
SimAM: A Simple, Parameter-Free Attention Module for
Convolutional Neural Networks

Lingxiao Yang 1 2 3 Ru-Yuan Zhang 4 5 Lida Li 6 Xiaohua Xie 1 2 3

Abstract

In this paper, we propose a conceptually simple
but very effective attention module for Convolu-
tional Neural Networks (ConvNets). In contrast to
existing channel-wise and spatial-wise attention
modules, our module instead infers 3-D atten-
tion weights for the feature map in a layer with-
out adding parameters to the original networks.
Specifically, we base on some well-known neuro-
science theories and propose to optimize an ener-
gy function to find the importance of each neuron.
We further derive a fast closed-form solution for
the energy function, and show that the solution
can be implemented in less than ten lines of code.
Another advantage of the module is that most of
the operators are selected based on the solution to
the defined energy function, avoiding too many ef-
forts for structure tuning. Quantitative evaluations
on various visual tasks demonstrate that the pro-
posed module is flexible and effective to improve
the representation ability of many ConvNets. Our
code is available at Pytorch-SimAM.

1. Introduction
Convolutional Neural Networks (ConvNets) trained on
large-scale datasets (e.g., ImageNet (Russakovsky et al.,
2015)) have greatly boosted the performance on many vision
tasks, such as image classification (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2014; He et al., 2016b; Huang

1School of Computer Science and Engineering, Sun Yat-sen
University, Guangzhou, China 2Guangdong Province Key Labo-
ratory of Information Security Technology, Sun Yat-sen Universi-
ty, Guangzhou, China 3Key Laboratory of Machine Intelligence
and Advanced Computing, Ministry of Education, Sun Yat-sen
University, Guangzhou, China 4Institute of Psychology and Be-
havioral Science, Shanghai Jiao Tong University, Shanghai, China
5Shanghai Key Laboratory of Psychotic Disorders, Shanghai Men-
tal Health Center, Shanghai Jiao Tong University, Shanghai, China
6The Hong Kong Polytechnic University, Hong Kong, China. Cor-
respondence to: Xiaohua Xie <xiexiaoh6@mail.sysu.edu.cn>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

R
es

N
et

-5
0

+
 S

E
+

 S
im

A
M

steel_arch_bridges mountain_tent lipstickgrey_whale

Figure 1. Visualization of feature activations obtained by dif-
ferent networks. All compared networks are trained on ImageNet
(Russakovsky et al., 2015) under a consistent setting. The features
are extracted on the validation set and shown by Grad-CAM (Sel-
varaju et al., 2017). Our SimAM helps the network focus on some
primary regions which are close to the image labels shown below.

et al., 2017; Szegedy et al., 2015; Sandler et al., 2018), ob-
ject detection (Ren et al., 2015; Liu et al., 2016; He et al.,
2017), and video understanding (Feichtenhofer et al., 2016;
Wang et al., 2018a). Multiple studies have demonstrated
that a better ConvNet structure can significantly improve
performance on various problems. Therefore, constructing
a strong ConvNet is an essential task in vision research.

A modern ConvNet typically has multiple stages, and each
stage consists of a few blocks. Such block is constructed
by several operators like convolution, pooling, activation or
some customized meta-structure (referred as module in this
paper). Recently, instead of designing the whole architecture
as (Krizhevsky et al., 2012), many works focus on building
advanced blocks to improve the representational power of
ConvNets. Stacked convolutions (Simonyan & Zisserman,
2014), residual units (He et al., 2016b;a; Zagoruyko & Ko-
modakis, 2016; Sandler et al., 2018), and dense connections
(Huang et al., 2017; 2018) are the most representative ones
that have been widely applied in existing architectures. How-
ever, designing those blocks requires rich expert knowledge
and enormous time. To circumvent this, many researchers
seek for some search strategies to automatically build archi-

https://github.com/ZjjConan/SimAM

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

tectures (Zoph & Le, 2016; Liu et al., 2018b; Dong & Yang,
2019; Tan & Le, 2019; Guo et al., 2020; Liu et al., 2019;
Feichtenhofer, 2020; Tan et al., 2020).

Besides designing sophisticated blocks, another line of re-
search focuses on building plug-and-play modules (Hu et al.,
2018b; Woo et al., 2018; Cao et al., 2020; Lee et al., 2019;
Wang et al., 2020; Yang et al., 2020) that can refine convolu-
tional outputs within a block and enable the whole network
to learn more informative features. For example, Squeeze-
and-Excitation (SE) module (Hu et al., 2018b) allows a net-
work to capture task-relevant features (see “mountain tent”
in Figure 1) and suppress many background activations (see
“steel arch bridges” in Figure 1). This module is indepen-
dent of network architecture, and therefore can be plugged
into a broad range of networks such as VGG (Simonyan &
Zisserman, 2014), ResNets (He et al., 2016b), and ResNeXts
(Xie et al., 2017). More recently, the SE module is included
as a component in AutoML to search for better network
structures (Howard et al., 2019; Tan & Le, 2019).

However, existing attention modules have two problems.
First, they can only refine features along either channel or
spatial dimensions, limiting their flexibility of learning at-
tention weights that vary across both channel and space.
Second, their structures are built by a series of complex
factors, e.g., the choice for pooling. We address these issues
by proposing a module based on well-established neuro-
science theories. Specifically, to make the network learn
more discriminative neurons, we propose to directly infer
3-D weights (i.e., considering both spatial and channel di-
mensions) from current neurons and then in turn refine those
neurons. To efficiently infer such 3-D weights, we define an
energy function guided by the knowledge from neuroscience
and derive a closed-form solution. As shown in Figure 1,
our module helps the network capture many valuable cues
which are consistent with image labels (see examples of
“mountain tent” and “grey whale”). Moreover, most of the
operators used in our module are obtained from the solution
to the energy function without other bells and whistles.

It is worth emphasizing that we mainly focus on a small
plug-and-play module rather than a new architecture beyond
existing ConvNets. One previous study (Wang et al., 2017)
also attempts to infer 3-D weights. Their promising result-
s are based on a hand-crafted encoder-decoder structure.
Compared to that study, our work provides an alternative
and efficient way to generate 3-D weights. Our module is
more flexible and modularized, and still remains lightweight.
To sum up, our main contributions are:

• Inspired by the attention mechanisms in human brain,
we propose an attention module with full 3-D weights
and design an energy function to calculate the weights.

