
Supplementary Materials for Adversarial Purification with Score-based
Generative Models

A. Experimental details
A.1. Software and Hardware Configurations

We implemented our code on Python version 3.8.5 and PyTorch version 1.7.1 with Ubuntu 18.04 operating system. We run
each of our experiments on a single Titan X GPU with Intel Xeon CPU E5-2640 v4 @ 2.40GHz. Our implementation is
available at https://github.com/jmyoon1/adp.

A.2. Dataset details

MNIST is the dataset that consists of handwritten digits. It consists of a training set of 60,000 examples, and a test set of
10,000 examples. MNIST is a grayscaled dataset with 28× 28 size at a total of 784 dimensions, and its label consists of 10
digits.

FashionMNIST is the dataset that consists of clothes. It consists of a training set of 60,000 examples, and a test set of
10,000 examples. Like MNIST, FashionMNIST is a grayscaled dataset with 28× 28 size, where its label is included in one
of 10 classes of clothes. The full list of classes is as follows: {T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
Sneaker, Bag, Ankle boot}.

CIFAR-10 is the dataset that consists of colored images. It consists of a training set of 45,000 examples, a validation set of
5,000 examples, and a test set of 10,000 examples. CIFAR-10 is an RGB-colored dataset with 32× 32 size, at a total of
3,072 dimensions each data, where its label belongs to one of the following ten classes. The full list of classes is as follows:
{airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, trucks}.

CIFAR-100 is also the dataset that consists of colored images. It consists of a training set of 45,000 examples, a validation
set of 5,000 examples, and a test set of 10,000 examples. Like CIFAR-10, CIFAR-100 is an RGB-colored dataset with
32× 32 size.

CIFAR-10-C is the dataset that consists of corrupted CIFAR-10 examples. It consists of 15 types of adversaries, denoted to
common corruption, with 5 severities each. We introduce some samples from common corruption examples at Appendix B.

A.3. Training hyperparameters

Table 5. Hyperparameters for training score networks.

Dataset σ1 σL L Training iterations Batch size

MNIST 15 0.005253 110 200,000 128
FashionMNIST 15 0.005253 64 200,000 128

CIFAR-10 50 0.008454 232 300,000 128
CIFAR-100 50 0.008454 232 300,000 128
CIFAR-10, DCT Augmented 50 0.08454 232 200,000 128
CIFAR-10, AugMix Augmented 50 0.08454 232 200,000 128

We present the hyperparameters that are used for training our purifier networks having NCSNv2 architecture in Table 5. Here,
σ1 and σL stands for the largest and smallest standard deviation of the isotropic Gaussian noise for training NCSNv2, L is
the number of steps of noise standard deviations. We follow Song & Ermon (2020) to get appropriate hyperparameters.

https://github.com/jmyoon1/adp
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When we train NCSN with DCT- or AugMix-augmented perturbations to enhance robustness in CIFAR-10-C evaluation, the
smallest noise level σL is adjusted since out-of-distribution examples might be over-represented for training with small
noise levels, because the distance between the original and perturbed inputs will become farther compared to NCSN trained
with Gaussian perturbations.

For training all the classifier and purifier networks, we use Adam optimizer with learning rate 0.001 and (β1, β2) =
(0.9, 0.999), and no weight decay. We disabled horizontal flip at MNIST and FashionMNIST datasets, and enabled it at
CIFAR-10, CIFAR-100 datasets.

A.4. Neural Network Descriptions

For CIFAR-10, CIFAR-10-C and CIFAR-100 datasets, we use WideResNet-28-10 (Zagoruyko & Komodakis, 2016) for
classification and NCSNv2 (Song & Ermon, 2020) which is a modified version of RefineNet (Lin et al., 2017) for purification.
The overall structures are depicted in Fig. 6. In CNN architecture for FashionMNIST classifier, we use filter size 5 × 5,
stride 1, and padding 2 in our pytorch implementation. For WideResNet-28-10 architecture for classifier for larger datasets
(CIFAR-10, CIFAR-100), we use filter size 3× 3, stride 1, and padding 1 in our Pytorch implementation.

We also describe the detailed NCSN structure in Fig. 7. Here, N denotes the number of channels. The RefineNet (Lin et al.,
2017) structure is used as the decoder part of NCSN.

Figure 5. Examples of corrupted and purified images. From left: {Gaussian, shot, impulse} noise, {Defocus, glass, motion, zoom} blur,
{snow, frost, fog, brightness} weather, {contrast, elastic, pixelate, JPEG} digital corruptions.

