
Supplementary Material: From Local Structures to Size Generalization in
Graph Neural Networks

A. Size generalization in Single-layer GNNs
We start our discussion on size generalization with a theoretical analysis of a simple setup. We consider a single-layer GNN
and an easy task and show that: (1) The training objective has many different solutions, but only a small subset of these
solutions generalizes to larger graphs (2) Simple regularization techniques cannot mitigate the problem.

Assume we train on a distribution of graphs. Our task is to predict the number of edges in the graph using a first-order GNN
with a single linear layer and additive readout function, for simplicity also consider the squared loss. We first note that
the task of edge count can be solved with this architecture for graphs of any size. The intuition is to count the number of
neighbors for each node (can be done with a 1-layer GNN), and summing over all nodes using the readout function would
give us 2|E|, where E is the set of edges.

The objective boils down to the following function for any graph G in the training set:

L(w1, w2, b;G) =

 ∑
u∈V (G)

w1 · xu +
∑

v∈N (u)

w2 · xv + b

− y
2

.

Here, G is an input graph, V (G) are the nodes of G, N (v) are all the neighbors of node v, w1, w2 and b are the trainable
parameters, y is the target and xv is the node feature for node v. Further, assume that we have no additional information on
the nodes, so we can just embed each node as a one-dimensional feature vector with a fixed value of 1. In this simple case,
the trainable parameters are also one-dimensional.

For a graph with n nodes and m edges the training objective can also be written in the following form:

L(w1, w2, b;G) = (nw1 + 2mw2 + nb−m)
2
,

One can easily find the solution space, which is an affine subspace defined by w2 = m−n(w1+b)
2m = 1

2 −
n
2m ·

w1+b
2m . In

particular, the solutions with w1 + b = 0, w2 = 1/2 are the only ones which do not depend on the specific training set
graph size n, and generalize to graphs of any size and with any number of edges.

It can be readily seen that when training the model on graphs where the ratio n/m between the number of nodes and number
of edges is fixed, gradient descent with a small enough learning rate will favor the global solution closest to the initialized
point. Hence, by using a standard initialization scheme (e.g. (Glorot & Bengio, 2010)), with probability 1, the solution
that gradient descent converges to is not a generalizing solution. Note that we could train on many graphs with different
sizes and still end up in a non-generalizing solution, as long as n/m is fixed. On the other hand, training on graphs with
different node/edge ratios necessarily leads to some generalizing solution. This is because the problem is convex, and the
generalizing solutions are the only solutions that minimize the loss for graphs with different ratios.

We also note that the generalizing solution (w1 + b = 0, w2 = 1/2) is not the least norm solution in general (with respect to
both L1 and L2 norms) so simple regularization will not help here (it is the least L1 norm solution if 2m > n). As we show
in Sec. 6, the problem gets worse when considering GNNs with multiple non-linear layers, and this simple solution will not
help in this case: we can train deeper GNNs on a wide variety of sizes and the solution will not generalize to other sizes.

B. Proofs from Sec. 4
Proof of Thm. 4.2. We show that from the definition of d-patterns, and the 1-WL algorithm (see (Weisfeiler & Lehman,
1968)), the color given by the WL algorithm to two nodes is equal iff their d-pattern is equal. For the case of d = 0, it is clear.

From Local Structures to Size Generalization in Graph Neural Networks

Suppose it is true for d− 1, the WL algorithm at iteration d give node v a new color based on the colors given in iteration
d− 1 to the neighbors of v. This means, that the color of v at iteration d depends on the multiset of colors at iteration d− 1
of its neighbors, which by induction is the (d − 1)-pattern of the neighbors of v. To conclude, we use Theorem 1 from
(Morris et al., 2019) which shows that GNNs are constant on the colors of WL, hence also constant on the d-patterns.

To prove Thm. 4.3 we will first need to following claim from (Yun et al., 2019) about the memorization power of ReLU
networks:

Theorem B.1. Let {xi, yi}Ni=1 ∈ Rd × R such that all the xi are distinct and yi ∈ [−1, 1] for all i. Then there exists a
3-layer fully connected ReLU neural network f : Rd → R with width 2

√
N such that f(xi) = yi for every i.

We will also need the following lemma which will be used in the construction of each layer of the GNN:

Lemma B.2. Let N ∈ N and f : N → R be a function defined by f(n) = w>2 σ(w1n − b) where w1,w2,b ∈ RN ,
and σ is the ReLU function. Then for every y1, . . . , yN ∈ R there exists w1,w2,b such that f(n) = yn for n ≤ N and
f(n) = (n−N + 1)yN − (n−N)yN−1 for n > N .

