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Appendix

A. Proof of Lemma 1
For brevity we use [K] to denote the integer set {1, 2, . . . ,K}. We have

Ex∼D, x′∼D′‖f(x)− f(x′)‖2
(a)
= Ex∼D, x′∼D′‖η(z(x))− η(z(x′))‖2 (5)
(b)
=

∫
x∼D, x′∼D′

‖η(z(x))− η(z(x′))‖2ΦD,D′(x, x
′)dxdx′ (6)

(c)
=

∫
x∼D, x′∼D′

‖η(z(x))− η(z(x′))‖2ΦD(x) · ΦD′(x′)dxdx′ (7)

(d)

≤
√
K ·

∫
x∼D, x′∼D′

max
k∈[K]

|[η(z(x))]k − [η(z(x′))]k|ΦD(x) · ΦD′(x′)dxdx′ (8)

(e)

≤ 2
√
K · sup

g:RK 7→R,‖g‖Lip≤1

Ex∼D[g(z(x))]− Ex′∼D′ [g(z(x′))] (9)

(f)
= 2
√
K · W1(µz, µ

′
z) (10)

(a) follows the neural network model, (b) follows the definition of expectation, (c) follows the assumption of independent data

drawing, and (d) follows that ‖x‖2 =
√∑d

i x
2
i ≤

√
d ·maxi[x2

i ] =
√
d ·maxi |xi|, and thus ‖η−η′‖2 ≤

√
K ·maxk |[η−

η′]k|. (e) holds by setting k+ = arg maxk∈[K][η(z(x))]k − [η(z(x′))]k and k− = arg maxk∈[K][η(z(x′))]k − [η(z(x))]k.
Then by definition maxk∈[K] |[η(z(x))]k − [η(z(x′))]k| ≤ [η(z(x))]k+ − [η(z(x′))]k+ + [η(z(x′))]k− − [η(z(x))]k− . We
further make the following three notes: (i) [η(z(x))]k+ − [η(z(x′))]k+ ≥ 0 and [η(z(x))]k− − [η(z(x′))]k− ≥ 0; (ii)
|a| = max{a,−a}, and if a, b ≥ 0,max{a, b} ≤ a+ b; (iii) There exist at least one k such that [η(x)]k − [η(x)]k ≥ 0. One
can use proof by contradiction to show (iii) is true. If [η(x)]k − [η(x)]k < 0 for every k, then summing over k we get a
contradiction that 1 < 1. Therefore,∫

x∼D, x′∼D′
max
k∈[K]

|[η(z(x))]k − [η(z(x′))]k|ΦD(x) · ΦD′(x′)dxdx′ (11)

≤
∫
x∼D, x′∼D′

([η(z(x))]k+ − [η(z(x))]k− + [η(z(x′))]k− − [η(z(x′))]k+) ΦD(x) · ΦD′(x′)dxdx′ (12)

= Ex∼D[[[η(z(x))]k+ − [η(z(x))]k− ]− Ex′∼D′ [[η(z(x′))]k+ − [η(z(x′))]k− ] (13)
≤ 2 · sup

g:RK 7→R,‖g‖Lip≤1

Ex∼D[g(z(x))]− Ex′∼D′ [g(z(x′))] (14)

where ‖g‖Lip is defined as supx,x′ |g(x)− g(x′)|/‖x− x′‖2, and we use the fact that [η(z)]k is 1-Lipschitz for any k ∈ [K]
(Gao & Pavel, 2017) (so [η]k+ − [η]k− is 2-Lipschitz). Finally, (f) follows the Kantorovich-Rubinstein theorem (Kantorovich
& Rubinstein, 1958) of the dual representation of the Wasserstein-1 distance.

B. Proof of Theorem 1
First, we decompose the target risk function as

`T (xt + δ∗, yt)
(a)
= `S(xt + δ∗, ys) (15)
(b)
= ‖fS(xt + δ∗)− ys‖2 (16)
(c)
= ‖fS(xt + δ∗)− fS(xs) + fS(xs)− ys‖2 (17)
(d)

≤ ‖fS(xt + δ∗)− fS(xs)‖2︸ ︷︷ ︸
A

+ ‖fS(xs)− ys‖2︸ ︷︷ ︸
B

(18)

(a) is based on Assumption 3, (b) is based on the definition of risk function, (c) is by subtracting and adding the same term
fS(xs), and (d) is based on the triangle inequality.
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Note that by Assumption 1, EDSB = EDS [`(xs, ys)] = εS . Next, we proceed to bound EDS ,DT A , Exs∼DS ,xt∼DT A.
Using Lemma 1, we have

EDS ,DT A ≤ 2
√
K · W1(µ(zS(xt + δ∗)), µ(zS(xs)))xt∼DT , xs∼DS (19)

Finally, take EDS ,DT on both sides of equation (18) completes the proof.

