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A. Proofs for Section 3
A.1. Proofs for Section 3.1

A.1.1. PROOF OF THEOREM 1

To start the proof of Theorem 1, we need the following lemma.

Lemma 1. For any w and r, we have

sup
P∈BW∞ (P0,r)

RP (w) = EP0

[
sup
‖δ‖∞≤r

f(w,x+ δ)

]
. (16)

Proof. Let Twr (x) = x+ argmax{δ:‖δ‖∞≤r} f(w,x+ δ) with x is an input data. The existence of Twr (x) is guaranteed
by the continuity of f(w,x). Pr is the distribution of Twr (x) with x ∼ P0. Then

EP0

[
sup
‖δ‖∞≤r

f(w,x+ δ)

]
= EPr [f(w,x)]. (17)

Since

W∞(P0, Pr) ≤ EP0 [‖x− T
w
r (x)‖∞] ≤ r, (18)

we have

EP0

[
sup
‖δ‖∞≤r

f(w,x+ δ)

]
≤ sup
P∈BW∞ (P0,r)

RP (w). (19)

On the other hand, let P ∗r ∈ argmaxP∈BW∞ (P0,r)RP (w). Due to Kolmogorov’s theorem, P ∗r can be distribution of some
random vector z, due to the definition of W∞-distance, we have ‖z − x‖∞ ≤ r holds almost surely. Then we conclude

sup
P∈BW∞ (P0,r)

RP (w) = RP∗r (w) = EP∗r [f(w,z)] ≤ EP0

[
sup
‖δ‖∞≤r

f(w,x+ δ)

]
. (20)

Thus, we get the conclusion.

This lemma shows that the distributional perturbation measured by W∞-distance is equivalent to input perturbation. Hence
we can study Winf -distributional robustness through `inf -input-robustness. The basic tool for our proof is the covering
number, which is defined as follows.

Definition 2. (Wainwright, 2019) A r-cover of (X , ‖ · ‖p) is any point set {ui} ⊆ X such that for any u ∈ X , there exists
ui satisfies ‖u− ui‖p ≤ r. The covering number N (r,X , ‖ · ‖p) is the cardinality of the smallest r-cover.

Now we are ready to give the proof of Theorem 1 which is motivated by (Xu & Mannor, 2012).

Proof of Theorem 1. We can construct a r-cover to (X , ‖ · ‖2) then N (r,X , ‖ · ‖2) ≤ (2d0)
(2D/r2+1) = N , because the

X can be covered by a polytope with `2-diameter smaller than 2D and 2d0 vertices, see (Vershynin, 2018) Theorem 0.0.4
for details. Due to the geometrical structure, we have N (r,X , ‖ · ‖∞) ≤ (2d0)

(2D/r2+1). Then, there exists (C1, · · · , CN )
covers (X , ‖ · ‖∞) where Ci is disjoint with each other, and ‖u − v‖∞ ≤ r for any u,v ∈ Ci. This can be constructed

by Ci = Ĉi
⋂(⋃i−1

j=1 Ĉj

)c
with (Ĉ1, · · · , ĈN ) covers (X , ‖ · ‖∞), and the diameter of each Ĉi is smaller than r since
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N (r,X , ‖ · ‖∞) ≤ N . Let Aj = {xi : xi ∈ Cj}, and |Aj | is the cardinality of Aj . Due to Lemma 1, we have∣∣∣∣∣ sup
P∈BW∞ (P0,r0)

RP (w)−RPn(w)

∣∣∣∣∣ =
∣∣∣∣∣EP0

[
sup

‖δ‖∞≤r0
f(w,x+ δ)

]
−RPn(w)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
j=1

EP0

[
sup

‖δ‖∞≤r0
f(w,x+ δ) | x ∈ Cj

]
P0(Cj)−RPn(w)

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
j=1

EP0

[
sup

‖δ‖∞≤r0
f(w,x+ δ) | x ∈ Cj

]
|Aj |
n
− 1

n

n∑
i=1

f(w,xi)