Proof. Define w1 =

1
...
1

, b =

0
1
...

N − 1

. Let ai be the i-th coordinate of w2, we will define ai recursively in the

following way: Let a1 = y1, suppose we defined a1, . . . , ai−1, then define ai = yi − 2ai−1 − · · · − ia1. Now we have for
every n ≤ N :

f(n) = w>2 σ(w1n− b) = na1 + (n− 1)a2 + · · ·+ an = yn .

For n > N we can write n = N + k for k ≥ 1, then we have:

f(n) = w>2 σ(w1(N + k)− b) = (N + k)a1 + (N + k − 1)a2 + · · ·+ (k + 1)aN

= yN + k(a1 + a2 + · · ·+ aN) = yN + k(yN − aN−1 − 2aN−2 − · · · − (N − 1)a1)

= (k + 1)yN − kyN−1

Now we are ready to prove the main theorem:

Proof of Thm. 4.3. We assume w.l.o.g that at the first iteration each node i is represented as a one-hot vector h
(0)
i of

dimension |C|, with its corresponding node feature. Otherwise, since there are |C| node features we can use one GNN layer
that ignores all neighbors and only represent each node as a one-hot vector. We construct the first d layers of the 1-GNN
F by induction on d. Denote by ai = |C| ·

(
N i +N i−1) the dimension of the i-th layer of the GNN for 1 ≤ i ≤ d, and

a0 = |C|.

The mapping has two parts, one takes the neighbors information and maps it into a feature representing the multiset of
d-patterns, the other part is simply the identity-saving information regarding the d-pattern of the node itself.

The d layer structure is

h(d)
v = U (d+1)σ

W (d)
2 h(d−1)

v +
∑

u∈N (v)

W
(d)
1 h(d−1)

u − b(d)

We set W (d)

2 = [0, I]T , W
(d)
1 = [W̃

(d)T
1 , 0]T and U (d+1) = [Ũ (d+1)T , 0]T with W̃

(d)
1 ∈ RNad−1×ad−1 and

Ũ (d+1) ∈ RNad−1×Nad−1 . For W̃ (d)
1 we set w(1)

i , its i-th row, to be equal to en where n =
⌈
i
N

⌉
. Let b(1)i be the i-th

coordinate of b(d), be equal to i − 1 (mod N) for i ≤ N · ad−1 and zero otherwise. What this does for the first ad−1
elements of W (d)

2 h
(d)
v +

∑
u∈N (v)W

(d)
1 h

(d)
u is that each dimension i hold the number of neighbors with a specific

From Local Structures to Size Generalization in Graph Neural Networks

(d-1)-pattern. We then replicate this vector N times, and for each replica we subtract a different bias integer ranging from 0

to N − 1. To that output we concatenate the original h(d−1)
v

Next we construct Ũ (d+1) ∈ RNad−1×Nad−1 in the following way: Let u(d+1)
i be its i-th row, and u(d+1)

i,j its j-th coordinate.

We set u(d+1)
i,j = 0 for every j with j 6=

⌈
i
N

⌉
and the rest N coordinates to be equal to the vector w2 from Lemma B.2 with

labels y` = 0 for ` ∈ {1, . . . , N} \ {(i mod N) + 1} and y` = 1 for ` = (i mod N) + 1.

Using the above construction we encoded the output on node v of the first layer of F as a vector:

This encoding is such that the i-th coordinate of h(d+1)
v for 1 ≤ i ≤ N · ad−1 is equal to 1 iff node v have (i mod N) + 1

neighbors with node feature
⌈
i
N

⌉
∈ {1, . . . , |C|}. The last ad−1 rows are a copy of h(d−1)

v .

Construction of the suffix. Next, we construct the last two layers. First we note that for a node v with d-pattern p there is a
unique vector zp such that the output of the GNN on node v, h(d)

v , is equal to zp. From our previous construction one can
reconstruct exactly the (d-1)-pattern of each node, and the exact number of neighbors with each (d-1)-pattern and therefore
can recover the d-pattern correctly from the h

(d)
v embedding.