C. Pre-Trained Model Studies
We provide advanced studies over different pre-trained acoustic architectures and the associated time series classification
performance. In particular, we select the models below, which have attained competitive performance tested on Google
Speech Commands version 2 dataset (Warden, 2018) or shown cutting-edge performance (ResNet (He et al., 2016)) in the
acoustic scene (VGGish (Hershey et al., 2017)) and time series classification (TCN (Lea et al., 2016)). These models will
be compared with V2Sa (recurrent Attention (de Andrade et al., 2018)) and V2Su (V2Sa enhanced by U-Net (Yang et al.,
2021a)) used in the main paper.

ResNet: Deep residual network (He et al., 2016) (ResNet) is a popular deep architecture to resolve the gradient vanish
issues by passing latent features with a residual connection, and it has been widely used in acoustic modeling tasks. We
select a 34-layer ResNet model training from the scratch for V2S (denoted as V2Sr), which follows the identical parameter
settings in (Hu et al., 2020; 2021) for reproducible studies.

VGGish: VGGish (Hershey et al., 2017) is a deep and wide neural network architecture with multi-channel convolution
layers, which has been proposed for speech and acoustic modeling. VGGish is also well-known for the large-scale acoustic
embedding studies with Audio-Set (Gemmeke et al., 2017) from 2 million Youtube audios. We use the same architecture
and train two models: (i) training from scratch (denoted as V2Sv) and (ii) selecting an Audio-Set pretrained VGGish and
then fine-tuning (denoted as V2Sp) on the Google Speech commands dataset for V2S.

Temporal Convolution Network (TCN): TCN (Lea et al., 2016) is an efficient architecture using temporal convolution
with causal kernel for sequence classification tasks. We select the TCN architecture and train it from scratch as a baseline
for V2S (denoted as V2St).

OpenL3: OpenL3 (Cramer et al., 2019) is a much recent embedding method with a deep fusion layer for acoustic modeling.
We use pretrained OpenL3 embeddings and a dense layer for classification as another baseline for V2S (denoted as V2So).

C.1. V2S Performance and Sliced Wasserstein Distance

Table 4 shows different neural architectures for acoustic modeling to be used with the proposed V2S method, where acoustic
models are pre-trained with the Google Speech Commands dataset (Warden, 2018) version two with 32 commands (denoted
as GSCv2.) From the first three rows of Table 4, we observe the recurrent attention models and TCN perform better in mean
prediction accuracy, validation loss of the source task. For the target task (same as Table 2), recurrent attention models
(V2Sa and V2Su) attain the best performance.

Table 4. V2S ablation studies with different pre-trained acoustic models.
Model V2Sa V2Su V2Sr V2Sv V2Sp V2St V2So
Parameters (↓) 0.2M 0.3M 1M 62M 62M 1M 4.7M
Source Acc. (↑) 96.90 96.92 96.40 95.40 95.19 96.93 92.34
Source Loss (↓) 0.1709 0.1734 0.1786 0.1947 0.1983 0.1756 0.2145
Mean SWD (↓) 1.829 1.873 1.892 4.713 4.956 1.901 5.305
Mean Target Acc. (↑) 89.91 87.92 87.22 67.12 63.23 86.45 60.34
Target MPCE (↓) 2.03 2.10 2.23 33.4 38.3 2.34 41.34

Both VGGish based architectures (V2Sv and V2Sp) show degraded performance on the target tasks prediction, which can be
explained by the recent findings (Kloberdanz, 2020) on the degraded performance of using VGG (Simonyan & Zisserman,
2015) and MobileNet-V2 (Sandler et al., 2018) based “wide” and deep convolutional neural architectures for reprogramming
visual models. These findings could be also explained in the sense that the wide neural architectures fail to adapt the source
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domain distribution according to the sliced Wasserstein distance (SWD) results (fourth row in Table 4), as indicated by
Theorem 1. We observe that using the pretrained models associated with higher source accuracy does not always guarantee
higher target accuracy (e.g, V2St and V2Su)

D. Additional Ablation Studies
Based on the discussion in Section C, we further select three efficient V2S models with different model capacity
(0.2M/1M/4.7M), including V2Sa, V2Sr, and V2St, to study the mean target accuracy in different training settings
and to provide some insights into effective design of V2S models.