∣∣∣∣∣
+

∣∣∣∣∣
N∑
j=1

EP0

[
sup

‖δ‖∞≤r0
f(w,x+ δ) | x ∈ Cj

](
|Aj |
n
− P0(Cj)

)∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n
N∑
j=1

∑
xi∈Cj

sup
x∈Cj+B∞(0,r0)

|f(w,x)− f(w,xi)|

∣∣∣∣∣∣+M

N∑
j=1

∣∣∣∣ |Aj |n − P0(Cj)

∣∣∣∣
a

≤ 1

n

n∑
i=1

sup
‖δ‖∞≤2r

|f(w,xi + δ)− f(w,xi)|+M

N∑
j=1

∣∣∣∣ |Aj |n − P0(Cj)

∣∣∣∣
≤ ε+M

N∑
j=1

∣∣∣∣ |Aj |n − P0(Cj)

∣∣∣∣ .

(21)

Here a is due to Cj+B∞(0, r) ⊆ B∞(xi, 2r) when xi ∈ Cj , since `∞-diameter of Cj is smaller than r. The last inequality
is due to (2r, ε, Pn,∞)-robustness of f(w,x). On the other hand, due to Proposition A6.6 in (van der Vaart & Wellner,
2000), we have

P

(
N∑
j=1

∣∣∣∣ |Aj |n − P0(Cj)

∣∣∣∣ ≥ θ
)
≤ 2N exp

(
−nθ2

2

)
. (22)

Combine this with (21), due to the value of N , we get the conclusion.

A.1.2. PROOF OF THEOREM 2

There is a little difference of proving Theorem 2 compared with Theorem 1. Because the out-distribution P constrained
in BW∞(P0, r) only correspond with OOD data that contained in a `∞-ball of in-distribution data almost surely, see
Lemma 1 for a rigorous description. Hence, we can utilize `∞-robustness of model to derive the OOD generalization under
W∞-distance by Theorem 1. However, in the regime of W2-distance, roughly speaking, the transformed OOD data Twr (x)
is contained in a `2-ball of x in expectation. Thus, Lemma 1 is invalid under W2-distance.

To discuss the OOD generalization under W2-distance, we need to give a delicate characterization to the distribution
P ∈ BW2(P0, r). First, we need the following lemma.

Lemma 2. For any r and w, let P ∗r ∈ argmaxP∈BW2
(P0,r)RP (w). Then, there exists a mapping Twr (x) such that

Twr (x) ∼ P ∗r with x ∼ P0.

Proof. The proof of Theorem 6 in (Sinha et al., 2018) shows that

RP∗r (w) = sup
P∈BW2

(P0,r)

RP (w) = inf
λ≥0

sup
P,π∈(P,P0)

(∫
X×X

f(w,x)− λ‖x− z‖2dπ(x,z) + λr

)
. (23)

We next show that the supremum over π in the last equality is attained by the joint distribution (Twr (x),x), which implies
our conclusion. For any λ > 0, we have

sup
P,π∈(P,P0)

(∫
X×X

f(w,x)− λ‖x− z‖2dπ(x,z)
)
≤
∫
X
sup
x

(
f(w,x)− λ‖x− z‖2

)
dP0(z), (24)
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due to the supremum in the left hand side is taken over P and π. On the other hand, let P (· | z) and x(·) respectively be the
regular conditional distribution on X with z given and the function on X . Since P (· | z) is measurable,

sup
P,π∈(P,P0)

(∫
X×X

f(w,x)− λ‖x− z‖2dπ(x,z)
)
≥ sup
P (·|z)

(∫
X×X

f(w,x)− λ‖x− z‖2dP (x | z)dP0(z)

)
≥ sup
x(·)

(∫
X
f(w,x(z))− λ‖x(z)− z‖2dP0(z)

)
≥
∫
X
sup
x

(
f(w,x)− λ‖x− z‖2

)
dP0(z).