Let ymax := maxi |yi|, and define ỹi = yi/ymax. Finally, we use Thm. B.1 to construct the 3-layer fully connected neural
network with width at most 2

√
|P | such that for every pattern pi ∈ P with corresponding unique representation zpi and label

ỹi, the output of the network on zpi is equal to ỹi. We construct the last two layers of the GNN such that W (d+1)
1 ,W

(d)
1 = 0,

and W (d+1)
2 ,b(d+1),W

(d+2)
2 ,b(d+2),W (d+3) are the matrices produced from Thm. B.1. Note that W (d+3) is the linear

output layer constructed from the theorem, thus the final output of the GNN for node v is W (d+3) · h(d+2)
v , where h(d+2)

v is
the output after d+ 2 layers. We multiply the final linear output layer by ymax, such that the output of the entire GNN on
pattern pi is exactly yi.

C. Proofs from Sec. 5
Proof of Thm. 5.1. By the assumption, there is a depth d GNN that solves the task for graphs of any size, denote this GNN
by F . We can write F operating on a graph G as F (G) = M

(∑
v∈V (G)H(G)v

)
, where V (G) are the nodes of G, H is

a d-layer GNN with H(G)v is the output of H on node v, and M is an MLP. Note that we used the summation readout
function which sums the output of the GNN over all the nodes of the input graph.

We will construct a new GNN F ′ in the following way: Let P be the set of d-patterns which appear in P d1 and P̃ all the
d-patterns which appear in P d2 but not in P d1 . Note that by the assumption that the distributions are with finite support, both
P and P̃ are finite. Suppose that H(G)v ∈ Rk, that is the dimension of the output feature vector for each v ∈ V (G) is
k-dimensional. We define a d+ 2-layer GNN H ′ with output dimension k + 1, such that:

1. For each p ∈ P and node v with d-pattern p, the output of H ′ on v is equal to
(
H(G)v

0

)
.

2. For each p̃ ∈ P̃ and node ṽ with d-pattern p̃, the output of H ′ on ṽ is equal to
(

0
1

)
.

This construction is possible using Thm. 4.3 since both P and P̃ are finite. We define an MLP M ′ which have one more
layer than M in the following way: All the weights in all the layers except the last one are block matrices of the form(
W 000
000> 1

)
, where W is the original weight matrix from M , and 000 is a vector of zeroes of the corresponding size. Let y ∈ R

be the maximum output of the task (in absolute value) over all the graphs from both P1 and P2. We define the last layer of

M ′ as:
(

1 0
0 2y

)
. Finally, define F ′(G) = M ′

(∑
v∈V (G)H

′(G)v

)
.

We will now show the correctness of the construction. For any d-pattern p ∈ P , and v with d-pattern p it is clear that

From Local Structures to Size Generalization in Graph Neural Networks

H ′(G)v =

(
H(G)v

0

)
. Hence, for every graph G coming from the distribution P1 we have that

F ′(G) = M ′
((∑

v∈V (G)H(G)v
0

))
= F (G)

On the other side, let G be some graph with from the distribution P2. Then, there is some ṽ ∈ V (g) with ṽ ∈ P̃ , hence we

have that
∑
v∈V (G)H

′(G)v =

(
xxx
z

)
, where xxx is some vector and z ≥ 1. Hence, we have that F ′(G) = M ′

((
xxx
z

))
> y.

This means that the output of F ′ on any graph drawn from P2 is not the correct output for the task.

Proof of Thm. 5.2. By the assumption, the output of the task is determined by the d-patterns of the nodes. For each node
with pattern pi let yi be the output of the node prediction task. Define

A = arg max
A′:Pd

1 (A′)<ε
P d2 (A′) (1)

By Thm. 4.3 there exists a first order GNN such that for any d-pattern pi ∈ A gives a wrong label and for every pattern
pj ∈ (P1 ∪ P2)\A gives the correct label. Note that we can use Thm. 4.3 since both A and (P1 ∪ P2)\A are finite, because
we assumed that distributions on the graphs have finite supports. The 0-1 loss for small and large graphs is exactly P d1 (A)
and P d2 (A) respectively.

D. Additional experiments from Sec. 6
D.1. Experiments on Larger Graphs

We conducted the experiment from Fig. 3 (a) with much larger graphs. We used a three-layer GNN and tested on graphs
with n ∈ [50, 500] nodes. See Fig. 8 The problem of size generalization persists, where increasing the graph size also
significantly increases the loss on the test set. We stress that in all the experiments, the loss on the validation set is effectively
zero.

D.2. Max-clique Size

We consider the max-clique problem. The goal of this problem is given a graph, to output the size of the maximal clique.
This is in general an NP-hard problem, hence a constant depth GNN will not be able to solve it for graphs of all sizes. For
this task we sampled both the train and test graphs from a geometrical distribution, which resembles how graphs are created
from point clouds, defined as follows: given a number of nodes n and radius ρ we draw n points uniformly in [0, 1]2, each
point correspond to a node in the graph, and two nodes are connected if their corresponding points have a distance less than
ρ. We further analyzed the effects of how the network depth and architecture affect size generalization.

