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A. Review of General AUC Optimization Methods
As a motivating early study, (Cortes & Mohri, 2003) points out that maximizing AUC should not be replaced with minimizing
the error rate, which shows the necessity to study direct AUC optimization methods. After that, a series of algorithms have
been designed for optimizing AUC. At the early stage, the majority of studies focus on a full-batch off-line setting. (Alan
& Raskutti, 2004; Calders & Jaroszewicz, 2007) optimize AUC based on a logistic surrogate loss function and ordinary
gradient descent method. RankBoost (Freund et al., 2003) provides an efficient ensemble-based AUC learning method
based on a ranking extension of the AdaBoost algorithm. The work of (Joachims, 2006; Zhang et al., 2012) constructs
SVMstruct-based frameworks that optimize a direct upper bound of the 0 − 1 loss version AUC metric instead of its
surrogates. Later on, to accommodate big data analysis, researchers start to explore online extensions of AUC optimization
methods. (Zhao et al., 2011) provides an early trial for this direction based on the reservoir sampling technique. (Gao et al.,
2013) provides a completely one-pass AUC optimization method for streaming data based on the squared surrogate loss.
Most recently, (Ying et al., 2016) reformulates the squared-loss-based stochastic AUC maximization problem as a stochastic
saddle point problem. The new saddle point problem’s objective function only involves summations of instance-wise
loss terms, which significantly reduces the burden from the pairwise formulation. (Natole et al., 2018; 2019) further
accelerate this framework with tighter convergence rates. Beyond optimization methods, a substantial amount of researches
also provide theoretical support for this learning framework from different dimensions, including generalization analysis
(Agarwal et al., 2005; Clémençon et al., 2008; Usunier et al., 2005; 2006; Ralaivola et al., 2010) and consistency analysis
(Agarwal, 2014; Gao & Zhou, 2015). In this paper, we take a further step to optimize the two-way partial AUCs.

B. Inconsistency between OPAUC and TPAUC
In this section, we show the inconsistency between TPAUC metric and the OPAUC metric. Mathematically, OPAUC
calculates the partial AUC within FPR range [α, β], which could be defined as:

AUCβ
OP

α (fθ) =

∫ β

α

TPRfθ

(
FPR−1fθ (t)

)
dt.

Recall that TPAUC could be defined as:

AUCβ
TP

α (fθ) =

∫ β

FPRfθ

(
TPR−1

fθ
(1−α)

) TPRfθ
(
FPR−1fθ (t)

)
dt− (1− α) ·

(
β − FPRfθ

(
TPR−1fθ (1− α)

))
.

From the definitions, we can find that the TPAUC is intrinsically inconsistent with OPAUC. The source of the inconsistency
is that both FTRfθ and TPRfθ are functions of fθ . It is thus impossible to regard FPR−1fθ (1−α) and TPRfθ (FPR−1fθ (1−α))

as constants, even though α is fixed. Thus one cannot simply replace the FPR lower bound FPR−1fθ (1−α) with any constant
c. Consequently, AUCβα(fθ) is in general not consistent with any OPAUC with FPR range [c, β]. The readers are also
referred to (Yang et al., 2019) for illustrative analysis of why OPAUC could not be used to approximate TPAUC.

C. Proof of Proposition 1
First we need the following lemma to finish the proof:

Lemma 1. For {ti}ni=1 with ti ≥ 0, assume that mini6=j |ti − tj | > 0. Then for the problem:

max
vi∈[0,1],

∑n
i=1 vi≤k

n+∑
i=1

vi · ti,

the unique solution is v?i = 1
[
ti ≥ t↓(k)

]
, where k < n, k ∈ N+, t↓(k) is top k-th element in {ti}ni=1.

Proof. For a set of weights {vi}ni=1, let us denote v↓(i) as the weight for t↓i . For any {v′i}ni=1 6= {v?i }ni=1. We can write down
the difference between the objective functions as:
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n∑
i=1

(v?i − v′i) · ti

=
∑
i≤k

(1− v
′↓
(i)) · t

↓
(i) −

∑
j>k

v
′↓
(j) · t

↓
(j)

(∗)
> (k −

∑
i≤k

v
′↓
(i)) · t

↓
(k) −

∑
j>k

v
′↓
(j) · t

↓
(j)

(∗∗)
> (k −

∑
i≤k

v
′↓
(i)) · t

↓
(k) −

∑
j>k

v
′↓
(j) · t

↓
(k)

= (k −
n∑
i=1

v
′↓
(i)) · t

↓
(k)

≥ 0,

where (∗), (∗∗), follows the assumption that mini6=j |ti − tj | > 0. Note that since the {v′i}ni=1 is arbitrarily chosen, the
proof is thus completed.