(25)

Thus, we get the conclusion.

Proof of Theorem 2. Similar to the proof of Theorem 1, we can construct a disjoint cover (C1, · · · , CN ) to (X , ‖ · ‖2) such
that N ≤ (2d0)

(2ε2D/r2+1), and the l2-diameter of each Ci is smaller than r/ε. Let P ∗r ∈ argmaxP∈BW2
(P0,r)RP (w), by

Lemma 2, we have

sup
P∈BW2

(P0,r)

RP (w) = RP∗r (w)

= EP0 [f(w, T
w
r (x))]

= EP0

[
f(w, Twr (x))

(
1Tw
r (x)∈B2(x,r/ε) + 1Tw

r (x)/∈B2(x,r/ε)

)]
≤ EP0

[
sup

‖δ‖2≤r/ε
f(w,x+ δ)

]
+MP(Twr (x) /∈ B2(x, r/ε)).

(26)

Due to the definition of Twr (x), by Markov’s inequality, we have

(r
ε

)
P(Twr (x) /∈ B2(x, r/ε)) ≤

∫
X
‖Twr (x)− x‖2dP0(x) = W2(P0, P

∗
r ) ≤ r. (27)

Plugging this into (26), and due to the definition of Wasserstein distance, we have

EP0

[
sup

‖δ‖2≤r/ε
f(w,x+ δ)

]
≤ sup
P∈BW2

(P0,r)

RP (w) ≤ EP0

[
sup

‖δ‖2≤r/ε
f(w,x+ δ)

]
+Mε. (28)

Similar to the proof of Theorem 1, due to the model is (2r/ε, ε, Pn, 2)-robust, we have

∣∣∣∣∣EP0

[
sup

‖δ‖2≤r/ε
f(w,x+ δ)

]
−RPn(w)

∣∣∣∣∣ ≤ ε+M

√
(2d0)(2ε

2D/r2+1) log 2 + 2 log (1/θ)

n
(29)

holds with probability at least 1− θ. Combining this with (28), we get the conclusion.

A.2. Proofs for Section 3.2

The proof of Theorem 3 is same for p ∈ {2,∞}, we take p =∞ as an example. Before providing the proof, we first give a
lemma to characterize the convergence rate of the first inner loop in Algorithm 1.

Lemma 3. For any w,x ∈ {xi}, and r, there exists δ∗ ∈ argmax{δ:‖δ‖∞≤r} f(w,x+ δ) such that

‖δK+1 − δ∗‖2 ≤
(
1− µx

L22

)K
‖δ1 − δ∗‖2 (30)

when δk+1 = ProjB∞(0,r) (δk + ηx∇xf(w,x+ δk)) with ηx = 1/L22.
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Proof. The existence of δ∗ is due to the continuity of f(w, ·). Then

f(w,x+ δ∗)− f(w,x+ δk+1) = f(w,x+ δ∗)− f(w,x+ δk) + f(w,x+ δk)− f(w,x+ δk+1)
a

≤ 〈∇xf(w,x+ δk), δ
∗ − δk〉 −

µx
2
‖δk − δ∗‖2

+ 〈∇xf(w,x+ δk), δk − δk+1〉+
L22

2
‖δk+1 − δk‖2

= 〈∇xf(w,x+ δk), δ
∗ − δk+1〉 −

µx
2
‖δk − δ∗‖2 +

L22

2
‖δk+1 − δk‖2

b

≤ L22〈δk+1 − δk, δ∗ − δk+1〉 −
µx
2
‖δk − δ∗‖2 +

L22

2
‖δk+1 − δk‖2

= L22〈δk+1 − δk, δ∗ − δk〉 −
µx
2
‖δk − δ∗‖2 −

L22

2
‖δk+1 − δk‖2,

(31)

where a is due to the L22-Lipschitz continuity of∇xf(w,x) and strongly convexity, b is because the property of projection
(see Lemma 3.1 in (Bubeck, 2014)). Then we get

‖δk+1 − δ∗‖2 = ‖δk+1 − δk‖2 + ‖δk − δ∗‖2 + 2〈δk+1 − δk, δk − δ∗〉

≤
(
1− µx

L22

)
‖δk − δ∗‖2

(32)

by plugging (31) into the above equality and f(w,x+ δ∗)− f(w,x+ δk+1) ≥ 0. Thus, we get the conclusion.