• We derive a closed-form solution of the energy function

that speedup the weight calculation and allows for a
lightweight form of the whole module.

• We integrate the proposed module into some well-
known networks and evaluate them on various tasks.
Our module performs favourably against other popular
modules in terms of accuracy, model size, and speed.

2. Related Work
In this section, we briefly discuss representative works on
network architectures and plug-and-play attention modules.

Network Architectures. In 2012, a modern deep ConvNet,
AlexNet (Krizhevsky et al., 2012), was released for large-
scale image classification. It is a simple feedforward struc-
ture similar to the setup in LeNet (LeCun et al., 1998). After
that, multiple approaches have been proposed to strengthen
the power of ConvNets. Some works focus on finding the
optimal filter shapes (Zeiler & Fergus, 2014; Chatfield et al.,
2014), and some other methods attempt to design much
deeper networks. For example, VGG (Simonyan & Zis-
serman, 2014) and Inception Net (Szegedy et al., 2015)
use stacked convolutions to reduce the risk of gradient
vanishing/exploding (Bengio et al., 1994; Glorot & Ben-
gio, 2010). Following this up, ResNet (He et al., 2016b)
and Highway network (Srivastava et al., 2015) add shortcut
connections from input to output within each block. The
shortcut connections enable ConvNet to scale up to hun-
dreds of layers. Their results reveal that increasing network
depth can substantially boost representational power of a
ConvNet. Besides network depth, some works propose to
increase the number of filters (Zagoruyko & Komodakis,
2016) for wider block, to add more connections within each
block (Huang et al., 2017), or to explore group/depth-wise
convolutions (Xie et al., 2017; Chollet, 2017). More recent-
ly, a bunch of works use AutoML (Zoph & Le, 2016; Liu
et al., 2018b;a; Tan et al., 2019; Howard et al., 2019; Wu
et al., 2019) to save the manual efforts in network design.
Different from such mentioned works, we aim at designing
a lightweight plug-and-play module. This module can be
adopted for many ConvNets to further boost their perfor-
mance in various tasks without big changes in architecture.

Attention and Recalibration Modules. Previous works
also design some computational modules that refine feature
maps. They are usually referred as attention module or re-
calibration module. For simplicity, we call them as attention
module in this paper. In fact, human attention acts as one
of the most important selection mechanisms that prioritize
task-relevant information and attenuate irrelevant signals
(Reynolds & Chelazzi, 2004; Chun et al., 2011). The at-
tentional mechanisms in human visual processing inspire
researchers to design similar attention modules in ConvNets.
One representative work, Squeeze-and-Excitation (SE) (Hu
et al., 2018b), learns the importance of different channels by

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

Generation

C

W

Expansion

1-D channel-wise weights

C

W

HH
Fusion𝑿

(a) Channel-wise attention

2-D spatial-wise weights

C

W

H

C

W

H

Generation Expansion

Fusion𝑿

(b) Spatial-wise attention

3-D weights

C

W

H

C

W

H

Generation Expansion

Fusion𝑿

(c) Full 3-D weights for attention

Figure 2. Comparisons of different attention steps. Most of existing attention modules generate 1-D or 2-D weights from features X,
and then expand the generated weights for channel (a) and spatial (b) attention. Our module instead directly estimates 3-D weights (c). In
each subfigure, same color denotes that a single scalar is employed for each channel, for spatial location or for each point on that features.

firstly capturing some context cues from a global view, and
then using two fully-connected layers to model interactions
between channels. The outputs are in turn used to refine
those features at the channel level. This module is further
extended by other methods, e.g., capturing global contexts
with convolutional aggregators (Hu et al., 2018a), learn-
ing interactions with a channel-based convolution (Wang
et al., 2020), adding spatial-wise attention (Woo et al., 2018),
incorporating long-range dependencies (Cao et al., 2020;
Wang et al., 2018b), unifying attention and normalization
process (Li et al., 2019a), or utilizing style cues of that fea-
tures (Lee et al., 2019). However, all these methods treat
either all neurons in one channel or all neurons at one spatial
position equally such that they cannot effectively compute
true 3-D weights. Moreover, their algorithms to calculate at-
tention weights are mostly hand-crafted, requiring extensive
computational power. In contrast, we design our module
based on some well-known neuroscience theories, which is
more interpretable. It is noticed that some modules are also
inspired by neuroscience theories, such as convolution driv-
en by adaptive contexts (Lin et al., 2020), and receptive field
adjusting by selective kernels (Li et al., 2019b). Different to
them, our module is based on spatial suppression observed
from mammal brains and formulates the weight generation
as an energy function. A closed-form solution is derived
for this energy function. Thanks to the fast closed-form
solution, our module introduces no additional parameters, a
compelling property that differs from those previous works.

3. Method
In this section, we first summarize some representative atten-
tion modules, such as SE (Hu et al., 2018b), CBAM (Woo
et al., 2018), GC (Cao et al., 2020). We then introduce our
new module that shares the similar philosophy as previous
methods, but has a very different formulation.

3.1. Overview of existing attention modules

Existing attention modules are often integrated into each
block to refine outputs from previous layers. Such refine-

Table 1. Comparisons of different attention modules in their
structure design and parameters. Operators are: spatial (GAP)
or channel average pooling (CAP), spatial (GMP) or channel max
pooling (CMP), standard deviation calculated along spatial di-
mension (GSP), standard convolution (C2D) or channel-based
convolution (C1D), standard (FC) or channel-wise (CFC) fully-
connected layers, layer normalization (LN), batch normalization
(BN), Softmax and ReLU. k and r are convolutional filter numbers
and reduction ratio respectively. C is the current feature channels.

Attention Modules Operators Parameters Design

SE (Hu et al., 2018b) GAP, FC, ReLU 2C2/r handcrafted

CBAM (Woo et al., 2018)
GAP, GMP, FC, ReLU
CAP, CMP, BN, C2D 2C2/r + 2k2 handcrafted

GC (Cao et al., 2020)
C1D, Softmax, LN,

FC, ReLU 2C2/r + C handcrafted

ECA (Wang et al., 2020) GAP, C1D k handcrafted

SRM (Lee et al., 2019) GAP, GSP, CFC, BN 6C handcrafted

SimAM (this paper) GAP, /, �, + 0 Eqn (5)

ment step is usually operated along either the channel di-
mension (Figure 5a) or the spatial dimension (Figure 5b).
As a result, those methods generate 1-D or 2-D weights and
treat neurons in each channel or spatial location equally,
which may limit their capability of learning more discrim-
inative cues. For example, Figure 1 shows SE loses some
main components of “grey whale”. Therefore, we argue
that full 3-D weights is better than conventional 1-D and
2-D attentions, and propose to refine that features with full
3-D weights, as shown in Figure 2c.