Reminder of Proposition 1. For any α, β ∈ (0, 1), if scores fθ(x) ∈ [0, 1], and there are no ties in the scores, the original
optimization problem is equivalent to the following problem:

min
θ

1

n+n−

n+∑
i=1

n−∑
j=1

v+i · v
−
j · `(fθ,x

+
i ,x

−
j )

s.t. v+ = argmax
v+i ∈[0,1],

∑n+
i=1 v

+
i ≤nα+

n+∑
i=1

(
v+i · (1− fθ(x+

i ))
)

v− = argmax
v−j ∈[0,1],

∑n−
j=1 v

−
j ≤n

β
−

n−∑
j=1

(
v−j · fθ(x−j )

)

Proof. First it is easy to see that (OP0) could be formulated as follows:

min
θ

1

n+n−

n+∑
i=1

n−∑
j=1

v+i · v
−
j · `(fθ,x

+
i ,x

−
j )

s.t v+i =

{
1, 1− fθ(x+

i ) ≥ 1− fθ(x+
(nα+))

0, otherwise

v−j =

{
1, fθ(x−j ) ≥ fθ(x+

(nβ−)
)

0, otherwise

Then the rest of the proof follows Lem.1 directly.

D. Proof of Proposition 2
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Lemma 2 (Hölder’s Inequality). ∀p > 1, q > 1 such that 1/p+ 1/q = 1, we have:

Ē [|XY |] ≤ (Ē [|X|p])1/p · (Ē [|Y |q])1/q

Lemma 3. ∀0 < p < 1, q = −p/(1− p), we have:

Ē [|X ′Y ′|] ≥ (Ē [|X ′|p])1/p · (Ē [|Y ′|q])1/q

Proof. It could be proved by applying Lem.2 to X = |X ′Y ′|p and Y = |Y ′|−p.

Reminder of Proposition 2. Given a strictly increasing weighting function ψγ : [0, 1]→ [0, 1], such that v+i = ψγ(1−
fθ(x+

i )), v−j = ψγ(fθ(x−j )), ψγ(0) = 0, ψγ(1) = 1 denote:

I+1 =
{
x+ : x+ ∈ XP , f(x+) ≥ f(x(n

α
+)
}
,

I−1 =
{
x− : x− ∈ XN , f(x−) ≤ f(x(n

β
−)
}
,

denote I2 as (XP × XN )\(I+1 × I
−
1 ); denote Ēx+∈I+1

[x] as the empirical expectation of x over the set I+1 , and

Ēx−∈I−1 [x], Ēx+∈I+1 ,x−∈I
−
1
, Ēx+,x−∈I2 are defined similarly. Without loss of generality, we assume that nα+ ∈ N, nβ− ∈

N. We have:

(a) A sufficient condition for R̂`α,β(S, fθ) ≤ R̂`ψ(S, fθ) is that:

sup
p∈(0,1),q=− p

1−p

[ρp − ξq] ≥ 0

where

ρp =

(
Ēx+,x−∈I2

[
vp+ · v

p
−
])1/p(

Ēx+∈I+1 ,x−∈I
−
1

[(1− v+v−)2]
)1/2

ξq =
αβ

1− αβ
·

(
Ēx+,x−∈I2(`2i,j)

)1/2(
Ēx+∈I+1 ,x−∈I

−
1

(`qi,j)
)1/q

(b) If there exists at least one strictly concave ψγ such that the R̂`α,β(S, fθ) > R̂`ψ(S, fθ), then R̂`α,β(S, fθ) > R̂`ψ(S, fθ)
holds for all convex ψγ .
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Proof. First, li,j = `(fθ,x
+
i ,x

−
j ), we can reformulate R̂`ψ − R̂`α,β as follows.