This lemma shows that the inner loop in Algorithm 1 can efficiently approximate the worst-case perturbation for anywt and
xi. Now we are ready to give the proof of Theorem 3.

We need the following lemma, which is Theorem 6 in (Rakhlin et al., 2012).

Lemma 4. Let {ξ1, · · · , ξt} be a martingale difference sequence with a uniform upper bound b. Let Vt =
∑t
j=1 Var(ξj |

Fj−1) with Fj is the σ-field generated by {ξ1, · · · , ξj}. Then for every a and v > 0,

P

⋃
s≤t

({
t∑
j=1

ξj ≥ a

}⋂
{Vt ≤ v}

) ≤ exp

(
−a2

2(v + ba)

)
. (33)

This is a type of Bennett’s inequality which is sharper compared with Azuma-Hoeffding’s inequality when the variance v is
much smaller than uniform bound b.

A.2.1. PROOF OF THEOREM 3

Proof. With a little abuse of notation, let r(p) = r and define g(w,x) = supδ:‖δ‖∞≤r f(w,x + δ). Lemma A.5 in
(Nouiehed et al., 2019) implies g(w,x) has L11 +

L12L21

µx
-Lipschitz continuous gradient with respect to w for any specific

x. Then R̃Pn(w) has L = L11 +
L12L21

µx
-Lipschitz continuous gradient. Let x∗ ∈ x+ argmax{δ:‖δ‖∞≤r} f(w,x+ δ),

due to the Lipschitz gradient of R̃Pn(w),

R̃Pn(wt+1)− R̃Pn(wt) ≤ 〈∇R̃Pn(wt),wt+1 −wt〉+
L

2
‖wt+1 −wt‖2

= −ηwt〈∇R̃Pn(wt),∇wf(wt,xit + δK)〉+
η2wtL

2
‖∇wf(wt,xit + δK)‖2

= −ηwt‖∇R̃Pn(wt)‖2 + ηwt〈∇R̃Pn(wt),∇wf(wt,x
∗
it)−∇wf(wt,xit + δK)〉

+ ηwt〈∇R̃Pn(wt),∇R̃Pn(wt)−∇wf(wt,x
∗
it)〉+

η2wtL

2
‖∇wf(wt,xit + δK)‖2.

(34)

Here the last equality is due to∇wg(w,x) = ∇wf(w,x∗) (Similar to Danskin’s theorem, see Lemma A.5 in (Nouiehed
et al., 2019)), and x∗it is the local maxima approximated by xit + δK in Lemma 3. By taking expectation to wt+1 with wt
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given in the both side of the above equation, Jesen’s inequality, combining Lemma 3 and ηwt = 1/µwt,

E[R̃Pn(wt+1)]− R̃Pn(w
∗) ≤ R̃Pn(wt)− R̃Pn(w

∗)− ηwt‖∇R̃Pn(wt)‖2

+ E
[
ηwt‖∇R̃Pn(wt)‖‖∇wf(wt,x

∗
it)−∇wf(w,xit + δK)‖

]
+
η2wtG

2L

2

≤ R̃Pn(wt)− R̃Pn(w
∗)− ηwt‖∇R̃Pn(wt)‖2 + ηwt‖∇R̃Pn(wt)‖

(
1− µx

L22

)K
E
[
‖δ1 − δ∗it‖

2]+ η2wtG
2L

2

≤ (1− 2µwηwt)
(
R̃Pn(wt)− R̃Pn(w

∗)
)
+ η2wtG

2L

=

(
1− 2

t

)(
R̃Pn(wt)− R̃Pn(w

∗)
)
+
G2L

µ2
wt2

.