Another important factor for attention modules is the weight
generation method. Most existing works calculate attention
weights based on some ungrounded heuristics. For example,
SE uses global average pooling (GAP) to capture the global
context. The context aggregation is further improved by
adding a global max pooling (GMP) and a softmax-based
pooling in CBAM and GC respectively. In table 1, we list
main operators used in previous works. It can be seen that
existing modules built on many common operators such as
FC, Conv2D, BN etc., as well as some highly customized
operators like channel-wise fully-connected layers (CFC). In

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

sum, the choices of the structure design prequire significant
engineering. We argue that implementations of attention
mechanisms should be guided by some unified principles in
neural computation. Therefore, we propose a new method
based on some well-established neuroscience theories.

3.2. Our attention module

As our illustrated before, existing attention modules in com-
puter vision focus on either the channel domain or the spatial
domain. These two attention mechanisms correspond ex-
actly to the feature-based attention and the spatial-based
attention in the human brain (Carrasco, 2011). However,
in humans, these two mechanisms coexist and jointly con-
tribute to information selection during visual processing.
Therefore, we propose an attention module to operate simi-
larly such that each neuron is assigned with a unique weight.

However, it is challenging to directly estimate full 3-D
weights. (Wang et al., 2017) proposes to employ the encoder-
decoder framework to learn 3-D weights. But this approach
adds different subnetworks from lower to higher layers of
a ResNet, which cannot be easily extended to other mod-
ularized pnetworks. Another example, CBAM, separately
estimates 1-D and 2-D weights, and then combines them.
This approach does not directly generate true 3-D weights
(Woo et al., 2018). The two-step manner in CBAM takes too
much calculation time. Hence, we argue that the calculation
of 3-D weights should be straightforward, and at the same
time allow the module to keep a lightweight property.

According to above arguments, here we propose a module
that can efficiently produce true 3-D weights. To successful-
ly implement attention, we need to estimate the importance
of individual neurons. How to calculate importance of indi-
vidual neurons based on the feature map in a layer? In visual
neuroscience, the most informative neurons are usually the
ones that show distinctive firing patterns from surrounding
neurons. Moreover, an active neuron may also suppress the
activities of surrounding neurons, a phenomenon termed as
spatial suppression (Webb et al., 2005). In other words, the
neurons displaying clear spatial suppression effects should
be given higher priority (i.e., importance) in visual process-
ing. The simplest implementation to find these neurons is to
measure the linear separability between one target neuron
and other neurons. Based on these neuroscience findings,
we define the following energy function for each neuron:

et(wt, bt,y, xi) = (yt− t̂)2+
1

M − 1

M−1∑
i=1

(yo−x̂i)2. (1)

Here, t̂ = wtt + bt and x̂i = wtxi + bt are linear trans-
forms of t and xi, where t and xi are the target neuron
and other neurons in a single channel of the input feature
X ∈ RC×H×W . i is index over spatial dimension and

M = H ×W is the number of neurons on that channel. wt

and bt are weight and bias the transform. All values in Eqn
(1) are scalars. The Eqn (1) attains the minimal value when
the t̂ equals to yt, and all other x̂i are yo, where yt and yo
are two different values. By minimizing this equation, Eqn
(1) is equivalent to find the linear separability between the
target neuron t and all other neurons in the same channel.
For simplicity, we adopt binary labels (i.e., 1 and -1) for yt
and yo and also add a regularizer into Eqn (1). The final
energy function is given by:

et(wt, bt,y, xi) =
1

M − 1

M−1∑
i=1

(−1− (wtxi + bt))
2

+ (1− (wtt+ bt))
2 + λw2

t .
(2)

In theory, we have M energy functions for each channel. It
is computationally burdensome to solve all these equations
via some iterative solvers like SGD. Luckily, Eqn (2) has a
fast closed-form solution with respect to wt and bt, which
can be easily obtained by:

wt = −
2(t− µt)

(t− µt)2 + 2σ2
t + 2λ

, (3)

bt = −
1

2
(t+ µt)wt. (4)

µt =
1

M−1

∑M−1
i=1 xi and σ2

t = 1
M−1

∑M−1
i (xi−µt)

2 are
mean and variance calculated over all neurons except t in
that channel. Since existing solutions shown in Eqn (3) and
Eqn (4) are obtained on a single channel, it is reasonable to
assume that all pixels in a single channel follows the same
distribution. Given this assumption, mean and variance can
be calculated over all neurons and reused for all neurons
on that channel (Hariharan et al., 2012). It can significantly
reduce the computation costs to avoid iteratively calculating
µ and σ for each position. As a result, the minimal energy
can be computed with the following:

e∗t =
4(σ̂2 + λ)

(t− µ̂)2 + 2σ̂2 + 2λ
, (5)

where µ̂ = 1
M

∑M
i=1 xi and σ̂2 = 1

M

∑M
i=1(xi − µ̂)2. Eqn

(5) indicates that the lower energy e∗t , the neuron t is more
distinctive from surround neurons, and more important for
visual processing. Therefore, the importance of each neu-
ron can be obtained by 1/e∗t . Akin to our method, (Aubry
et al., 2014) investigate a similar function for semantic part
matching. But their method needs to compute large covari-
ance matrix which is not suitable for deep neural networks.
Different to (Aubry et al., 2014), we operate on the single
neuron and integrate this linear separability into an end-to-
end framework. In addition, we provide comprehensive
understandings from neuroscience.

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

X: input feature [N, C, H, W]
lambda: coefficient λ in Eqn (5)

def forward (X, lambda):
spatial size
n = X.shape[2] * X.shape[3] - 1
square of (t - u)
d = (X - X.mean(dim=[2,3])).pow(2)
d.sum() / n is channel variance
v = d.sum(dim=[2,3]) / n
E_inv groups all importance of X
E_inv = d / (4 * (v + lambda)) + 0.5
return attended features
return X * sigmoid(E_inv)

Figure 3. A pytorch-like implementation of our SimAM.