R̂`ψ − R̂`α,β =
1

n+n−

n+∑
i=1

n−∑
j=1

v+i · v
−
j · `i,j −

1

n+n−

nα+∑
i=1

nβ−∑
j=1

`i,j

=
1

n+ · n−
·

∑
x+
i ,x
−
j ∈I2

v+i · v
−
j · `i,j −

1

n+ · n−
· Ē
x+∈I+1 ,x−∈I

−
1

(1− v+i v
−
j )`i,j

= (1− αβ) · 1

|I2|
·

∑
x+
i ,x
−
j ∈I2

v+i · v
−
j · `i,j − (α · β) · 1

|I1|
· Ē
x+∈I+1 ,x−∈I

−
1

(1− v+i v
−
j )`i,j

= (1− αβ) · Ē
x+,x−∈I2

[v+ · v− · `]− α · β Ē
x+∈I+1 ,x−∈I

−
1

[(1− v+ · v−) · `]

(4)

Now we prove (a)-(b) based on this result.

(a) According to Lem.3, ∀ 1 > p > 0, q = −p/(1− p), we have:

(1− αβ) · Ē
x+,x−∈I2

[v+ · v− · `] ≥ (1− αβ) ·
(

Ē
x+,x−∈I2

[
vp+ · v

p
−
])1/p

·
(

Ē
x+,x−∈I2

[`q]

)1/q

︸ ︷︷ ︸
(a)

Meanwhile, we have:

α · β Ē
x+∈I+1 ,x−∈I

−
1

[(1− v+ · v−) · `] ≤ α · β Ē
x+∈I+1 ,x−∈I

−
1

[
(1− v+ · v−)2

]1/2 · Ē
x+∈I+1 ,x−∈I

−
1

[
`2
]1/2

︸ ︷︷ ︸
(b)

This shows that (a)− (b) ≥ 0 implies R̂`ψ ≥ R̂`α,β . Moreover, (a)− (b) ≥ 0 is equivalent to ρp − ξq ≥ 0. The proof
of (a) is ended since p and q are arbitrarily chosen within their domain.

(b) Given a strictly concave function ψγ : [0, 1]→ [0, 1] and a convex function ψ̃γ : [0, 1]→ [0, 1]. We have that

∀y ∈ [0, 1], ψγ (y) = ψγ (0 · (1− y) + y · 1) > y · ψγ(1) = y

∀y ∈ (0, 1), ψ̃γ (y) = ψ̃γ (0 · (1− y) + y · 1) ≤ y · ψ̃γ(1) = y

This implies that ψγ (y) > ψ̃γ (y) , ∀y ∈ (0, 1). The proof then follows that

R̂`ψ − R̂`α,β ∝ min
i,j

[
v+i · v

−
j

]
= min

i,j

[
ψ(fθ(x+)) · ψ(1− fθ(x−))

]
and fθ(x+), fθ(x−) ∈ (0, 1).

E. Proof of Proposition 3
Reminder of Proposition 3. Given a strictly convex function ϕγ , and define ψγ(t) as:

ψγ(t) = argmax
v∈[0,1]

v · t− ϕγ(v)

then we can draw the following conclusions:

(a) If ϕγ is a calibrated smooth penalty function, we have ψγ(t) = ϕ
′−1
γ (t),which is a calibrated weighting function.

(b) If ψγ is a calibrated weighting function such that v = ψγ(t), we have ϕγ(v) =
∫
ψ−1γ (v)dv + const., which is a
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calibrated smooth penalty function.

Proof. dsadsa

(a) Since ϕγ is strictly convex, v · t−ϕγ(v) is strictly concave, then ψγ has a unique global optimal solution. To reach the
optimal solution, we have:

(v · t− ϕγ(v))
′

= t− ϕ′γ(v) = 0

Note that v = ϕγ(t), we have:

t− ϕ′γ(ψγ(t)) = 0

Equivalently, note that ϕ
′

γ(t) is invertible since it is strictly increasing (ϕ
′′

γ (t) > 0), we have:

ψγ(t) = ϕ
′−1
γ (t)

Moreover, we have:

ψ′γ(t) =
1

ϕ′′(ϕ
′−1
γ (t))

, ψ′′γ (t) = −
ϕ
′′′

(ϕ
′−1
γ (t))

(ϕ′′(ϕ
′−1
γ (t)))3

.

Since ϕ
′′

γ (x) > 0, ϕ
′′′

γ (x) > 0, we know that ψ′γ(t) is a calibrated weighting function according to the definition.