B. Common corruption and purified examples
Fig. 5 shows the examples of images corrupted with severity level 5 and their corresponding purified counterparts. The order
of corrupted images is the same as indicated in Table 11.

C. Full CIFAR-10-C performance
In this section, we report our full common corruption performances. For implementation of adversarial training methods,
we import from the RobustBench (Croce et al., 2020) benchmark. We present both the full and average performances
for every 15 kind of corruptions in Table 11. We used adaptive step size α = 0.05 for ADP trained with Gaussian and DCT
perturbation, and exponentially decreasing deterministic step size from σ1 = 0.08 to σ10 = 8.0× 10−4 for ADP trained
with AugMix augmented perturbation. For (DCT+AugMix) case, we iteratively purify the input with those two purifier
models 10 times in rotation. For comparison, the results at the second category include recent adversarial training cases, and
the third category include recent data augmentation and domain adaptation methods.

When training NCSN with DCT or AugMix augmentations, we slightly modified the DSM objective. The idea is, as described
in the main text, to modify the perturbation distribution from Gaussian distributions centered at original images to Gaussian
distributions centered at augmented images.

For DCT training of the purifier network, we first take DCT to original images, and drop the frequency components with
smallest eigenvalues, until the sum of dropped coefficients reach 5% of the sum of their eigenvalues. Then the smallest noise
level σL in the NCSN objective is multiplied by 10, since DCT-transformed images are more deviated from original images
than conventional noisy images and norm-based attacked images in terms of l2-distance, and too small noise level may over-
represent the deviation by DCT transformation. Then, we replace the perturbation distribution by q(x̃|x) = N (x̃|F (x), σ2I)
where F (x) is a DCT-transformed image from x.

AugMix (Hendrycks et al., 2020) has even larger deviation than DCT augmentation, so it is more difficult to train the
purifier network with it. Instead of directly targeting the original image, we first generate the auxiliary image that locates
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(a) Simple MLP structure for MNIST classifier

(b) Simple CNN structure for FashionMNIST classifier

(c) Simple CNN structure for classifying CIFAR-10 and CIFAR-100. For TinyImageNet, all image sizes and avgpool size are doubled.

Figure 6. Neural network architecture for classifier networks

Figure 7. Neural network architecture for the NCSN purifier network
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Table 6. Evaluation results for adaptive attacks. Threat model: l∞ ε-ball with ε = 8/255, CIFAR-10 dataset. The white-box attack results
for adversarial training methods are also referred for comparison.

Natural Robust Preprocessor Classifier Attack method Threat blindness

ADP (Adaptive LR) 86.14
(σ = 0.25), BPDA step 40 70.01 NCSNv2 WRN-28-10 BPDA+EOT Unseen
(σ = 0.25), BPDA step 100 69.71 NCSNv2 WRN-28-10 BPDA+EOT Unseen
(σ = 0.25) 70.61 NCSNv2 WRN-28-10 Joint (score)+EOT Unseen
(σ = 0.25) 78.39 NCSNv2 WRN-28-10 Joint (full)+EOT Unseen
(σ = 0.25) 80.80 NCSNv2 WRN-28-10 SPSA Unseen
(σ = 0.25) with detection 95.74 69.85 NCSNv2 WRN-28-10 BPDA+EOT Unseen

(Hill et al., 2021) (1500 iterations) 84.12 54.90 IGEBM WRN-28-10 BPDA+EOT Unseen
(Yang et al., 2019) (Natural) 94.8 40.8 Masking+Recon. ResNet-18 BPDA Unseen
(Yang et al., 2019) (AT) - 52.8 Masking+Recon. ResNet-18 BPDA Unseen
(Yang et al., 2019) (AT) 88.7 55.1 Masking+Recon. WRN-28-10 BPDA Seen
(Yang et al., 2019) (Natural) 89.4 41.5 Masking+Recon. ResNet-18 Approx. Input Unseen
(Yang et al., 2019) (AT) 88.7 62.5 Masking+Recon. ResNet-18 Approx. Input Seen
(Song et al., 2018) 95 5 PixelCNN ResNet-62 BPDA Seen

(Madry et al., 2018) 87.3 45.8 Robust Classifier ResNet-18 Full PGD Seen
(Zhang et al., 2019) 84.90 56.43 Robust Classifier ResNet-18 Full PGD Seen
(Carmon et al., 2019) 89.70 62.50 Robust Classifier WRN-28-10 Full PGD Seen

comparatively near to the perturbed point, then target to the auxiliary image. We first replace the perturbation distribution
by q′(x̃|x) = N (x̃|F (x), σ2I) where F (x) is an AugMix-transformed image from x. Then we replace the DSM objective
Eq. (8) with

`(θ, σ) = Eq′(x̃|x)pdata(x)

[
1

2σ4

∥∥x̃+ σ2sθ(x
′)− x′

∥∥2] (20)

where x′ = x+F (x)
2 is the midpoint of x and F (x). That is, to ease the reconstruction from highly corrupted images F (x),

we choose to learn sθ(x) to recover from the midpoint x′.