(35)
Here the third inequality is because

ηwt‖∇R̃Pn(wt)‖
(
1− µx

L22

)K
‖δ1 − δ∗it‖

2 ≤ ηwtG
(
1− µx

L22

)K
4d0r

2 ≤
η2wtG

2L

2
, (36)

for any δ∗it , since

K log

(
1− µx

L22

)
≤ −K µx

L22
≤ log

(
GL

8Tµwd0r2

)
. (37)

Then by induction,

E[R̃Pn(wt+1)]− R̃Pn(w
∗) ≤ G2L

µ2
w

t∑
j=2

1

j2

t∏
k=j+1

(
1− 2

k

)

=
G2L

µ2
w

t∑
j=2

1

j2
(j − 1)j

(t− 1)t

≤ G2L

tµ2
w
.

(38)

Thus we get the first conclusion of convergence in expectation by taking t = T for t ≥ 2. For the second conclusion, let us
define ξt = 〈∇R̃Pn(wt),∇R̃Pn(wt)−∇wf(wt,x

∗
it
)〉. Then Schwarz inequality implies that

|ξt| ≤ ‖∇R̃Pn(wt)‖‖∇R̃Pn(wt)−∇wf(wt,x
∗
it)‖ ≤ 2G2. (39)

Similar to (35), for t ≥ 2,

R̃Pn(wt+1)− R̃Pn(w
∗) ≤ (1− 2µwηwt)

(
R̃Pn(wt)− R̃Pn(w

∗)
)
+ η2wtG

2L+ 2ηwtξt

≤ G2L

tµ2
w

+
2

µw

t∑
j=2

ξj
j

t∏
k=j+1

(
1− 2

k

)

=
G2L

tµ2
w

+
2

µw

t∑
j=2

1

j

(j − 1)j

(t− 1)t
ξj

=
G2L

tµ2
w

+
2

µw

t∑
j=2

(j − 1)

(t− 1)t
ξj .

(40)

Since the second term in the last inequality is upper bonded by
∑t
j=2 ξj which is a sum of martingale difference, and

|ξj | ≤ 2G2, a simple Azuma-Hoeffding’s inequality based on bounded martingale difference (Corollary 2.20 in (Wainwright,
2019)) can give a O(1/

√
t) convergence rate in the high probability. However, we can sharpen the convergence rate via a

Bennett’s inequality (Proposition 3.19 in (Duchi, 2016)), because the conditional variance of ξj will decrease across training.
We consider the conditional variance of

∑t
j=2(j − 1)ξj , let Fj be the σ-field generated by {w1, · · · ,wj}, since E[ξj ] = 0
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we have

Var

(
t∑
j=2

(j − 1)ξj | Fj−1

)
=

t∑
j=2

(j − 1)2Var (ξj | Fj−1)

=

t∑
j=2

(j − 1)2E
[
ξ2j | Fj−1

]
≤ 4G2

t∑
j=2

(j − 1)2‖∇R̃Pn(wj)‖2

≤ 8G2L

t∑
j=2

(j − 1)2
(
R̃Pn(wj)− R̃Pn(w

∗)
)
,

(41)

where first inequality is from Schwarz’s inequality and the last inequality is because

R̃Pn (w∗)− R̃Pn(w) ≤ R̃Pn
(
w − 1

L
∇R̃Pn(w)

)
− R̃Pn(w)

≤ −
〈
∇R̃Pn(w),

1

L
∇R̃Pn(w)

〉
+
L

2

∥∥∥∥ 1L∇R̃Pn(w)

∥∥∥∥2
= − 1

2L

∥∥∥∇R̃Pn(w)
∥∥∥2 ,

(42)

for any w. By applying Lemma 4, as long as T ≥ 4 and 0 < θ < 1/e, then with probability at least 1− θ, for all t ≤ T ,