Table 2 presents the test loss on the max-clique problem. Deeper networks are substantially more stricken due to the domain
shift. If the test domain has a similar pattern distribution, increasing the neural network depth from one layer to three layers
results in a small decrement of at most 25% to the loss. However, if the pattern distribution is different than the train pattern
distribution, such change may increase the loss by more than 5.5×. We also show that the problem is consistent in both
first-order GNN and GIN architectures.

D.3. Different Architectures and Node/Graph Level Tasks

Figure 7. Size generalization in PA
graphs. The networks were trained
on the edge count task, with graphs
sampled from a preferential attach-
ment model with n drawn uni-
formly from [10, 50] and m =
4. Tested on graphs also sampled
the preferential attachment model
with n varies (x-axis) and m = 4.
For depth 2 and 3 GNN, as the
graphs in the test set gets larger,
the generalization worsens.

We tested on the following tasks: (1) student-teacher task, on both graph and node levels,
(2) per node degree prediction task, and (3) predicting the number of edges in the graph.
The goal of these experiments is to show that the size-generalization problem persists
on different tasks, different architectures, and its intensity is increased for deeper GNN.
In all the experiments we draw the graphs from G(n, p) distribution, wherein the test set
n is drawn uniformly between 40 and 50, and p = 0.3, and in the test set n = 100 and p
is either 0.3 or 0.15. We note that when p = 0.15, the average degree of the test graph is

From Local Structures to Size Generalization in Graph Neural Networks

100 200 300 400 500
Test graph size

2

0

2

4

6

8

10

Av
er

ag
e

lo
ss

 (l
og

 sc
al

e)

Figure 8. Extending the experiment in Fig. 3 (a) to larger graphs. We train on graphs with bounded size n ∈ [40, 50] and test on graphs
with size up to n = 500 with constant p = 0.3.

equal to (approximately) the average degree of the train graph, while when p = 0.3 it is
twice as large. We would expect that the model will generalize better when the average
degree in the train and test set is similar because then their d-patterns will also be more
similar.

Table 3 compares the performance of these tasks when changing the graph size of the
test data. We tested the performance with the squared loss. We note that the GNNs (both
first-order GNN and GIN) successfully learned all the tasks presented here on the train
distribution, here we present their generalization capabilities to larger sizes.

D.4. Different data distribution - Preferential Attachment

We performed an experiment on the preferential attachment graph model. In this model,
the graph distribution is determined by two parameters n and m. Each graph is created
sequentially, where at each iteration a new node is added to the graph, up to n nodes.
Each new node is connected to exactlym existing nodes, where the probability to connect
to node v is proportional to its degree. This means that higher degree nodes have a higher
degree to have more nodes connected to them.

We trained on the task of edge count (i.e. predicting the number of edges in a graph) for graphs sampled from a preferential
attachment model with n uniformly sampled from [10, 50] and m = 4. We tested on graphs also sampled from a preferential
attachment model with n nodes for n varying from 50 to 500, and m = 4. Note that this task can be solved efficiently for
any graph distribution. Fig. 7 depicts the results. It is clear that for depth 2 and 3 GNNs, as the graph size gets larger, the
GNN fails to predict the number of edges. This shows that although for this problem there is a solution that works on all
graph sizes, and we trained on graphs of varying sizes, GNNs tend to converge to solutions that do not generalize to larger
sizes.

D.5. Generalization From Large to Small Graphs

We additionally tested size generalization in the opposite direction, i.e. generalizing from large to small graphs. We used the
same teacher-student setting as in Fig. 3, where the graphs are drawn from a G(n, p) distribution with a constant p = 0.3.
We consider three separate training sets with graphs of sizes [90, 100], [140, 150], [190, 200] and tested on graphs of sizes
50, 75. The rows of Table 4 clearly show that when the size difference between the graphs in the train and test sets decreases,
the loss also decreases, which is consistent with our theory.