D. Detailed results for strong adaptive attacks
D.1. Full list of defense results for adaptive attacks

In this section, we present the full list of defense results for strong adaptive attacks contained in Table 3 of the main paper
in Table 6, including the preprocessor and classifier architectures, attack method, and blindness against the threat model.
The results at the first, second, and third category includes our work, recently proposed preprocessor-based defense methods,
and existing adversarial training-based defense methods, respectively. Approx. Input (Yang et al., 2019) first iteratively
updates inputs by classifier PGD followed by purification, and thus add classifier gradients to purified images instead of
clean images. The term with detection denotes our method with the procedure of detecting adversarial examples before the
purification, as described in Appendix F. Our method with detection can increase clean accuracy because it can filter out
natural images and prevent the need of unnecessary purification.

D.2. Performance with various noise injection levels

We present the standard and robust accuracy of ADP for the strong adaptive BPDA+EOT attack as well as the preprocessor-
blind classifier PGD attacks in CIFAR-10 dataset, from σ = 0.05 to σ = 0.4 in Table 7. As the noise level increases, both
the standard accuracy and the gap between standard and robust accuracy decrease, as the standard accuracy falls much faster
than the robust accuracy as the injected noise becomes stronger. Although both attacks are held in the same threat models,
the best robust accuracy at the classifier PGD attack is achieved at much less injected noise than the BPDA+EOT attack,
implying that the classifier PGD attack actually needs less noise injection than BPDA+EOT attack for optimal purification.

D.3. Effect of number of EOT for BPDA attacks

We present the robust accuracy of ADP over BPDA+EOT attacks with different number of EOT in Table 8 in CIFAR-10
dataset.
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Table 7. CIFAR-10 results for different levels of noise injections on attacked images, from σ = 0.05 to σ = 0.4 with preprocessor-blind
classifier PGD attacks.

Method Accuracy (%) Architecture Blindness
Standard BPDA+EOT Clf PGD

ADP (σ = 0.05) 93.35 6.08 66.94 WRN-28-10 Unseen
ADP (σ = 0.10) 93.09 41.06 87.13 WRN-28-10 Unseen
ADP (σ = 0.15) 90.36 57.73 86.34 WRN-28-10 Unseen
ADP (σ = 0.20) 86.80 67.36 85.74 WRN-28-10 Unseen
ADP (σ = 0.25) 86.14 70.01 83.93 WRN-28-10 Unseen
ADP (σ = 0.30) 80.98 69.06 78.89 WRN-28-10 Unseen
ADP (σ = 0.35) 79.44 69.70 77.54 WRN-28-10 Unseen
ADP (σ = 0.40) 77.41 69.67 75.80 WRN-28-10 Unseen

Table 8. BPDA+EOT attack results for different number of EOT in CIFAR-10 dataset. The input is attacked after (#EOT) different random
noise injections with σ = 0.25 via BPDA attack.

Number of EOT 1 3 5 10 15 30 50

Accuracy (%) 76.46 73.89 72.90 69.86 70.01 68.75 67.60

D.4. Effect of BPDA iterations

The experiments of the main paper are all performed with 40 iterations of BPDA attacks. To measure the effect of the number
of BPDA iterations, we also run experiments with 100 iterations of BPDA attacks. As contained in Table 6, increasing the
number of iterations from 40 to 100 slightly decrease the robust accuracy by 0.30%.

D.5. Effect of purification runs

In the main paper, we fixed the maximum number of purification runs to 10. In this section, we present robust accuracy of
ADP on different number of purification runs in CIFAR-10 dataset, with BPDA+EOT attack with 40 BPDA iterations and 15
EOT attacks. As described in Fig. 8, we observed that the robust accuracy is improved until 10 runs, and stay stable for more
runs.

D.6. Full list of defense results for more datasets

We present the full list of defense results for various datasets, including MNIST, FashionMNIST, and CIFAR-100 in Table 9.