By far, we derive an energy function and find the importance
of each neuron. According to (Hillyard et al., 1998), atten-
tion modulation in mammalian brain typically manifests as
a gain (i.e., scaling) effect on neuronal responses. We thus
use a scaling operator rather than an addition for feature
refinement. The whole refinement phase of our module is:

X̃ = sigmoid(
1

E
)�X, (6)

where E groups all e∗t across channel and spatial dimensions.
sigmoid is added to restrict too large value in E. It will not
influence the relative importance of each neuron because
sigmoid is a monofonic function.

In fact, except the calculations of channel mean µ̂ and vari-
ance σ̂, all computing in our module are element-wise op-
erations. Therefore, we can take the advantage of current
machine learning libraries like pytorch to implement our
module (Eqn (6)) in just a few lines, as shown in Figure 3.
We add this implementation after second convolutional lay-
er within each block. In summary, the proposed module is
derived from basic theories of neuroscience which is quite
different to previous manners. Moreover, our module is
simple to implement and use along with existing networks.

4. Experiments
In this section, we conduct a series of experiments across a
wide range of tasks to verify the effectiveness of our SimAM.
For fair comparisons, we re-implement all compared meth-
ods using pytorch with consistent settings.

4.1. CIFAR Classification

To begin, we test our methods on image classification tasks
based on CIFAR (Krizhevsky et al., 2009). There are two
variants: one has 10 categories and the other one contains
100 classes. Both variants have 50k training and 10k vali-
dation images. Our main focus is to verify our simple yet

10−1 10−2 10−3 10−4 10−5 10−6

67.0

67.5

68.0

68.5

69.0

69.5

To
p-

1
A

cc
ur

ac
y

Cross Validation Accuracies on CIFAR-100

R20 + Ours
R20 Baseline

Figure 4. Visualization of cross validation for λ search. This
process is achieved based on ResNet-20 network on a split from
train set. Mean and standard deviation over 5 folds are reported.

effective attention module. Therefore, we incorporate our
attention module into some well-established architectures,
including ResNet (He et al., 2016b), Pre-activation ResNet
(He et al., 2016a), WideResNet (Zagoruyko & Komodakis,
2016), and MobileNetV2 (Sandler et al., 2018) 1.

Implementation details. We follow the standard training
pipeline (Lee et al., 2015; He et al., 2016b) for all models.
Specifically, each image is zero-padded with 4 pixels on
each side, and a 32× 32 image fed for training is random-
ly cropped from that padded image or its horizontal flip.
During evaluation, all models accept the original images
for testing. Optimization is done by a SGD solver with a
momentum of 0.9, a batch size of 128, and a weight decay
of 0.0005. All networks are trained on a single GPU ex-
cept that the WideResNet is optimized on two GPUs. The
learning rate is started with 0.1 and divided by 10 at 32,000
and 48,000 iterations (the division is stopped at 64,000 it-
erations). For our SimAM, the hyper-parameter λ in Eqn
(5) is set to 0.0001, searched using ResNet-20 on a 45k/5k
train/split set. Detailed analysis of λ will be discussed in
the later section. For other modules including SE (Hu et al.,
2018b), CBAM (Woo et al., 2018), ECA (Wang et al., 2020),
and GC (Cao et al., 2020), we use the public codes provided
by the authors with default settings. Because of randomness,
we report average accuracy and standard derivation over 5
times for each method. All results are shown in Table 2.

Analysis of Attention Modules. The proposed SimAM
consistently improves the top-1 accuracies over all em-
ployed baseline networks on both CIFAR-10 and CIFAR-
100 datasets. In addition, our SimAM also obtains very com-
petitive results against other compared attention modules.
Specifically, SimAM achieves the best accuracies compared
to other modules based onp small networks (ResNet-20
and PreResNet-20). For 56-layer networks, our method

1We use the model from https://github.com/kuangliu/pytorch-
cifar/blob/master/models/mobilenetv2.py for CIFAR datasets and
employ the default structure for ImageNet.

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

Table 2. Top-1 accuracies (%) for different networks with 5 attention modules, SE (Hu et al., 2018b), CBAM (Woo et al., 2018), ECA
(Wang et al., 2020), GC (Cao et al., 2020) and our SimAM, on CIFAR-10 (C10) and CIFAR-100 (C100) datasets. All results are reported
as mean±std by calculating the top1 accuracy of each model over 5 trials . Our SimAM achieves very competitive results against other
modules without introducing any parameter into the baseline models.

Attention ResNet-20 ResNet-56 ResNet-110 MobileNetV2

Module C10 C100 C10 C100 C10 C100 C10 C100

Baseline 92.33±0.19 68.88±0.15 93.58±0.20 72.24±0.37 94.51±0.31 75.54±0.24 91.86±0.12 71.32±0.09

+ SE 92.42±0.14 69.45±0.11 93.69±0.17 72.84±0.51 94.68±0.22 76.56±0.30 91.79±0.20 71.54±0.31

+ CBAM 92.60±0.31 69.47±0.35 93.82±0.10 72.47±0.52 94.83±0.18 76.45±0.54 91.88±0.16 71.79±0.22

+ ECA 92.35±0.35 68.89±0.57 93.68±0.08 72.45±0.38 94.72±0.15 76.33±0.65 92.34±0.23 71.24±0.45

+ GC 92.47±0.19 69.16±0.48 93.58±0.08 72.50±0.50 94.78±0.25 76.21±0.17 91.73±0.14 71.78±0.28

+ SimAM 92.73±0.18 69.57±0.40 93.76±0.13 72.82±0.25 94.72±0.18 76.42±0.27 92.36±0.20 72.08±0.28

Attention PreResNet-20 PreResNet-56 PreResNet-110 WideResNet-20x10

Module C10 C100 C10 C100 C10 C100 C10 C100

Baseline 92.14±0.25 68.70±0.30 93.71±0.24 71.83±0.23 94.22±0.18 75.95±0.22 95.78±0.10 81.31±0.39