From Local Structures to Size Generalization in Graph Neural Networks

first order GNN GIN
ρtrain/ρtest 1-layer 2-layers 3-layers 1-layer 2-layers 3-layers

1 402± 59 926± 245 2325± 3613 367± 56 620± 130 634± 1042√
2 96± 5 111± 4 119± 5 101± 3 114± 6 123± 14

Table 2. The difference is the predicted max clique size under size generalization domain shift. The train domain graphs were constructed
by drawing n ∈ [40, 50] points uniformly in the unit square, and connecting two points if their distance is less than ρtrain = 0.3. The test
set domain graphs contain n = 100 nodes, effectively increasing their density by 2. We tested with two different values of ρtrain/ρtest,
the ratio between the train and test connectivity radius. A proper scaling that keeps the expected degree of each node is ρ =

√
2. Here,

although proper scaling does not help solve the problem completely, it does improve performance.

Node regression Graph regression
p Student - Teacher Degree Student - Teacher Edge count

first order GNN (Morris et al., 2019) 0.3 3500± 9240 348± 553 (1.8± 3) · 104 (1.8± 2.4) · 106
0.15 0.02± 0.05 (1.2± 0.8) · 10−3 0.04± 0.04 5.1± 2.5

GIN 0.3 1384± 3529 73± 86 5487± 9417 (4.2± 4.3) · 105
0.15 0.96± 0.98 0.33± 0.04 0.04± 0.07 6.7± 5.4

Table 3. Comparing performance on different local distributions (a) A student-teacher graph regression task; (b) A graph regression task,
where the graph label is the number of edges; (c) A student-teacher node regression task; (d) A node regression task, where the node label
is its degree. In the edge count/degree tasks the loss is the mean difference from the ground-truths, divided by the average degree/number
of edges. In the student-teacher tasks the loss is the mean L2 loss between the teacher’s value and the student’s prediction, divided by the
averaged student’s prediction. Both the student and teacher share the same 3-layer architecture

E. SSL task on d-pattern tree
First, we will need the following definition which constructs a tree out of the d-pattern introduced in Sec. 4. This tree
enables us to extract certain properties for each node which can, later on, be learned using a GNN. This definition is similar
to the definition of ”unrolled tree” from (Morris & Mutzel, 2019).
Definition E.1 (d-pattern tree). Let G = (V,E) a graph, C a finite set of node features, where each v ∈ V have a
corresponding feature cv , and d ≥ 0. For a node v ∈ V , its d-pattern tree T (d)

v = (V
(d)
v , E

(d)
v) is directed tree where each

node corresponds to some node in G. It is defined recursively in the following way: For d = 0, V (0)
v = u(0,v), and E(0)

v = ∅.

Suppose we defined T (d−1)
v , and let Ṽ (d−1)

v be all the leaf nodes in V (d−1)
v (i.e. nodes without incoming edges). We define:

V (d)
v = V (d−1)

v ∪
{
u(d,v′) : v′ ∈ N (v′′), u′(d−1,v′′) ∈ Ṽ

(d−1)
v

}
E(d)
v = E(d−1)

v ∪
{

(u(d,v′), u
′
(d−1,v′′)) : v′ ∈ N (v′′), u′(d−1,v′′) ∈ Ṽ

(d−1)
v

}
and for every node u(d,v′) ∈ V

(d)
v , its node feature is cv′ - the node feature of v′

The main advantage of pattern trees is that they encode all the information that a GNN can produce for a given node by
running the same GNN on the pattern tree.

This tree corresponds to the local patterns in the following way: the d-pattern tree of a node can be seen as a multiset of
the children of the root, and each child is a multiset of its children, etc. This completely describes the d-pattern of a node.
In other words, there is a one-to-one correspondence between d-patterns and pattern trees of depth d. Thus, a GNN that
successfully represents the pattern trees of the target distribution will also successfully represent the d-patterns of the target
distribution.

Using the d-pattern tree we construct a simple regression SSL task where its goal is for each node to count the number of
nodes in each layer and of each feature of its d-pattern tree. This is a simple descriptor of the tree, which although loses
some information about connectivity, does hold information about the structure of the layers.

For example, in Fig. 4 the descriptor for the tree would be that the root (zero) layer has a single black node, the first layer
has two yellow nodes, the second layer has two yellow, two gray, and two black nodes, and the third layer has ten yellow,
two black and two gray nodes.

From Local Structures to Size Generalization in Graph Neural Networks

Train graph size
[90,100] [140,150] [190,200]

Test graph size
50 1.87 3.1 4.36
75 1.93 4.19 4.29

Table 4. Training on large graphs and testing on smaller graphs. Teacher-student task with graphs drawn from a G(n, p) distribution with
p = 0.3 and n varies, as described in the table. Results are on a logarithmic scale. As expected, even generalizing from large to small
graphs is difficult, but the results improve as the sizes of the graphs in the train set are close to the sizes of the graphs in the test set.