E. Robust accuracy of Randomized Smoothing Classifiers
We present the standard accuracy of randomized smoothing classifiers of ADP on CIFAR-10 dataset in Table 10. We see that
on low noise levels up to σ = 0.25, the robust accuracy of the randomized smoothing classifier performing ADP surpasses
those of the existing randomized smoothing classifiers.

F. Detecting Adversarial Examples before purification
While random noise injection before purification improves the robust accuracy, this degrades the standard accuracy because
the features helpful for natural image classification can also be screened out. To prevent this, we propose a detection and
noise injection scheme where we first classify an image into attacked or natural image and apply different noise injection
policies according to the classification result. We draw the histogram of the score norms ‖sθ(x)‖ for natural, adversarial and
purified images for various attacks in Fig. 9. Except for joint attacks, attacked images usually have higher score norms than
natural images, showing the promises of our method for detecting adversarial examples before purifications.

The detection of the attacked is based on the score norms. We choose the threshold τ , and classify an image whose Euclidean
norm of the estimate score ‖sθ(x)‖2 below the threshold as a natural image, and an image whose score norm above the
threshold as an attacked image. Figure 3 shows the histograms of score norms for natural and attacked images. As shown in
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Figure 8. Robust accuracy of CIFAR-10 dataset under BPDA+EOT attack on different purification runs. The x-axis stands for the number of
purification runs and y-axis stands for accuracy (%). The red, , and black line stand for expectation over pre-softmax outputs, post-softmax
outputs, and argmax outputs, respectively.
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Figure 9. Histogram of score function norms ‖sθ(x)‖ for natural, adversarial and purified images. Pur a and Pur n denotes scores of
one-step purified adversarial and natural images, respectively. The x-axis and y-axis stand for the score norm ‖sθ(x)‖2 and the probability
density, respectively. From upper left to lower right: (a) Classifier PGD (b) BPDA (c) Approximate input (d) One-step unrolling (e) Joint
(full) (f) Joint (score). The x-axis and y-axis represent ‖sθ(x)‖ and the probability density, respectively. One step unrolling attack is an
adaptive attack where the PGD attack is performed under the composition of the classifier and one-step forward propagation of the purifier
network.
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Table 9. Evaluation results for more datasets.
Dataset

ε Attack type Accuracy (%)
Defense methods Standard Robust

MNIST 0.3 Clf PGD 98.07 96.41
FashionMNIST 8/255 Clf PGD 93.19 86.62

CIFAR-100
Raw WideResNet 79.86
σ = 0.0, det 0.08 8/255 Clf PGD 77.83 43.21
σ = 0.25, α = 0.05 8/255 BPDA+EOT 60.66 39.72

(Hill et al., 2021) 8/255 BPDA+EOT 51.66 26.10
AT (Madry et al., 2018) 8/255 PGD 59.58 25.47
(Li et al., 2020) 8/255 PGD 61.01 28.88

Table 10. Robust accuracy of randomized smoothing classifiers.

Models Noise level σ
0.12 0.25 0.5 1.0

ADP 93 86 62 27
(Cohen et al., 2019)* 81 75 65 47
(Salman et al., 2019)* 84 77 68 50

the figure, the score norm is a good criterion for detecting adversarial examples.

Having decided that an image is an attacked image, we inject higher noise level σhigh = σ (the one obtained with the
heuristic described in Section 3). Otherwise, we apply the low noise level σlow = βσ with β fixed to 0.2. For all experiments
on CIFAR-10 and CIFAR-100 datasets, we fixed τ = 25.0.

G. Decision Boundary Plot with t-SNE
Fig. 10 shows the decision boundaries and trajectories over purification steps for existing attacks. We draw t-SNE (van der
Maaten & Hinton, 2008) diagrams for attacked and purified images and their corresponding features, and draw Voronoi
diagrams to discriminate between correctly classified images and failed ones. Moreover, we display a trajectory of purifying
image drawn on the t-SNE diagrams, starting from the attacked images and ends with the purified images. We show that the
features of attacked images locate far from the natural images in the feature domain, and approaches to those of the natural
images via the purification process.
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(a) (b) (c)

Figure 10. t-SNE diagram of decision boundaries on (a) Image space and (b) Feature space, with respect to various attacks on a single
data. The blue and red regions represent the region whose predictions are equal to and different to the ground truth labels, respectively. (c)
shows the trajectory of features of attacked images to predicted ones.
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