+ SE 92.24±0.06 68.70±0.21 93.57±0.15 72.57±0.32 94.40±0.18 76.68±0.30 96.24±0.04 81.30±0.08

+ CBAM 92.19±0.11 68.76±0.56 93.67±0.08 72.16±0.12 94.37±0.33 76.01±0.57 95.98±0.17 80.54±0.23

+ ECA 92.16±0.25 68.31±0.46 93.78±0.17 72.43±0.45 94.70±0.31 76.11±0.54 96.12±0.15 80.35±0.22

+ GC 92.19±0.20 68.96±0.48 93.77±0.12 72.44±0.19 94.85±0.19 75.88±0.28 96.12±0.18 79.98±0.17

+ SimAM 92.47±0.12 69.13±0.50 93.80±0.30 72.36±0.19 94.90±0.19 76.24±0.31 96.09±0.21 81.51±0.25

also achieves the best result based on PreResNet-56 in
CIFAR-10, and performs favorably against other modules
on another settings. In larger networks, SimAM still attains
very promising results. For example, in MobileNetV2, E-
CA and CBAM achieve the best accuracies on CIFAR-10
(92.34±0.23) and CIFAR-100 (71.79±0.22), respectively.
Our SimAM outperforms SE and CBAM with top-1 results
of 92.36±0.20 and 72.02±0.28 on those datasets respective-
ly. We consider MobileNetV2 as a large network because it
contains nearly 2.4 M parameters, which is even bigger than
ResNet-110 with ∼1.17 M parameters. Table 2 also demon-
strates that our module can improve a very big network -
WideResNet-20x10, which has about 36 M free parame-
ters on the CIFAR datasets. All these results demonstrate
that the effectiveness of our parameter-free SimAM is not
confined to some specific networks.

Analysis of λ. Figure 4 shows our searched results of λwith
ResNet-20 on the training set from the CIFAR-100 dataset.
It is intractable to verify all real values of λ. Therefore,
we set the pool of λ from 10−1 to 10−6, as shown in the
“x-axis” of this figure. For each λ value, we repeat 5 times
and report the mean and standard deviations. Note that,
all these tests are done on the split set from the training
data. Based on Figure 4, we make two conclusions: (1) our
module can significantly boost performance using a wide
range of λ (from 10−1 to 10−6), and (2) λ = 10−4 provides

a good balance between the top-1 accuracy and the standard
deviation. Following these observations, we set λ = 10−4

in all networks on the CIFAR datasets.

4.2. ImageNet Classification

In this section, we evaluate our SimAM on ImageNet (Rus-
sakovsky et al., 2015) that consists of 1000 classes. All
models are trained on ∼1.2M training images and tested
on 50K validation images with the standard setup. In de-
tail, during training, input images are randomly cropped to
224× 224, from the original image or its horizontal flipped
one. All ResNets are optimized by SGD with a batch size
of 256 on 4 GPUs (Quadro RTX 8000). Momentum and
weight decay are set to 0.9 and 0.0001 respectively. In ad-
dition, the batch mean and variance for BN are computed
within each GPU. We train the networks with a initial learn-
ing rate 0.1 and then decrease the learning rate by 10× at
30, 60, 90 epochs. The training is stopped after 100 epochs.
For MobileNetV2, we use the same training pipeline as
in (Zhang, 2019). It is trained with a cosine learning rate
schedule, starting with a learning rate 0.5. Weight decay and
the number of epochs are set to 4e-5 and 150 respectively.

For the proposed SimAM, we still employ cross-validation
to find a good λ. Instead of searching all networks on
the original training images from this dataset, we base on

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

Table 3. Top-1 and Top-5 accuracies (%) for different networks with various attention modules, including SE (Hu et al., 2018b), CBAM
(Woo et al., 2018), ECA (Wang et al., 2020), SRM (Lee et al., 2019) and the proposed SimAM, on ImageNet-1k (Russakovsky et al.,
2015) dataset. All networks are trained under the same settings in our own computers. Our SimAM achieves very competitive results
against other attention modules, while being efficiency in terms of speed and parameters. Speed is tested on a GTX 1080 TI gpu with a
single image. We forward 500 images and report the average FPS.

Model Top-1 Acc. Top-5 Acc. # Parameters + Parameters-to-Baseline # FLOPs Inference Speed

ResNet-18 70.33 % 89.58 % 11.69 M 0 1.82 G 215 FPS
+ SE (Hu et al., 2018b) 71.19 % 90.21 % 11.78 M 0.087 M 1.82 G 144 FPS
+ CBAM (Woo et al., 2018) 71.24 % 90.04 % 11.78 M 0.090 M 1.82 G 78 FPS
+ ECA (Wang et al., 2020) 70.71 % 89.85 % 11.69 M 36 1.82 G 148 FPS
+ SRM (Lee et al., 2019) 71.09 % 89.98 % 11.69 M 0.004 M 1.82 G 115 FPS
+ SimAM 71.31 % 89.88 % 11.69 M 0 1.82 G 147 FPS

ResNet-34 73.75 % 91.60 % 21.80 M 0 3.67 G 119 FPS
+ SE (Hu et al., 2018b) 74.32 % 91.99 % 21.95 M 0.157 M 3.67 G 81 FPS
+ CBAM (Woo et al., 2018) 74.41 % 91.85 % 21.96 M 0.163 M 3.67 G 38 FPS
+ ECA (Wang et al., 2020) 74.03 % 91.73 % 21.80 M 74 3.67 G 82 FPS
+ SRM (Lee et al., 2019) 74.49 % 92.01 % 21.81 M 0.008 M 3.67 G 59 FPS
+ SimAM 74.46 % 92.02 % 21.80 M 0 3.67 G 78 FPS

ResNet-50 76.34 % 93.12 % 25.56 M 0 4.11 G 89 FPS
+ SE (Hu et al., 2018b) 77.51 % 93.74 % 28.07 M 2.515 M 4.12 G 64 FPS
+ CBAM (Woo et al., 2018) 77.63 % 93.88 % 28.09 M 2.533 M 4.12 G 33 FPS
+ ECA (Wang et al., 2020) 77.17 % 93.52 % 25.56 M 88 4.12 G 64 FPS
+ SRM (Lee et al., 2019) 77.51 % 93.06 % 25.59 M 0.030 M 4.11 G 56 FPS
+ SimAM 77.45 % 93.66 % 25.56 M 0 4.11 G 64 FPS