Figure 9. Two training procedures for learning with SSL tasks. Left: Learning with pretraining: Here, a GNN is trained on the SSL task
with a specific SSL head. After training, the weights of the GNN are fixed, and only the main head is trained on the main task. Right:
Multitask learning: Here, there is a shared GNN and two separate heads, one for the SSL task and one for the main task. The GNN and
both heads are trained simultaneously.

F. Training Procedure
In this section, we explain in detail the training procedure used in the experiments of Sec. 7. Let XMain and XSSL be
two labeled datasets, the first contains the labeled examples for the main task from the source distribution, and the second
contains examples labeled by the SSL task from both the source and target distributions. Let ` : R × R → R be a loss
function, in all our experiments we use the cross-entropy loss for classification tasks and squared loss for regression tasks.
We construct the following models:

(1) fGNN is a GNN feature extractor. Its input is a graph and its output is a feature vector for each node in the graph. (2)
hMain is a head (a small neural network) for the main task. Its inputs are the node feature and it outputs a prediction (for
graph prediction tasks this head contains a global pooling layer). (3) hSSL is the head for the SSL task. Its inputs are node
features, and it outputs a prediction for each node of the graph, depending on the specific SSL task used.

Pretraining. Here, there are two phases for the learning procedure. In the first phase, at each iteration we sample a
batch (x1,y1) from XSSL, and train by minimizing the objective: `(hSSL ◦ fGNN (x1),y1). In this phase both hSSL
and fGNN are trained. In the second phase, at each iteration we sample (x2,y2) from Xmain and train on the loss
`(hMain ◦ fGNN (x2),y2), where we only train the head hMain, while the weights of fGNN are fixed.

Multitask training. Here we train all the functions at the same time. At each iteration we sample a batch (x1,y1) from
XSSL and a batch (x2,y2) from XMain and train by minimizing the objective:

α · `(hSSL ◦ fGNN (x1),y1) + (1− α) · `(hMain ◦ fGNN (x2),y2).

Here α ∈ [0, 1] is the weight for the SSL task, in all our experiments we used α = 1/2.

For an illustration of the training procedures see Fig. 9. These procedures are common practices for training with SSL tasks
(see e.g. (You et al., 2020b)).

We additionally use a semi-supervised setup in which we are given a dataset XFS of few-shot examples from the target
distribution with their correct label. In both training procedures, at each iteration we sample a batch (x3,y3) from XFS and
add a loss term β`(hMain ◦ fGNN (x3),y) where β ∈ [0, 1] is the weight of the few-shot loss. In pretraining, this term is
only added to the second phase, with weight 1/2 and adjust the weight of the main task to 1/2 as well (equal weight to the
main task). In the multitask setup, we add this term with weight 1/3 and adjust the weights of the two other losses to 1/3 as
well, so all the losses have the same weight.

From Local Structures to Size Generalization in Graph Neural Networks

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
p of test G(n,p)

1

0

1

2

3

4

5

6

Av
er

ag
e

lo
ss

 (l
og

 sc
al

e)

Vanilla
Pattern tree

Figure 10. Teacher-student setup with a 3-layer GNN. Training is on graphs drawn i.i.d from G(n, p) with n ∈ {40, ..., 50} uniformly
and p = 0.3. Testing is done on graphs with n = 100 and p vary (x-axis). The ”Pattern tree” plot represent training with our pattern tree
SSL task, using the pretraining setup.

TASKS # TARGET EDGE DEGREE TEACHER TEACHER STUDENT
SAMPLES COUNT STUDENT PER NODE

VANILLA

0 (1.9± 2.1) · 106 363± 476 (3± 5) · 104 3311± 8813
1 679± 1014 0.27± 0.27 53± 98 1.1± 2.8
5 95± 105 (3.8± 6.1) · 10−2 3.1± 5.4 0.4± 1.3
10 43± 39 (1.8± 3.5) · 10−2 25± 75 (0.8± 1.3) · 10−1

d-PATTERN PT

0 (1.9± 1.4) · 106 1580± 1912 809± 1360 4.4± 5.5
1 2528± 1559 2± 1.2 0.5± 1.5 (4± 6) · 10−3

5 134± 279 0.55± 0.14 0.11± 0.19 (2± 3) · 10−3

10 79± 79 0.55± 0.1 1.4± 4.4 (2± 3) · 10−3

Table 5. Results on synthetic datasets (Vanilla vs. d-pattern PT).

