Y ; ρ), (43)

with equality at the point Y = Y (k). Note that the first
inequality in the above expression follows from basic results
in convex analysis (e.g., see (Bubeck, 2014)[Lemma 3.4]),
while the second comes from (17). Consequently, we have
that

min
Y

Ψ̂(Y ) = Ψ̂(Y ∗) ≤ Ψ̂(Y (k)) = `Y

(
Y (k); ρ

)
,

(44)
where

Y ∗ , arg min
Y

Ψ̂(Y ) = Y (k) − 1
L∇Ψ

(
Y (k)

)
, (45)

noting that the optimal solution can be obtained by simply
differentiating with respect to Y and equating to zero. We
may therefore choose

Y (k+1) = Y (k) − 1
L∇Ψ

(
Y (k)

)
(46)

to guarantee that

`Y

(
Y (k); ρ

)
≥ Ψ̂

(
Y (k+1)

)
≥ `Y

(
Y (k+1); ρ

)
.

(47)
And if we adopt the step-size α = 1

L , then (46) is equivalent
to (21), excluding the Jacobi preconditioner. Hence we
must only enforce the Lipschitz constraint (42) to guarantee
monotonicity. This is equivalent to the requirement that
LI −∇2Ψ

(
Y (k)

)
� 0 for all k, which computes to LI �

2
(
I + λB>Γ(k)B

)
. Setting L to be greater than or equal to

the maximum singular value of 2
(
I + λB>Γ(k)B

)
satisfies

this objective, which then leads to the step-size bound α ≤
1
2

∥∥λB>Γ(k)B + I
∥∥−1

2
.

And finally, if we reintroduce the non-trivial Jacobi precon-
ditioner D̃−1 = (λD + I)

−1 6= I , we need only redefine
the bound from (41) as

Ψ̂(Y ) , Ψ
(
Y (k)

)
+∇Ψ

(
Y (k)

)> (
Y − Y (k)

)
(48)

+ L
2

(
Y − Y (k)

)> (
D̃(k+1)

)2 (
Y − Y (k)

)
.

And because
(
D̃(k+1)

)2

� I , (43) still holds and the same
conclusions follow through as before. The only major dif-
ference is that now

Y ∗ = arg min
Y

Ψ̂(Y ) = Y (k)− 1
L

(
D̃(k+1)

)−1

∇Ψ
(
Y (k)

)
(49)

leading to the exact preconditioned update rule from (21)
once we adopt α = 1

L and rearrange terms. And in fact, a
larger step-size range is actually possible in this situation
since the upper bound from (48) holds for smaller values of
L (note that all diagonal values of D̃(k+1) are greater than
one). �
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