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Figure 1. Network Architecture of SinIR. The numbers below each layer indicate the number of convolutional kernels. Here we assume 
that the input and the output are RGB images. 

1. Network Architecture 
All the networks at every scale use the same architecture 
described in Figure 1. Each network consists of two 1 × 1 
convolutional layers which map RGB images to feature 
space, six convolutional blocks which are densely connected 
(Huang et al., 2017) with residual operation (He et al., 2016) 
(not concatenation), and two 1 × 1 convolutional layers 
which render features to RGB images. Each convolutional 
block has one 3 × 3 convolutional layer, an instance nor-
malization layer (Ulyanov et al., 2016) and a LeakyReLU 
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activation layer (negative slope = 0.2) (Maas et al., 2013). 
We do not use pooling or unpooling inside a network, and 
thus the inputs and the outputs of each network have the 
same spatial dimension. Refection padding is used before 
3 × 3 convolutional layer. Tanh function is used to obtain 
the fnal output. 

2. Additional Results 
We show more results for all tasks presented in the original 
paper. The setting described in the paper is used for all 
results. While SinIR and SinGAN (Shaham et al., 2019) are 
internal methods trained on a single image, all dedicated 
methods used for comparisons are external methods trained 
on large-scale datasets. 
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Figure 2. Photo-realistic Style Transfer. DPST (Luan et al., 2017) and WCT2 (Yoo et al., 2019) are dedicated methods. 
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Figure 3. Artistic Style Transfer. (Johnson et al., 2016) is a dedicated method. 
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Figure 4. Super-resolution. SRGAN (Ledig et al., 2017), EDSR (Lim et al., 2017), ZSSR (Shocher et al., 2018) are dedicated methods. 
For simplicity, only results from SinIR with 5e-3% of random pixel shuffing are shown. (Please see super-resolution section in the 
original paper for details.) 
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SinIR (Ours)SinGANPaintOriginal

Figure 5. Paint-to-Image. 
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Original Edited Mask (not as input) SinGAN SinIR (Ours)

Figure 6. Editing. 
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Figure 7. Harmonization. Deep Painterly Harmonization (Luan et al., 2018) is a dedicated method. 
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Figure 8. Effect of different corrupting noise. We explore 4 types of corruption. The numbers at the top indicate inference starting 
scales. Please see Section 2.1 of the original paper. The numbers on the left-hand side of inputs indicate the intensity of corruption. For 
random patch shuffing, they are the ratio of (a longer side of the original image) to (a side of a patch). For example, in case of the 30, (a 
longer side of the original image) / 30 = (a side of a patch). For other corruption schemes, the numbers are the percentage of randomly 
sampled pixels to be corrupted. Please see Section 3 for details. 
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3. Effect of Different Corrupting Scheme 
Although we use only random pixel shuffing in the original 
paper, alternative corrupting schemes can be considered. 
Figure 8 illustrates the effect of different corruption. Here 
we explore 4 types of corruption. From Figure 8, we can see 
that applying mild corruption to the input of SinIR generally 
gives better results regardless of corruption schemes, com-
pared to those of no corruption (the frst row in Figure 8). 
Also, consistent with the fndings discussed in Section 2.1.2 
of the original paper, regardless of the corrupting schemes, 
when the intensity of the corruption becomes high, the re-
sults become smoothed and vice versa. 

Black Noise Force randomly sampled pixels to be com-
pletely black. This corrupting scheme is originally used in 
denoising autoencoder (Vincent et al., 2008) with MNIST 
dataset (Bengio et al., 2006; Lecun et al., 1998). Compared 
to other corrupting schemes, this corruption sometimes pro-
duces unnatural textures (e.g., foating objects with black 
edges in Figure 8). This is probably because we are using 
natural images, not the MNIST dataset. Considering that 
natural images often include more complex structures, sim-
ply turning off pixels ignores such visual properties and 
may prevent learning better relationship between adjacent 
pixels. 

Additive Gaussian Noise Add gaussian noise to ran-
domly sampled pixels. For gaussian noise, we set mean 
and variance to 0 and 0.5 with the pixel value of [-1, 1]. The 
corrupted pixel values are clipped at -1 and 1. Compared 
to Black Noise, this corrupting scheme generally produces 
better results that are close to random pixel shuffing that is 
used in the original paper. A possible reason is that now we 
are corrupting the input based on its original pixel values. 

Replacing Gaussian Noise Replace randomly sampled 
pixels with gaussian noise. For gaussian noise, we set mean 
and variance to 0 and 0.5 with the pixel value of [-1, 1]. The 
corrupted pixel values are clipped at -1 and 1. The results 
are similar to Additive Gaussian, but it sometimes produces 
unnatural objects as Black Noise does. It is probably because 
both of them corrupt pixels not based on its original values. 

Random Patch Shuffing Shuffe randomly sampled 
patches. We shuffe 50 patches for Figure 8. As we directly 
use internal patches, this scheme produces well-textured 
results (e.g. wave bubbles). These results are closest to 
those of random pixel shuffing used in the original paper. 
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