ResNet-101 77.82 % 93.85 % 44.55 M 0 7.83 G 47 FPS
+ SE (Hu et al., 2018b) 78.39 % 94.13 % 49.29 M 4.743 M 7.85 G 33 FPS
+ CBAM (Woo et al., 2018) 78.57 % 94.18 % 49.33 M 4.781 M 7.85 G 14 FPS
+ ECA (Wang et al., 2020) 78.46 % 94.12 % 44.55 M 171 7.84 G 33 FPS
+ SRM (Lee et al., 2019) 78.58 % 94.15 % 44.68 M 0.065 M 7.83 G 25 FPS
+ SimAM 78.65 % 94.11 % 44.55 M 0 7.83 G 32 FPS

ResNeXt-50 (32x4d) 77.47 % 93.52 % 25.03 M 0 4.26 G 70 FPS
+ SE (Hu et al., 2018b) 77.96 % 93.93 % 27.54 M 2.51 M 4.27 G 53 FPS
+ CBAM (Woo et al., 2018) 78.06 % 94.07 % 27.56 M 2.53 M 4.27 G 32 FPS
+ ECA (Wang et al., 2020) 77.74 % 93.87 % 25.03 M 86 4.27 G 54 FPS
+ SRM (Lee et al., 2019) 78.04 % 93.91 % 25.06 M 0.030 M 4.26 G 46 FPS
+ SimAM 78.00 % 93.93 % 25.03 M 0 4.26 G 53 FPS

MobileNetV2 71.90 % 90.51 % 3.50 M 0 0.31 G 99 FPS
+ SE (Hu et al., 2018b) 72.46 % 90.85 % 3.53 M 0.028 M 0.31 G 65 FPS
+ CBAM (Woo et al., 2018) 72.49 % 90.78 % 3.54 M 0.032 M 0.32 G 35 FPS
+ ECA (Wang et al., 2020) 72.01 % 90.46 % 3.50 M 59 0.31 G 66 FPS
+ SRM (Lee et al., 2019) 72.32 % 90.70 % 3.51 M 0.003 M 0.31 G 53 FPS
+ SimAM 72.36 % 90.74 % 3.50 M 0 0.31 G 66 FPS

ResNet-18 model and search the λ on the image with half
resolutions. To further reduce the search time, we train
ResNet-18 model with 50 epochs. The learning rate starts
with 0.1, but is decayed by 10 factor at 15, 30, 45 epochs.
The parameter pool is the same to what we used on CIFAR
and we run 3 times for each parameter. The whole search
can be done in less than 1 week and λ = 0.1 is selected as it
provides a good tradeoff between accuracy and robustness.

On ImageNet, we compare our module with two represen-
tative attention modules, SE (Hu et al., 2018b) and CBAM
(Woo et al., 2018), and two recently introduced method-
s, ECA (Wang et al., 2020) and SRM (Lee et al., 2019).
We do not include GC (Cao et al., 2020) because their per-
formance is obtained by a very different training pipeline
to the standard setup. All results are shown in Table 3.
Generally speaking, all attention modules can improve the

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80
To

p-
1

Ac
cu

ra
cy

Baseline Train
Baseline Val
+ SimAM Train
+ SimAM Val

(a) Top-1 accuracy.
0 10 20 30 40 50 60 70 80 90 100

20

30

40

50

60

70

80

90

To
p-

5
Ac

cu
ra

cy

Baseline Train
Baseline Val
+ SimAM Train
+ SimAM Val

(b) Top-5 accuracy.

Figure 5. Training curve comparisons for ResNet-50 with and without our module on ImageNet-1K. Top-1 (%) and Top-5 (%)
accuracies of both networks are shown in the left and right, respectively. As can be seen, integrating our SimAM into ResNet-50 works
better than the baseline model on both training and validation.

H a m m e r h e a d

GradCAM Before

SimAM

GradCAM After

SimAM

Attention Weight from

SimAM

GradCAM on Attention

Weight from SimAM

H a r d d i s k

T e n c h

M a t c h s t i c k

Figure 6. Visualization of feature activations using the trained
ResNet-50 with our SimAM. For each image, maps (from left to
right) are GradCAM on features before and after SimAM, attention
weights, and GradCAM on attention weights. The attention maps
are obtained by averaging the 3-D attention weights along the
channel dimension (see more channel-wise attention weights in
supplementary materials).

baseline models with a clear margin. In addition, the pro-
posed SimAM achieves leading performance in ResNet-18
and also obtains slightly better results in ResNet-101. For
ResNet-34, ResNet-50, ResNeXt-50 and MobileNetV2, the
proposed SimAM still performs favorably against other at-
tention modules. Moreover, our module does not add any
parameters into existing networks, which is a great advan-
tage over other modules. Table 3 also compares the infer-
ence speed of the attention modules. SE and ECA often

show better inference speed than CBAM and SRM. Our
SimAM obtains a similar inference FPS as compared to SE
and ECA. We believe our module can be further speedup as
other modules because many operators employed in other
modules are highly tuned on GPUs. In Figure 5, we also
present the training and validation curves of ResNet-50 with
our module. Our module improves the baseline model in
both training and validation accuracies.

To see the effect of our SimAM on the model, we visualize
different features from ResNet-50 trained with our SimAM
module by Grad-CAM (Selvaraju et al., 2017). As shown
in Figure 6, our SimAM refines the features that focus on
main objects (1st v.s. 2nd in each group). The heatmaps
generated by GradCAM are consistent with SimAM masks
(2nd v.s. 3rd v.s. 4th in each group). Both the quantitative
and qualitative results presented above pdemonstrate that
our SimAM can effectively enhance representational power
in various networks, without adding any extra parameter.
In our supplementary materials, we show more results
with some other re-calibration modules.

4.3. Object Detection and Instance Segmentation

In this subsection, we base on the popular Faster R-CNN
(Ren et al., 2015) and Mask R-CNN (He et al., 2017) with
feature pyramid networks (FPNs) (Lin et al., 2017) to e-
valuate SimAM on object detection tasks. Besides, we
also report instance segmentation results using Mask R-
CNN. We mainly compare our module with SE and base-
line models. All networks are pre-trained on ImageNet-
1K (Russakovsky et al., 2015) and transferred to the CO-
CO (Lin et al., 2014) dataset by fune-tuning. We train
each detector on the “coco 2017 train” set and evaluate on
“coco 2017 val” set. For fair comparisons, we adopt mmde-
tection (Chen et al., 2019) to train and evaluate all models

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

Table 4. Comparisons ofp ResNet-50/101 with SE and the pro-
posed SimAM on COCO dataset. All backbone networks are
pre-trained on ImageNet-1K dataset. APs refer to box IoU and
mask IoU in detection and segmentation tasks respectively. We
also include the number additional parameters in this table.