(b) Assume that ψγ(t) is the solution of the optimization problem, recall the optimal condition:

t− ϕ′γ(v) = 0

Since t = ψ−1(v), we have:

ψ−1(v) = ϕ′γ(v)

leading to the fact that ∫
ψ−1(v)dv = ϕγ(v)

Moreover, we have:

ϕ′γ(v) = ψ−1γ (v) , ϕ′′γ(v) =
1

ψ′γ (ψ−1(v))
, ϕ′′′γ (v) = −

ψ
′′

γ (ψ−1(v))(
ψ′γ(ψ−1(v))

)3
Since ψ−1γ (x) > 0, ψ

′

γ(x) > 0 and ψ
′′

γ (x) < 0, ϕγ is then a calibrated weighting function according to the definition.
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F. Proof of Theorem 1
First, we need the following definitions about the population and empirical quantile of the scores:

δα = argmin
δ∈R

[
δ ∈ R : E

x+∼P

[
1
[
fθ(x+) ≤ δ

]]
= α

]
, δ̂α = argmin

δ∈R

[
δ ∈ R :

1

n+

n+∑
i=1

[
1
[
fθ(x+) ≤ δ

]]
= α

]

δβ = argmin
δ∈R

[
δ ∈ R : E

x−∼N

[
1
[
fθ(x−) ≥ δ

]]
= β

]
, δ̂β = argmin

δ∈R

δ ∈ R :
1

n−

n−∑
j=1

[
1
[
fθ(x−) ≥ δ

]]
= β


Furthermore, we denote the loss version population-level 1− AUCβα(fθ) and empirical TPAUC 1− ˆAUC

β

α(fθ) as:

Rα,βAUC(fθ,S) = E
x−∼N

E
x+∼P

[
1
[
fθ(x+) > fθ(x−)

]
· 1
[
fθ(x+) < δα

]
· 1
[
fθ(x−) > δβ

]]
R̂α,βAUC(fθ,S) =

1

n+n−
·
n−∑
j=1

n+∑
i=1

1
[
fθ(x−j ) ≥ fθ(x+

i )
]
· 1
[
fθ(x+

i ) ≤ δ̂α
]
· 1
[
fθ(x−j ) ≥ δ̂β

]

Lemma 4. For ∀f ∈ F , we have:

Rα,βAUC(fθ,S)− R̂α,βAUC(fθ,S) ≤ 2(∆+ + ∆−)

where

∆+ = sup
δ∈R

∣∣∣∣∣ 1

n+
·
n+∑
i=1

1
[
fθ(x+

i ) ≤ δ
]
− E
x+∼P

[
1
[
fθ(x+) ≤ δ

]]∣∣∣∣∣
∆− = sup

δ∈R

∣∣∣∣∣∣ 1

n−
·
n−∑
j=1

1
[
fθ(x−j ) ≥ δ

]
− E
x−∼N

[
1
[
fθ(x−) ≥ δ

]]∣∣∣∣∣∣

Proof. First, we define some intermediate variables:

`+(fθ,x
−
j ) = E

x+∼P

[
1
[
fθ(x+) ≤ δα

]
· 1
[
fθ(x−j ) ≥ fθ(x+)

]]
R1 = Rα,βAUC(fθ,S) = E

x−∼N
E

x+∼P

[
1
[
fθ(x−) ≥ fθ(x+)

]
· 1
[
fθ(x+) ≤ δα

]
· 1
[
fθ(x−) ≥ δβ

]]
R2 =

1

n−
·
n−∑
j=1

`+(fθ,x
−
j ) · 1

[
fθ(x−j ) ≥ δβ

]
R3 =

1

n−
·
n−∑
j=1

`+(fθ,x
−
j ) · 1

[
fθ(x−j ) ≥ δ̂β

]

R4 =
1

n+n−
·
n−∑
j=1

n+∑
i=1

1
[
fθ(x−j ) ≥ fθ(x+

i )
]
· 1
[
fθ(x+

i ) ≤ δα
]
· 1
[
fθ(x−j ) ≥ δ̂β

]

R5 = R̂α,βAUC(fθ,S) =
1

n+n−
·
n−∑
j=1

n+∑
i=1

1
[
fθ(x−j ) ≥ fθ(x+

i )
]
· 1
[
fθ(x+

i ) ≤ δ̂α
]
· 1
[
fθ(x−j ) ≥ δ̂β

]
In this sense, we can decompose R1 −R5 as:

|R1 −R5| ≤ |R1 −R2|+ |R2 −R3|+ |R3 −R4|+ |R4 −R5|
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Now, we bound each term in the equation above successively. For |R1 −R2|, we have:

|R1 −R2| =
∣∣∣∣ E
x+∼P

[
E

x−∼N

[
1
[
fθ(x−) ≥ fθ(x+)