R̃Pn(wt+1)− R̃Pn(w
∗)

≤ 8G

µw(t− 1)t
max


√√√√2L

t∑
j=2

(j − 1)2
(
R̃Pn(wj)− R̃Pn(w∗)

)
, G(t− 1)

√
log

(
log T

θ

)
√

log

(
log T

θ

)
+
G2L

tµ2
w

≤
8G
√

log (log (T/θ))

µw(t− 1)t

√√√√2L

t∑
j=2

(j − 1)2
(
R̃Pn(wj)− R̃Pn(w∗)

)
+

(8µwG
2 log (log (T/θ)) +G2L)

tµ2
w

.

(43)

Then, an upper bound to the first term in the last inequality can give our conclusion. Note that if R̃Pn(wj)− R̃Pn(w∗) is
smaller than O(1/j − 1), the conclusion is full-filled. To see this, we should find a large constant a such that R̃Pn(wt+1)−
R̃Pn(w

∗) ≤ a/t. This is clearly hold when a ≥ G2/2µw for t = 1 due to the PL inequality and bounded gradient. For
t ≥ 2, we find this a by induction. Let b = 8G

√
2L log (log (T/θ))/µw and c = (8µwG

2 log (log (T/θ)) +G2L)/µ2
w. A

satisfactory a yields

a

t
≥ b

(t− 1)t

√√√√a

t∑
j=2

(j − 1) +
c

t
=

b

(t− 1)t

√
at(t− 1)

2
+
c

t
≥ 1

t

(
b

√
a

2
+ c

)
. (44)

By solving a quadratic inequality, we conclude that a− b
√
a/2− c ≥ 0. Then

a ≥
(
b+
√
b2 + 8c

2
√
2

)2

. (45)

By taking

a ≥ 2

(
2b2 + 8c

8

)
≥
(
b+
√
b+ 8c

2
√
2

)2

, (46)

we get

a ≥ 64G2L log (log (T/θ))

µ2
w

+
(16µwG

2 log (log (T/θ)) +G2L)

µ2
w

=
G2 log (log (T/θ))(64L+ 16µw) +G2L

µ2
w

, (47)

due to the value of b and c. Hence, we get the conclusion by taking t = T .
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A.2.2. PROOF OF PROPOSITION 1

Proof. From the definition of R̃Pn(w), for any r ≥ 0, we have

1

n

n∑
i=1

sup
‖δ‖p≤r

(f(w,xi + δ)− f(w,xi)) ≤ R̃Pn(w) ≤ ε. (48)

On the other hand
1

n

n∑
i=1

sup
‖δ‖p≤r

(f(w,xi)− f(w,xi + δ)) ≤ RPn(w) ≤ R̃Pn(w) ≤ ε. (49)

Take a sum to the two above inequalities, we get

1

n

n∑
i=1

sup
‖δ‖p≤r

|f(w,xi + δ)− f(w,xi))| ≤
1

n

n∑
i=1

(
sup
‖δ‖p≤r

f(w,xi + δ)− inf
‖δ‖p≤r

f(w,xi + δ))

)
≤ 2ε. (50)

Then the conclusion is verified.

B. Proofs for Section 4
B.1. Proof of Theorem 4

Proof. We have r(∞) = r in this theorem. The key is to bound the | supP∈BW∞ (P0,r)RP (wpre) −
supQ∈BW∞ (Q0,r)RQ(wpre)|, then triangle inequality and Hoeffding’s inequality imply the conclusion. Let P ∗r ∈
argmax{P∈BW∞ (P0,r)}RP (wpre). For any given x, due to the continuity of f(wpre, ·), similar to Lemma 1, we can
find the Twpre

r (x) = x+ argmax{δ:‖δ‖∞≤r} f(wpre,x+ δ). Then due to Lemma 1,

RP∗r (wpre) = EP0

[
sup
‖δ‖∞≤r

f(wpre,x+ δ)