G. More experiments from Sec. 7
G.1. Synthetic datasets

We used the setting of Section 6. Source graphs were generated with G(n, p) with n sampled uniformly in [40, 50] and
p = 0.3. Target graphs were sampled from G(n, p) with n = 100 and p = 0.3.

Table 5 depicts the results of using the d-patterns SSL tasks, in addition to using the semi-supervised setting. It can be seen
that adding the d-patterns SSL task significantly improves the performance on the teacher-student task, although it does
not completely solve it. We also observe that adding labeled examples from the target domain significantly improves the
performance of all tasks. Note that adding even a single example significantly improves performance. In all the experiments,
the network was successful at learning the task on the source domain with less than 0.15 averaged error, and in most cases
much less.

Fig. 10 depicts a side-by-side plot of the 3-layer case of Fig. 3 (d), where training is done on graphs sampled from G(n, p)
with 40 to 50 nodes and p = 0.3, and testing on graphs with 100 nodes and p varies. We compare Vanilla training, and our
pattern tree SSL task with pretraining. It is clear that for all values of p our SSL task improves over vanilla training, except
for p = 0.15.

G.2. Max clique

We tested our SSL task on the task of finding the max-clique size of a given graph, similar to the experiment presented
in Table 2. For the train distribution, we constructed graphs by drawing n ∈ [10, 50] points uniformly in the unit square
and connecting two points if their distance is less than ρ = 0.3. The test set graphs are drawn similarly, but with n = 100,
effectively increasing the density by 2. We trained on 20, 000 graphs and tested on 2000 graphs, where the task is to predict

From Local Structures to Size Generalization in Graph Neural Networks

Task No. 0 47 93 94 110 111 114 115 average
Pattern PT 88.5± 0 78.4± 25 55.9± 9.2 68.4± 0 73.1± 0 44.8± 0.2 84.9± 7.3 73.7± 14.9 70.9%
Vanilla 88.4± 0.4 82.1± 23.7 59.1± 5.6 68.4± 0.1 70.3± 6.1 44.9± 0 85.78± 4.8 76.5± 5.7 71.9%

Table 6. Results on the ogbg-molpcba datasets from the OGB collection. The dataset contains 128 different tasks, we used the tasks with
the most balanced labels (there is no class with more than 90% of the samples). In both settings, we emitted the node and edge features as
our method does not support edge features and continuous node features (only categorical node features). The results are inconclusive,
with a slight edge toward vanilla training.

Table 7. Dataset statistics.
NCI1 NCI109 DD

all Smallest 50% Largest 10% all Smallest 50% Largest 10% all Smallest 50% Largest 10%
Class A 49.95% 62.30% 19.17% 49.62% 62.04% 21.37% 58.65% 35.47% 79.66%
Class B 50.04% 37.69% 80.82% 50.37% 37.95% 78.62% 41.34% 64.52% 20.33%
Num of graphs 4110 2157 412 4127 2079 421 1178 592 118
Avg graph size 29 20 61 29 20 61 284 144 746

Twitch egos Deezer egos IMDB-binary
all Smallest 50% Largest 10% all Smallest 50% Largest 10% all Smallest 50% Largest 10%

Class A 46.23% 39.05% 58.07% 56.80% 44.78% 64.97% 50.00% 48.98% 55.55%
Class B 53.76% 60.94% 41.92% 43.19% 55.21% 35.02% 50.00% 51.01% 44.44%
Num of graphs 127094 65016 14746 9629 4894 968 1000 543 108
Avg graph size 29 20 48 23 13 68 19 13 41

PROTEINS
all Smallest 50% Largest 10%

Class A 59.56% 41.97% 90.17%
Class B 40.43% 58.02% 9.82%
Num of graphs 1113 567 112
Avg graph size 39 15 138

the size of the maximal clique in the graph. We used squared loss. We ran the experiment 10 times and averaged the loss
over all the experiments.

Without our SSL, the squared loss on average is 2325, hence not generalizing well to larger sizes. With our SSL task and
using pretraining (PT) the loss on average is 1327, improving over vanilla training, but still not solving the problem. Using
our SSL task with multitask training (MTL) the average loss provided worse results than vanilla training. We note that this
is in general an NP-hard problem, hence solving it might require a specific solution, while our SSL is a general framework
for improving size generalization.