]
· 1
[
fθ(x+) ≤ δα

]
· 1
[
fθ(x−) ≥ δβ

]]
− 1

n−

n−∑
j=1

1
[
fθ(x−j ) ≥ fθ(x+)

]
· 1
[
fθ(x+) ≤ δα

]
· 1
[
fθ(x−j ) ≥ δβ

] ]∣∣∣∣
≤
∣∣∣∣ sup
x+

[
E

x−∼N

[
1
[
fθ(x−) ≥ max{fθ(x+), δβ}

]]
− 1

n−
·
n−∑
j=1

1
[
fθ(x−j ) ≥ max{fθ(x+

i ), δβ}
] ]∣∣∣∣

≤ sup
δ∈R

∣∣∣∣∣∣ E
x−∼N

[
1
[
fθ(x−) ≥ δ

]]
− 1

n−
·
n−∑
j=1

1
[
fθ(x−j ) ≥ δ

]∣∣∣∣∣∣
For |R2 −R3|, we have:

|R2 −R3| =

∣∣∣∣∣∣ 1

n−
·
n−∑
j=1

`+(fθ,x
−
j ) · 1

[
fθ(x−j ) ≥ δβ

]
− 1

n−
·
n−∑
j=1

`+(fθ,x
−
j ) · 1

[
fθ(x−j ) ≥ δ̂β

]∣∣∣∣∣∣
(a1)

≤

∣∣∣∣∣∣ 1

n−
·
n−∑
j=1

1
[
fθ(x−j ) ≥ δβ

]
− 1

n−
·
n−∑
j=1

1
[
fθ(x−j ) ≥ δ̂β

]∣∣∣∣∣∣
(a2)
=

∣∣∣∣∣∣ 1

n−
·
n−∑
j=1

1
[
fθ(x−j ) ≥ δβ

]
− β

∣∣∣∣∣∣
(a3)
=

∣∣∣∣∣∣ 1

n−
·
n−∑
j=1

1
[
fθ(x−j ) ≥ δβ

]
− E
x−∼N

[
1
[
fθ(x−j ) ≥ δβ

]]∣∣∣∣∣∣
≤ sup

δ∈R

∣∣∣∣∣∣ 1

n−
·
n−∑
j=1

1
[
fθ(x−j ) ≥ δ

]
− E
x−∼N

[
1
[
fθ(x−) ≥ δ

]]∣∣∣∣∣∣
Here, (a1) follows from the fact that 1

[
fθ(x−j ) ≥ δβ

]
− 1

[
fθ(x−j ) ≥ δ̂β

]
must be simultaneously ≥ 0 or ≤ 0; (a2) and

(a3) are based on the definition of δβ and δ̂β and the assumption that no tie occurs in the dataset.

For |R3 −R4|, we have:

|R3 −R4| =
∣∣∣∣ 1

n−
·
n−∑
j=1

`+(fθ,x
−
j ) · 1

[
fθ(x−j ) ≥ δ̂β

]

− 1

n+n−
·
n−∑
j=1

n+∑
i=1

1
[
fθ(x−j ) ≥ fθ(x+

i )
]
· 1
[
fθ(x+

i ) ≤ δα
]
· 1
[
fθ(x−j ) ≥ δ̂β

] ∣∣∣∣
≤ 1

n−
·
n−∑
j=1

∣∣∣∣∣`+(fθ,x
−
j )− 1

n+
·
n+∑
i=1

1
[
fθ(x+

i ) ≤ min{fθ(x−j ), δα}
]∣∣∣∣∣

≤ sup
δ∈R

∣∣∣∣∣ 1

n+
·
n+∑
i=1

1
[
fθ(x+

i ) ≤ δ
]
− E
x+∼P

[
1
[
fθ(x+) ≤ δ

]]∣∣∣∣∣
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For |R4 −R5|, we have:

|R4 −R5| =
∣∣∣∣ 1

n+n−
·
n−∑
j=1

n+∑
i=1

1
[
fθ(x−j ) ≥ fθ(x+

i )
]
· 1
[
fθ(x+

i ) ≤ δα
]
· 1
[
fθ(x−j ) ≥ δ̂β

]