]
. (51)

Thus, Twpre
r (x) ∼ P ∗r when x ∼ P0. We can find z ∼ Q0 due to the Kolmogorov’s Theorem, and let Twpre

r (z) ∼ Q∗r . By the
definition of W∞-distance, one can verify W∞(Q0, Q

∗
r) ≤ r as well as RQ∗r (wpre) ≤ εpre. Note that 0 ≤ f(wpre, ·) ≤M ,

then ∣∣RP∗r (wpre)−RQ∗r (wpre)
∣∣ = ∣∣∣∣∫

X
f(wpre,x)dP

∗
r (x)−

∫
X
f(wpre,x)dQ

∗
r(x)

∣∣∣∣
=

∣∣∣∣∫
X
f(wpre, T

wpre
r (x))dP0(x)−

∫
X
f(wpre, T

wpre
r (x))dQ0(x)

∣∣∣∣
≤
∫
X

∣∣f(wpre, T
wpre
r (x))

∣∣ |dP0(x)− dQ0(x)|

≤M
∫
X
|dP0(x)− dQ0(x)|

= 2MTV(P0, Q0).

(52)

The last equality is from the definition of total variation distance (Villani, 2008). Thus a simple triangle inequality implies
that

RP∗r (wpre) ≤
∣∣RP∗r (wpre)−RQ∗r (wpre)

∣∣+RQ∗r (wpre) ≤ εpre + 2MTV(P0, Q0). (53)

Next we give the concentration result of R̃Pn(wpre). Due to the definition of R̃Pn(wpre), it can be rewritten as RP∗n (wpre)

where P ∗n is the empirical distribution on {Twpre
r (xi)}. Since 0 ≤ f(wpre, ·) ≤M and {Twpre

r (xi)} are i.i.d draws from P ∗r .
Azuma-Hoeffding’s inequality (Corollary 2.20 in (Wainwright, 2019)) shows that with probability at least 1− θ,

R̃Pn(wpre)−RP∗r (wpre) =
1

n

n∑
i=1

f(wpre, T (xi))−RP∗r (wpre) ≤M
√

log (1/θ)

2n
. (54)

Hence we get our conclusion.
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B.2. Proof of Theorem 5

With a little abuse of notation, let r(2) = r/εpre denoted by r in the proof, and P ∗r ∈ argmaxP∈BW2
(P0,r)RP (w). By

Lemma 2, there exists Twpre
r (x) ∼ P ∗r with x ∼ P0. Then we can find z ∼ Q0 due to Kolmogorov’s Theorem. Let

T
wpre
r (z) ∼ Q∗r , we see

W2(Q0, Q
∗
r)

2 ≤
∫
X
‖z − Twpre

r (z)‖2dQ0(z)

≤
∫
X
‖z − Twpre

r (z)‖2 |dQ0(z)− dP0(z)|+
∫
X
‖z − Twpre

r (z)‖2dP0(z)

≤ D2

∫
X
|dQ0(z)− dP0(z)|+ r2

= 2D2TV(P0, Q0) + r2.

(55)

Thus RQ∗r (wpre) ≤ εpre. Similar to (52) and (53) we get the conclusion.

C. Hyperparameters

Table 4: Hyperparameters of adversarial training on
CIFAR10.

Hyperparam Std Adv-`2 Adv-`∞
Learning Rate 0.1 0.1 0.1

Momentum 0.9 0.9 0.9
Batch Size 128 128 128

Weight Decay 5e-4 5e-4 5e-4
Epochs 200 200 200

Inner Loop Steps - 8 8
Perturbation Size - 2/12 2/255

Perturbation Step Size - 1/24 1/510

Table 5: Hyperparameters of adversarial training on
ImageNet.