D.1. Pretrained Models from Different Dataset

In the previous model reprogramming studies (Tsai et al., 2020; Elsayed et al., 2019), little has been discussed regarding the
effectiveness of using different datasets to train the pretrained models. We study three other public acoustic classification
benchmark datasets (source tasks), (1) TAU Urban Acoustic Scenes 2020 Mobile (Heittola et al., 2020) (denoted as TAU-
UAC), from the annual IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE), (2)
AudioSet using in (Hershey et al., 2017), and (3) ESC-50 (Piczak, 2025), a dataset for environmental sound classification,
for providing a preliminary V2S study. We extract acoustic features by Mel-spectrogram using Kapre audio layer following
the same resolution and frequency setup in (Yang et al., 2020; 2021b) for a fair and reproducible comparison.

As shown in Table 5, the V2S models pretrained from GSCv2 show a higher mean prediction accuracy and lower SWD than
the other models, which could be due to the shorter sample length (less than one second) of its source acoustic inputs.

Table 5. V2S performance (mean prediction accuracy) on time series classification (same as Table 2) with different pretrained neural
acoustic models and the mean sliced Wasserstein distance for each dataset.

Pretrained Dataset GSCv2 TAU AudioSet ESC
# Training Samples 105k 13.9k 2.08M 2k
# Output Classes 35 10 527 50
Audio length per sample clips 1 sec. 10 sec. 10 sec. 5 sec.
Mean Target Acc. w/ V2Sa (↑) 89.91 82.61 80.68 84.48
Mean Target Acc. w/ V2Sr (↑) 87.22 83.57 79.96 83.05
Mean Target Acc. w/ V2St (↑) 86.45 80.1 81.81 84.58
Mean SWD per dataset (↓) 1.874 2.267 2.481 2.162

D.2. Different V2S Mapping Settings

In (Tsai et al., 2020), frequency mapping techniques show improved performance for black-box (e.g., zeroth order gradient
estimation (Chen et al., 2017; Liu et al., 2020) based) adversarial reprogramming models for image classification. We also
follow the setup in (Tsai et al., 2020) to compare the many-to-one frequency mapping and the many-to-one random mapping
for time series classification. However, the frequency mapping based V2S results show equal or slightly worse (-0.013%)
mean prediction accuracy and WSD (+0.0028) performance with 100 runs, which may be owing to the differences of the
dimensions and scales between the tasks of image and time series reprogramming.

D.3. More tSNE Visualization

We provide more tSNE visualization over different test datasets to better understand the embedding results of V2S models
discussed in Section 5.5. In Figure 6 (a) to (e), the reprogrammed representations (rightmost side) show better disentangled
results in both 2D and 3D tSNE plots.

D.4. Hardware Setup and Energy Cost Discussion

We use Nvidia GPUs (2080-Ti and V100) for our experiments with Compute Unified Device Architecture (CUDA) version
10.1. To conduct the results shown in Table 2, it takes around 40 min to run 100 epochs (maximum) with a batch size 32 for
each time series prediction dataset considering the hyper-parameters tuning (e.g., dropout rate) described in Section 5.2
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of the main paper. In total, the experiments presented (30 datasets and its ablation studies) in this paper took around 120
computing hours with a 300W power supplier. As another advantage, the V2S reprogramming techniques freeze pretrained
neural models and only used a reprogramming layer for training new tasks. The proposed method could potentially recycle
well-trained models for an additional task to alleviate extra energy costs toward deploying responsible ML systems.
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(b) Task: ECG 5000 with 3D tSNE
Before V2S reprogramming

0
1

Fine-tuned Transfer Learning
0
1

After V2S reprogramming
0
1

(c) Task: HandOutlines with 2D tSNE.
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(d) Task: HandOutlines with 3D tSNE.
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(e) Task: Strawberry 2D tSNE.
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(f) Task: Strawberry 3D tSNE

Figure 6. More tSNE visualization. Numbers in the legend are class label indices.