Backbone AP AP50 AP75 APS APM APL + Params

Faster RCNN for Object Detection

ResNet-50 37.8 58.5 40.8 21.9 41.7 48.2 0
+ SE 39.4 60.6 43.0 23.6 43.5 50.4 2.5 M
+ SimAM 39.2 60.7 42.8 22.8 43.0 50.6 0
ResNet-101 39.6 60.3 43.0 22.5 43.7 51.4 0
+ SE 41.1 62.0 45.2 24.1 45.4 53.0 4.7 M
+ SimAM 41.2 62.4 45.0 24.0 45.6 52.8 0

Mask RCNN for Object Detection

ResNet-50 38.1 58.9 41.3 22.2 41.5 49.4 0
+ SE 39.9 61.1 43.4 24.6 43.6 51.3 2.5 M
+ SimAM 39.8 61.0 43.4 23.1 43.7 51.4 0
ResNet-101 40.3 60.8 44.0 22.8 44.2 52.9 0
+ SE 41.8 62.6 45.5 24.3 46.3 54.1 4.7 M
+ SimAM 41.8 62.8 46.0 24.8 46.2 53.9 0

Mask RCNN for Instance Segmentation

ResNet-50 34.6 55.6 36.7 18.8 37.7 46.8 0
+ SE 36.0 57.8 38.1 20.7 39.4 48.5 2.5 M
+ SimRM 36.0 57.9 38.2 19.1 39.7 48.6 0
ResNet-101 36.3 57.6 38.8 18.8 39.9 49.6 0
+ SE 37.2 59.4 39.7 20.2 41.2 50.4 4.7 M
+ SimRM 37.6 59.5 40.1 20.5 41.5 50.8 0

on 4 GPUs with a batch size of 8 (2/gpu). The start learning
rate is set to 0.01 according to the linear scaling rule (Goyal
et al., 2017). Other hyper-parameters are the same to the
default settings of each detector.

As shown in Table 4, integrating either SE or our SimAM
into ResNets can largely boost the baseline performance in
object detection and instance segmentation. For object de-
tection task, the compared two attention modules obtain very
similar performance by using both Faster RCNN and Mask
RCNN detectors. For instance segmentation task, the pro-
posed SimAM module achieves slightly better results than
SE module by using both ResNets. It is worth noting that
our SimAM does not introduce any additional parameters as
compared to SE module. For example, SE-ResNet-50 and
SE-ResNet-101 add 2.5 M and 4.7 M more parameters to
ResNet-50/101 respectively. These results demonstrate that
SimAM is a lightweight module for various vision tasks.

5. Conclusion
In this paper, we propose a new attention module - SimAM,
inspired by neuroscience theories in the mammalian brain.

In particular, we base on the well-established spatial sup-
pression theory and design an energy function to implement
this theory. We also derive a simple solution to the func-
tion, where this function is further employed as attentional
importance for each neuron within a feature map. Our at-
tention module is implemented guided by this energy func-
tion, avoiding too much heuristics. Extensive experiments
are conducted to verify the effectiveness and efficiency of
the proposed SimAM. Our results show that the proposed
SimAM performs comparably pagainst other attention mod-
ules in various networks for different vision tasks.

Acknowledgements
We thank all reviewers for their kindly and constructive sug-
gestions. This work is supported by the Key-Area Research
and Development Program of Guangzhou (202007030004)
China, and also supported by Natural Science Foundation
of China (62072482).

References
Aubry, M., Russell, B. C., and Sivic, J. Painting-to-3D

Model Alignment via Discriminative Visual Elements.
ACM Transactions on Graphics (ToG), 33(2):1–14, 2014.

Bengio, Y., Simard, P., and Frasconi, P. Learning Long-term
Dependencies with Gradient Descent is Difficult. IEEE
Transactions on Neural Networks, 5(2):157–166, 1994.

Cao, Y., Xu, J., Lin, S., Wei, F., and Hu, H. Global Context
Networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

Carrasco, M. Visual Attention: The Past 25 Years. Vision
Research, 51(13):1484–1525, 2011.

Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman,
A. Return of the Devil in the Details: Delving Deep into
Convolutional Nets. arXiv:1405.3531, 2014.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun,
S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu,
C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y.,
Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin,
D. MMDetection: Open MMLab Detection Toolbox and
Benchmark. arXiv:1906.07155, 2019.

Chollet, F. Xception: Deep Learning with Depthwise Sep-
arable Convolutions. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1251–1258, 2017.

Chun, M. M., Golomb, J. D., and Turk-Browne, N. B. A
Taxonomy of External and Internal Attention. Annual
Review of Psychology, 62:73–101, 2011.

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

Dong, X. and Yang, Y. Searching for a Robust Neural
Architecture in Four GPU Hours. In IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1761–
1770, 2019.

Feichtenhofer, C. X3D: Expanding Architectures for Effi-
cient Video Recognition. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 203–213, 2020.

Feichtenhofer, C., Pinz, A., and Zisserman, A. Convo-
lutional Two-stream Network Fusion for Video Action
Recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1933–1941, 2016.

Glorot, X. and Bengio, Y. Understanding the Difficulty of
Training Deep Feedforward Neural Networks. In Thir-
teenth International Conference on Artificial Intelligence
and Statistics, pp. 249–256. JMLR Workshop and Con-
ference Proceedings, 2010.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolows-
ki, L., Kyrola, A., Tulloch, A., Jia, Y., and He, K. Accu-
rate, Large Minibatch SGD: Training Imagenet in 1 Hour.
arXiv:1706.02677, 2017.

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y.,
and Sun, J. Single Path One-Shot Neural Architecture
Search with Uniform Sampling. In European Conference
on Computer Vision, pp. 544–560. Springer, 2020.

Hariharan, B., Malik, J., and Ramanan, D. Discriminative
Decorrelation for Clustering and Classification. In Eu-
ropean Conference on Computer Vision, pp. 459–472.
Springer, 2012.

He, K., Zhang, X., Ren, S., and Sun, J. Identity Mappings
in Deep Residual Networks. In European Conference on
Computer Vision, pp. 630–645. Springer, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778,
2016b.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask
R-CNN. In IEEE International Conference on Computer
Vision, pp. 2961–2969, 2017.