− 1

n+n−
·
n−∑
j=1

n+∑
i=1

1
[
fθ(x−j ) ≥ fθ(x+

i )
]
· 1
[
fθ(x+

i ) ≤ δ̂α
]
· 1
[
fθ(x−j ) ≥ δ̂β

] ∣∣∣∣
≤ 1

n−
·

 n−∑
j=1

∣∣∣1 [fθ(x−j ) ≥ δ̂β
]∣∣∣ · ∣∣∣∣∣ 1

n+
·
n+∑
i=1

1
[
fθ(x−j ) ≥ fθ(x+

i )
]
·
(
1
[
fθ(x+

i ) ≤ δα
]
− 1

[
fθ(x+

i ) ≤ δ̂α
])∣∣∣∣∣


≤ 1

n+
sup
x−

[∣∣∣∣∣
n+∑
i=1

1
[
fθ(x−) ≥ fθ(x+

i )
]
·
(
1
[
fθ(x+

i ) ≤ δα
]
− 1

[
fθ(x+

i ) ≤ δ̂α
])∣∣∣∣∣
]

(b1)

≤ 1

n+

∣∣∣∣∣
n+∑
i=1

(
1
[
fθ(x+

i ) ≤ δα
]
− 1

[
fθ(x+

i ) ≤ δ̂α
])∣∣∣∣∣

(b2)

≤ sup
δ∈R

∣∣∣∣∣ 1

n+
·
n+∑
i=1

1
[
fθ(x+

i ) ≤ δ
]
− E
x+∼P

[
1
[
fθ(x+) ≤ δ

]]∣∣∣∣∣
Here (b1) and (b2) follow a similar argument to (a1)-(a3).

Reminder of Theorem 1. Assume that there are no ties in the datasets, and the surrogate loss function ` with range [0, 1],
is an upper bound of the 0-1 loss, then, for all fθ ∈ F , and all (α, β) ∈ Isuff (S), the following inequality holds with
probability at least 1− δ over the choice of S:

Rα,βAUC(fθ,S) ≤ R̂`ψ(fθ,S) + C

(√
VC · log(n+) + log(1/δ)

n+
+

√
VC · log(n−) + log(1/δ)

n−

)
,

where VC is the VC dimension of the hypothesis class:

T (F) , {sign(fθ(·)− δ) : fθ ∈ F , δ ∈ R}

and

Isuff (S) =
{

(α, β) : α ∈ (0, 1), β ∈ (0, 1), nα+ ∈ N+, n
β
− ∈ N+, condition (a) in Prop.2 holds

}
,

Proof. First, we have:

P

[
sup

f∈F,(α,β)∈Isuff (S)

[
|Rα,βAUC(fθ,S)− R̂α,βAUC(fθ,S)|

]
> ε

]

≤ P

[
sup

f∈F,(α,β)∈Isuff (S),δ∈R
[∆+] > ε/4

]
+ P

[
sup

f∈F,(α,β)∈Isuff (S),δ∈R
[∆−] > ε/4

]

= P

[
sup

f∈F,δ∈R
[∆+] > ε/4

]
+ P

[
sup

f∈F,δ∈R
[∆−] > ε/4

]

Following Lem.1 in (Narasimhan & Agarwal, 2017b), we have that, for all fθ ∈ T (F), and all α, β ∈ (0, 1) s.t.
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nα+ ∈ N+, n
β
− ∈ N+, the following inequality holds with probability at least 1− δ:

Rα,βAUC(fθ,S) ≤ R̂α,βAUC(fθ,S) + C

(√
VC · log(n+) + log(1/δ)

n+
+

√
VC · log(n−) + log(1/δ)

n−

)
.

Since α, β ∈ Isuff (S), R̂α,βAUC(fθ,S) ≤ R̂`α,β(fθ,S) ≤ R̂`ψ(fθ,S), we have the following inequality holds with
probability at least 1− δ under the same condition:

Rα,βAUC(fθ,S) ≤ R̂`ψ(fθ,S) + C

(√
VC · log(n+) + log(1/δ)

n+
+

√
VC · log(n−) + log(1/δ)

n−

)
.

G. Experiments
G.1. Competitors

To validate the effectiveness of our proposed methods, we consider two types of competitors in our experiments. On one
hand, we compare our proposed methods with other methods dealing with imbalanced data:

1. CE: Here use a class-wise reweighted version of the CE loss as one of our competitors, the sample weight is set to 1/ny ,
where ny the frequency of the class the sample belongs to.

2. Focal: (Lin et al., 2017) It tackles the imbalance problem by adding a modulating factor to the cross-entropy loss to
highlight the hard and minority samples during the training process.

3. CB-CE: It refers to the loss function that applies the reweighting scheme proposed in (Cui et al., 2019) on the cross-
entropy loss.