Hyperparam Std Adv-`2 Adv-`∞
Learning Rate 0.1 0.1 0.1

Momentum 0.9 0.9 0.9
Batch Size 512 512 512

Weight Decay 5e-4 5e-4 5e-4
Epochs 100 100 100

Inner Loop Steps - 3 3
Perturbation Size - 0.25 2/255

Perturbation Step Size - 0.05 1/510

Table 6: Hyperparameters of adversarial training on BERT base model.
Hyperparam Std Adv-`2 Adv-`∞

Learning Rate 3e-5 3e-5 3e-5
Batch Size 32 32 32

Weight Decay 0 0 0
Hidden Layer Dropout Rate 0.1 0.1 0.1

Attention Probability Dropout Rate 0.1 0.1 0.1
Max Epochs 10 10 10

Learning Rate Decay Linear Linear Linear
Warmup Ratio 0 0 0

Inner Loop Steps - 3 3
Perturbation Size - 1.0 0.001

Perturbation Step Size - 0.1 0.0005

D. Ablation Study
D.1. Effect of Perturbation Size

We study the effect of perturbation size r in adversarial training in bounds (5) and (6). We vary the perturbation size r
in {2−5/12, 2−4/12, 2−3/12, 2−2/12, 2−1/12, 20/12, 21/12, 22/12, 23/12, 24/12, 25/12, 26/12, 27/12} for Adv-`2 and
in {2−4/255, 2−3/255, 2−2/255, 2−1/255, 20/255, 21/255, 22/255, 23/255, 24/255} for Adv-`∞. The perturbation step
size ηx in Algorithm 1 is set to be r/4 (Salman et al., 2020a). Experiments are conducted on CIFAR10 and the settings
follow those in Section 5.1.1.

The results are shown in Figures 3 and 4. In the studied ranges, the accuracy on the OOD data from all categories exhibits
similar trend, i.e., first increases and then decreases, as r increases. This is consistent with our discussion in Section 5.1.1
that there is an optimal perturbation size r for improving OOD generalization via adversarial training. For data corrupted
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under types Fog, Bright and Contrast, adversarial training degenerates the performance in Table 1. We speculate this is
because the three corruption types rescale the input pixel values to smaller values and the same perturbation size r leads to
relatively large perturbation. Thus according to the discussion in Section 5.1.1 that there is an optimal r for improving OOD
generalization, we suggest conducting adversarial training with a smaller perturbation size to defend these three types of
corruption. Figures 3 and 4 also show that smaller optimal perturbation sizes have better performances for these three types
of corruption.

D.2. Effect of the the Number of Training Samples

We study the effect of the number of training samples, as bounds (5) and (6) suggest that more training samples lead to
better OOD generalization. We split CIFAR10 into 5 subsets, each of which has 10000, 20000, 30000, 40000 and 50000
training samples. The other settings follow those in Section 5.1.1. The results are in shown Figures 5 and 6.

(a) Clean. (b) Gauss. (c) Shot. (d) Impulse.

(e) Defocus. (f) Glass. (g) Motion. (h) Zoom.

(i) Snow. (j) Frost. (k) Fog. (l) Bright.

(m) Contrast. (n) Elastic. (o) pixel. (p) JPEG.

Figure 2: 15 types of artificially constructed corruptions from four categories: Noise, Blur, Weather, and Digital from
the ImageNet-C dataset (Hendrycks & Dietterich, 2018). Each corruption has five levels of severity with figures under
severity 5 are shown here.
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Figure 3: Accuracy of Adv-`2 on CIFAR10-C over various perturbation sizes. The x-axis means the perturbation size is
2x/12.
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Figure 4: Accuracy of Adv-`∞ on CIFAR10-C over various perturbation sizes. The x-axis means the perturbation size is
2x/255.
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Figure 5: Accuracy of Adv-`2 on CIFAR10-C over various numbers of training samples.
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Figure 6: Accuracy of Adv-`∞ on CIFAR10-C over various numbers of training samples.