G.3. OGB dataset

We additionally tested our framework on 8 tasks from the ”ogbg-molpcba” dataset from the OGB dataset collection (Hu
et al., 2020). These are binary classification tasks, where we choose tasks for which there is no one class with more than
90% of the samples (i.e. the tasks with the most balanced labels). We compare our SSL task with pretraining vs. vanilla
training. We note that since our task assumes only categorical features and bidirectional edges with no features, we did not
use the node and edge features. We split the datasets by size, in the same manner, we did in the experiments from Table 1,
where we trained on the 50% smallest graphs and tested on the 10% largest graphs. We report the accuracy. For the results
see Table 6. The results are inconclusive due to the lack of features which is valuable information not used by our model.
We also tested using the given split from the OGB repository but found the same inconclusive results. In the future, it will be
interesting to generalize our method to handle continuous node features and edge features. We hope that by using these
features our method could also improve on the size generalization task for datasets from the OGB collection.

G.4. Datasets statistics

Table G.4 shows the statistics of the datasets that were used in the paper. In particular, the table presents the split that was
used in the experiments, we trained on graphs with sizes smaller or equal to the 50-th percentile and tested on graphs with
sizes larger or equal to the 90-th percentile. Note that all the prediction tasks for these datasets are binary classification. In
all the datasets there is a significant difference between the graph sizes in the train and test sets, and in some datasets, there
is also a difference between the distribution of the output class in the small and large graphs.

From Local Structures to Size Generalization in Graph Neural Networks

G.5. Correlation Between Size Discrepancy and d-pattern Discrepancy

In this section, we show that in many real datasets, there is a high correlation between the sizes of the graphs and their
d-patterns. This motivates the effect that d-patterns have on the ability of GNNs to generalize to larger sizes than they were
trained on.

We focused on the datasets that were tested in Sec. 7: Biological datasets: NCI1, NCI109, D & D, Proteins. Social
networks: IMDB-Binary, Deezer ego nets, Twitch ego nets. To this end, we split each dataset to the 50% smallest graphs
and 10% largest graphs. We calculated the distribution of 2-patterns for the 20 most common two patterns in each split
(smallest and largest graphs) and compared these two distributions. The results are depicted in Fig. 11 (The plot for the
Twitch dataset similar to the one of Deezer, where the distributions of 2-patterns are disjoint).

It is clear that for the NCI1, NCI109, and D & D datasets there is a very high overlap of 2-patterns between small and large
graphs. Indeed, in the result from Table 1 it can be seen that adding an SSL task (and specifically our tree pattern task) does
not improve significantly over vanilla training (except for NCI109). On the other hand, for the other datasets, there is a
very clear discrepancy between the 2-patterns of small and large graphs. Indeed for these datasets, our SSL task improved
over vanilla training. For the social network datasets, it is even more severe, where there is almost no overlap between the
2-patterns, meaning that the small and large graphs have very different local structures. We also calculated the total variation
distance between the distributions for every dataset, this appears in the first row of Table 1.

0 5 10 15 20
Top 20 most common 2-patterns

0.00

0.05

0.10

0.15

0.20

Pe
rc

en
ta

ge

NCI1
small graphs
large graphs

0 5 10 15 20
Top 20 most common 2-patterns

0.00

0.05

0.10

0.15

0.20
Pe

rc
en

ta
ge

NCI109
small graphs
large graphs

0 5 10 15 20
Top 20 most common 2-patterns

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pe
rc

en
ta

ge

DD
small graphs
large graphs

0 5 10 15 20 25
Top 20 most common 2-patterns

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pe
rc

en
ta

ge

PROTEINS
small graphs
large graphs

0 5 10 15 20 25 30 35 40
Top 20 most common 2-patterns

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pe
rc

en
ta

ge

IMDB-BINARY
small graphs
large graphs

0 5 10 15 20 25 30 35 40
Top 20 most common 2-patterns

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pe
rc

en
ta

ge

deezer_ego_nets
small graphs
large graphs

Figure 11. Histograms in percentage of 2-patterns of graphs. We used the 50% smallest graphs and 10% largest graphs in each dataset.(same
as the split in the experiment from Sec. 7). The X-axis represent the 20 most common 2-patterns from each split, and the y-axis their
percentage of appearance. The x-axis contain from 20 to 40 bars - given by how much overlap of 2-patterns there is between small and
large graphs.

From Local Structures to Size Generalization in Graph Neural Networks

DATASETS TOTAL-VARIATION DISTANCE

D & D 0.15
NCI1 0.16
NCI109 0.16
PROTEINS 0.48
IMDB-BINARY 0.99
DEEZER EGO NETS 1
TWITCH EGO NETS 1

Table 8. Total variation distance, between the 2-patterns of the 50% smallest graphs and 10% largest graphs for all the real datasets that
we tested on.