4. CB-Focal: It refers to the loss function that applies the reweighting scheme proposed in (Cui et al., 2019) on the Focal
loss.

On the other hand, we also include standard AUC optimization methods as our baseline.

1. SqAUC: Perform a standard AUC optimization with the surrogate loss function `sq(t) = (1− t)2.

Finally, we implement our proposed methods on top of SqAUC:

1. Poly: Perform TPAUC optimization with the objective function:

1

nα+n
β
−

n+∑
i=1

n−∑
j=1

ψpoly
γ (1− fθ(x+

i )) · ψpoly
γ (fθ(v−j )) · `(fθ,x+

i ,x
−
j )

2. Exp: Perform TPAUC optimization with the objective function:

1

nα+n
β
−

n+∑
i=1

n−∑
j=1

ψExp
γ (1− fθ(x+

i )) · ψExp
γ (fθ(v−j )) · `(fθ,x+

i ,x
−
j )
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G.2. General Implementation Details

All the experiments are carried out on a ubuntu 16.04.1 server equipped with Intel(R) Xeon(R) Silver 4110 CPU and a
TITAN RTX GPU, and all codes are implemented with PyTorch (v-1.4.0) (Paszke et al., 2019) under python 3.7
environment. Stochastic Gradient Descent (SGD) (Sutskever et al., 2013) with Nesterov momentum is adopted
to optimize the objective function. Empirically, for all datasets, the learning rate is 10−3; the l2 regularization term is set as
10−5, and the Nesterov momentum is 0.9. We also employ an exponential learning rate decay scheduler to adjust the learning
rate after each training epoch, where the learning rate decay rate is set as 0.99 for all methods. The training batch size is 128,
and we restrict the ratio of positive and negative samples by 1 : 10 in each batch. The batch size of validation/test examples
is 256. Specifically, Ek is searched in {3, 5, 8, 10, 12, 15, 18, 20}. For Poly, γ is searched in {0.03, 0.05, 0.08, 0.1, 1, 3, 5}.
For Exp, γ is searched in {8, 10, 15, 20, 25, 30} . Finally, we select the model based on the best validation performance and
report the test set results.

G.3. Dataset Description

Table 2. Details on the datasets.
Dataset Pos. Class ID Pos. Class Name # Pos. Examples # Neg. Examples

CIFAR-10-LT-1 2 birds 1, 508 8, 907
CIFAR-10-LT-2 1 automobiles 2, 517 7, 898
CIFAR-10-LT-3 3 cats 904 9, 511

CIFAR-100-LT-1 6, 7, 14, 18, 24 insects 1, 928 13, 218
CIFAR-100-LT-2 0, 51, 53, 57, 83 fruits and vegetables 885 14, 261
CIFAR-100-LT-3 15, 19, 21, 32, 38 large omnivores and herbivores 1, 172 13, 974

Tiny-ImageNet-200-LT-1 24, 25, 26, 27, 28, 29 dogs 2, 100 67, 900
Tiny-ImageNet-200-LT-2 11, 20, 21, 22 birds 1, 400 68, 600
Tiny-ImageNet-200-LT-3 70, 81, 94, 107, 111, 116, 121, 133, 145, 153, 164, 166 vehicles 4, 200 65, 800

Binary CIFAR-10-LT Dataset. The original CIFAR-10 dataset consists of 60,000 32× 32 colour images in 10 classes,
with 6,000 images per class. There are 50,000 and 10,000 images in the training set and the test set, respectively. We
create a long-tailed CIFAR-10 where the sample sizes across different classes decay exponentially, and the ratio of sample
sizes of the least frequent to the most frequent class ρ is set to 0.01. We then create binary long-tailed datasets based on
CIFAR-10-LT by selecting one category as positive examples and the others as negative examples. We construct three binary
subsets, in which the positive categories are 1) birds, 2) automobiles, and 3) cats, respectively. The datasets are split into
training, validation and test sets according to the ratio of 0.7 : 0.15 : 0.15. More details are provided in Tab. 2.

Binary CIFAR-100-LT Dataset. The original CIFAR-100 dataset is similar to CIFAR-10, except it has 100 classes with
each containing 600 images. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. We create CIFAR-100-LT
in the same way as CIFAR-10-LT, and transform it into three binary long-tailed datasets by selecting a superclass as
positive class examples each time. Specifically, the positive superclasses are 1) fruits and vegetables, 2) insects and 3) large
omnivores and herbivores, respectively. More details are provided in Tab. 2.