Hillyard, S. A., Vogel, E. K., and Luck, S. J. Sensory
Gain Control (Amplification) as a Mechanism of Selec-
tive Attention: Electrophysiological and Neuroimaging
evidence. Philosophical Transactions of the Royal Soci-
ety of London. Series B: Biological Sciences, 353(1373):
1257–1270, 1998.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. Searching for MobileNetV3. In IEEE Conference

on Computer Vision and Pattern Recognition, pp. 1314–
1324, 2019.

Hu, J., Shen, L., Albanie, S., Sun, G., and Vedaldi, A.
Gather-Excite: Exploiting Feature Context in Convolu-
tional Neural Networks. arXiv:1810.12348, 2018a.

Hu, J., Shen, L., and Sun, G. Squeeze-and-Excitation Net-
works. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7132–7141, 2018b.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely Connected Convolutional Networks. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 4700–4708, 2017.

Huang, G., Liu, S., Van der Maaten, L., and Weinberger,
K. Q. CondenseNet: An Efficient Densenet using Learned
Group Convolutions. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2752–2761, 2018.

Krizhevsky, A., Hinton, G., et al. Learning Multiple Layers
of Features from Tiny Images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
Classification with Deep Convolutional Neural Networks.
Advances in Neural Information Processing Systems, 25:
1097–1105, 2012.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based Learning Applied to Document Recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z.
Deeply-Supervised Nets. In Artificial Intelligence and
Statistics, pp. 562–570. PMLR, 2015.

Lee, H., Kim, H.-E., and Nam, H. SRM: A Style-based Re-
calibration Module for Convolutional Neural Networks.
In IEEE International Conference on Computer Vision,
pp. 1854–1862, 2019.

Li, X., Sun, W., and Wu, T. Attentive Normalization. arX-
iv:1908.01259, 2019a.

Li, X., Wang, W., Hu, X., and Yang, J. Selective Kernel
Networks. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 510–519, 2019b.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft COCO:
Common Objects in Context. In European Conference
on Computer Vision, pp. 740–755. Springer, 2014.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. Feature Pyramid Networks for Object
Detection. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2117–2125, 2017.

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

Lin, X., Ma, L., Liu, W., and Chang, S.-F. Context-Gated
Convolution. In European Conference on Computer Vi-
sion, pp. 701–718. Springer, 2020.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li,
L.-J., Fei-Fei, L., Yuille, A., Huang, J., and Murphy, K.
Progressive Neural Architecture Search. In European
Conference on Computer Vision, pp. 19–34, 2018a.

Liu, C., Chen, L.-C., Schroff, F., Adam, H., Hua, W., Yuille,
A. L., and Fei-Fei, L. Auto-DeepLab: Hierarchical Neural
Architecture Search for Semantic Image Segmentation.
In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 82–92, 2019.

Liu, H., Simonyan, K., and Yang, Y. DARTs: Differentiable
Architecture Search. arXiv:1806.09055, 2018b.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. SSD: Single Shot Multibox
Detector. In European Conference on Computer Vision,
pp. 21–37. Springer, 2016.

Ren, S., He, K., Girshick, R., and Sun, J. Faster R-CNN: To-
wards Real-time Object Detection with Region Proposal
Networks. arXiv:1506.01497, 2015.

Reynolds, J. H. and Chelazzi, L. Attentional Modulation
of Visual Processing. Annu. Rev. Neurosci., 27:611–647,
2004.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision, 115(3):
211–252, 2015.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4510–4520, 2018.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-CAM: Visual Explanation-
s from Deep Networks via Gradient-based Localization.
In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 618–626, 2017.

Simonyan, K. and Zisserman, A. Very Deep Convolution-
al Networks for Large-Scale Image Recognition. arX-
iv:1409.1556, 2014.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway
Networks. arXiv:1505.00387, 2015.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going Deeper with Convolutions. In IEEE Conference

on Computer Vision and Pattern Recognition, pp. 1–9,
2015.

Tan, M. and Le, Q. EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks. In International Con-
ference on Machine Learning, pp. 6105–6114. PMLR,
2019.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., and Le, Q. V. MnasNet: Platform-aware
Neural Architecture Search for Mobile. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
2820–2828, 2019.

Tan, M., Pang, R., and Le, Q. V. EfficientDet: Scalable
and Efficient Object Detection. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 10781–
10790, 2020.

Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H.,
Wang, X., and Tang, X. Residual Attention Network for
Image Classification. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3156–3164, 2017.

Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X.,
and Van Gool, L. Temporal Segment Networks for Action
Recognition in Videos. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 41(11):2740–2755,
2018a.

Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q. ECA-
Net: Efficient Channel Attention for Deep Convolutional
Neural Networks. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 11534–11542, 2020.

Wang, X., Girshick, R., Gupta, A., and He, K. Non-Local
Neural Networks. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7794–7803, 2018b.

Webb, B. S., Dhruv, N. T., Solomon, S. G., Tailby, C.,
and Lennie, P. Early and Late Mechanisms of Surround
Suppression in Striate Cortex of Macaque. Journal of
Neuroscience, 25(50):11666–11675, 2005.

Woo, S., Park, J., Lee, J.-Y., and So Kweon, I. CBAM:
Convolutional Block Attention Module. In European
Conference on Computer Vision, pp. 3–19, 2018.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian,
Y., Vajda, P., Jia, Y., and Keutzer, K. FBNet: Hardware-
aware Efficient ConvNet Design via Differentiable Neural
Architecture Search. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10734–10742, 2019.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggregat-
ed Residual Transformations for Deep Neural Networks.
In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1492–1500, 2017.

SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks

Yang, Z., Zhu, L., Wu, Y., and Yang, Y. Gated Channel
Transformation for Visual Recognition. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
11794–11803, 2020.

Zagoruyko, S. and Komodakis, N. Wide Residual Networks.
arXiv:1605.07146, 2016.

Zeiler, M. D. and Fergus, R. Visualizing and Understanding
Convolutional Networks. In European Conference on
Computer Vision, pp. 818–833. Springer, 2014.

Zhang, R. Making Convolutional Networks Shift-Invariant
Again. In International Conference on Machine Learning,
pp. 7324–7334. PMLR, 2019.

Zoph, B. and Le, Q. V. Neural Architecture Search with
Reinforcement Learning. arXiv:1611.01578, 2016.