Implementation details On CIFAR Datasets. We utilize the ResNet-20 (He et al., 2015) as the backbone, which takes
images with size 32× 32× 3 as input and outputs 64-d features. Then the features are mapped into [0, 1] with an FC layer
and Sigmoid function. During the training phase, we apply data augmentation including random horizontal flipping (50%),
random rotation (from −15◦ to 15◦) and random cropping (32× 32).

Binary Tiny-ImageNet-200-LT Dataset. The Tiny-ImageNet-200 dataset contains 100,000 256× 256 color images from
200 different categories, with 500 images per category. Similar to the CIFAR-100-LT dataset, we choose three positive
superclasses to construct binary subsets: 1) dogs, 2) birds and 3) vehicles. The datasets are further split into training,
validation and test sets according to the ratio of 0.7 : 0.15 : 0.15. See Tab. 2 for more details.

Implementation details On Tiny-ImageNet-200 . The implementation details are basically the same with CIFAR-10-LT
and CIFAR-100-LT datasets, except the backbone network is implemented with ResNet-18 (He et al., 2015), which takes
images with size 224× 224× 3 as input and outputs 512-d features.
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G.4. Sensitivity Analysis

In this subsection, we show the sensitivity analysis results for all subsets on CIFAR-10-LT. The results show similar trends
as the analysis shown in the main paper.

(a) Subset1, α = 0.3, β = 0.3 (b) Subset1, α = 0.4, β = 0.4 (c) Subset1, α = 0.5, β = 0.5

(d) Subset2, α = 0.3, β = 0.3 (e) Subset2, α = 0.4, β = 0.4 (f) Subset2, α = 0.5, β = 0.5

(g) Subset3, α = 0.3, β = 0.3 (h) Subset3, α = 0.4, β = 0.4 (i) Subset3, α = 0.5, β = 0.5

Figure 5. Sensitivity analysis on CIFAR-10-LT where TPAUC for Exp with respect to Ek. For each Box in the plots, Ek is fixed as the
y-axis value, and the scattered points along the box show the variation of (γ − 1)−1.
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(a) Subset1, α = 0.3, β = 0.3 (b) Subset1, α = 0.4, β = 0.4 (c) Subset1, α = 0.5, β = 0.5

(d) Subset2, α = 0.3, β = 0.3 (e) Subset2, α = 0.4, β = 0.4 (f) Subset2, α = 0.5, β = 0.5

(g) Subset3, α = 0.3, β = 0.3 (h) Subset3, α = 0.4, β = 0.4 (i) Subset3, α = 0.5, β = 0.5

Figure 6. Sensitivity analysis on CIFAR-10-LT where TPAUC for Exp with respect to γ. For each Box in the plots, (γ − 1)−1 is fixed as
the y-axis value, and the scattered points along the box show the variation of Ek.
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(a) Subset1, α = 0.3, β = 0.3 (b) Subset1, α = 0.4, β = 0.4 (c) Subset1, α = 0.5, β = 0.5

(d) Subset2, α = 0.3, β = 0.3 (e) Subset2, α = 0.4, β = 0.4 (f) Subset2, α = 0.5, β = 0.5

(g) Subset3, α = 0.3, β = 0.3 (h) Subset3, α = 0.4, β = 0.4 (i) Subset3, α = 0.5, β = 0.5

Figure 7. Sensitivity analysis on CIFAR-10-LT where TPAUC for Poly with respect to Ek. For each Box in the plots, Ek is fixed as the
y-axis value, and the scattered points along the box show the variation of (γ − 1)−1.
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(a) Subset1, α = 0.3, β = 0.3 (b) Subset1, α = 0.4, β = 0.4 (c) Subset1, α = 0.5, β = 0.5

(d) Subset2, α = 0.3, β = 0.3 (e) Subset2, α = 0.4, β = 0.4 (f) Subset2, α = 0.5, β = 0.5

(g) Subset3, α = 0.3, β = 0.3 (h) Subset3, α = 0.4, β = 0.4 (i) Subset3, α = 0.5, β = 0.5

Figure 8. Sensitivity analysis on CIFAR-10-LT where TPAUC for Poly with respect to γ. For each Box in the plots, (γ − 1)−1 is fixed as
the y-axis value, and the scattered points along the box show the variation of Ek.


	Review of General AUC Optimization Methods
	Inconsistency between OPAUC and TPAUC
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 1
	Experiments
	Competitors
	General Implementation Details
	Dataset Description
	Sensitivity Analysis


