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Abstract
Likelihood is a standard estimate for outlier de-
tection. The specific role of the normalization
constraint is to ensure that the out-of-distribution
(OOD) regime has a small likelihood when sam-
ples are learned using maximum likelihood. Be-
cause autoencoders do not possess such a pro-
cess of normalization, they often fail to recognize
outliers even when they are obviously OOD. We
propose the Normalized Autoencoder (NAE), a
normalized probabilistic model constructed from
an autoencoder. The probability density of NAE
is defined using the reconstruction error of an
autoencoder, which is differently defined in the
conventional energy-based model. In our model,
normalization is enforced by suppressing the re-
construction of negative samples, significantly im-
proving the outlier detection performance. Our
experimental results confirm the efficacy of NAE,
both in detecting outliers and in generating in-
distribution samples.

1. Introduction
An autoencoder (Rumelhart et al., 1986) is a neural network
trained to reconstruct samples from a training data distri-
bution. Since in principle the quality of reconstruction is
expected to be poor for inputs that deviate significantly from
the training data, autoencoders are widely used in outlier
detection (Japkowicz et al., 1995), in which an input with a
large reconstruction error is classified as out-of-distribution
(OOD). Autoencoders for outlier detection have been ap-
plied in domains ranging from video surveillance (Zhao
et al., 2017) to medical diagnosis (Lu & Xu, 2018).

However, autoencoders have been known to reconstruct
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Figure 1. Examples of reconstructed outliers. The last two rows
show the reconstructions from a conventional autoencoder (AE)
and NAE. Both autoencoders are trained on MNIST, and other
inputs are outliers. The architecture of the two autoencoders is
identical. Successful detection of an outlier is highlighted with blue
solid rectangles, while detection failures due to the reconstruction
of outliers are denoted with an orange dotted rectangle. Note that
AE is not the identity mapping, as it fails to reconstruct the shirt.

outliers consistently across a wide range of experimental
settings (Lyudchik, 2016; Tong et al., 2019; Zong et al.,
2018; Gong et al., 2019). We name this phenomenon outlier
reconstruction. Figure 1 shows examples of some outliers
reconstructed by an autoencoder trained with MNIST data;
the autoencoder is able to reconstruct a wide range of OOD
inputs, including constant black pixels, Omniglot charac-
ters, and fragments of MNIST digits. The early works on
regularized autoencoders (Vincent et al., 2008; Rifai et al.,
2011; Ng et al., 2011) focus for the most part on preventing
the autoencoder from turning into the identity mapping that
reconstructs every input. Nonetheless, outlier reconstruc-
tion can still occur even when the autoencoder is not the
identity as shown by the non-identity autoencoder in Figure
1. Not surprisingly, outlier reconstruction is a leading cause
of autoencoder’s detection failure.

On the other hand, in a normalized probabilistic model, it
is known that maximum likelihood learning suppresses the
assignment of probability mass in OOD regions in order to
keep the model normalized. Thus, the likelihood is widely
used as a predictor for outlier detection (Bishop, 1994).
Meanwhile, an autoencoder is not a probabilistic model
of the data and does not have a suppression mechanism
corresponding to the normalization in other probabilistic
models. As a result, the reconstruction of outliers are not
inhibited during training of an autoencoder.

This paper formulates an autoencoder as a normalized prob-
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abilistic model to introduce a mechanism for preventing
outlier reconstruction. In our formulation, which we call the
Normalized Autoencoder (NAE), the reconstruction error
is re-interpreted as an energy function, i.e., the unnormal-
ized negative log-density, and defines a probabilistic model
from an autoencoder. During maximum likelihood learning
of NAE, outlier reconstruction is naturally suppressed by
enforcing the normalization constraint, and the resulting au-
toencoder is significantly less prone to reconstruct outliers,
as shown in Figure 1.

In each training iteration of NAE, samples generated from
the model is used to update the normalization constraint
which is implicitly computed as in other energy-based mod-
els. Since running a Markov Chain Monte Carlo (MCMC)
sampler until convergence every iteration is computation-
ally infeasible, an approximate sampling strategy has to
be employed. We observe that training with popular sam-
pling strategies such as Contrastive Divergence (CD; Hinton
(2002)) and Persistent CD (PCD; Tieleman (2008)) may
often produce poor density estimates. Instead, we propose
on-manifold initialization (OMI), a method of initializing
an MCMC chain on manifold defined by the decoder of an
autoencoder. OMI selects high-model-density initial states
by leveraging the assumption that points on the decoder
manifold typically have small reconstruction error, i.e. high
model density. With OMI, NAE can accurately recover the
data density and thus become an effective outlier detector.

Intriguingly, although technically a normalized probabilis-
tic model, the variational autoencoder (VAE; Kingma &
Welling (2014)) also reconstructs outliers and assigns a spu-
riously high likelihood on OOD data (Nalisnick et al., 2019;
Xiao et al., 2020) for reasons that are as-yet unclear.

Our main contributions can be summarized as follows:

• We propose NAE, a novel generative model constructed
from an autoencoder;

• We propose OMI, a sampling strategy tailored for NAE;
• We empirically show that NAE is highly effective for

outlier detection and can perform other generative tasks.

Section 2 provides brief background on autoencoders and
energy-based models. NAE is described in Section 3, and
OMI is described in Section 4. Related works are re-
viewed in Section 5. Section 6 presents experimental re-
sults. Section 7 provide discussions and conclude the pa-
per. Our source code and pre-trained models are publicly
available online at https://github.com/swyoon/
normalized-autoencoders.

2. Background
2.1. Autoencoders

Autoencoders are neural networks trained to reconstruct
an input datum x ∈ X ⊂ RDx . For an input x, the qual-
ity of its reconstruction is measured in reconstruction error
lθ(x), where θ denotes parameters in an autoencoder. The
loss function of an autoencoder LAE for training is the ex-
pected reconstruction error of training data. Gradient de-
scent training is performed via computing the gradient of L
with respect to model parameters θ:

LAE = Ex∼p(x)[lθ(x)], (1)
∇θLAE = Ex∼p(x)[∇θlθ(x)], (2)

where∇θ is the gradient operator with respect to θ and p(x)
denotes the data density.

Architecture An autoencoder consists of two submodules,
an encoder and a decoder. An encoder fe(x) : RDx → RDz

maps an input x to a corresponding latent representation
vector z ∈ Z ⊂ RDz , and a decoder fd(z) : RDz → RDx

maps a latent vector z back to the input space. Then, the
reconstruction error lθ(x) is given as:

lθ(x) = dist(x, fd(fe(x))), (3)

where dist(·, ·) is a distance-like function measuring
the deviation between an input x and a reconstruction
fd(fe(x)). A typical choice is the squared L2 distance,
i.e., dist(x1,x2) = ||x1 − x2||22. Other possible choices
include L1 distance, dist(x1,x2) = |x1 − x2|, and the
structural similarity (SSIM; Wang et al. (2004); Bergmann
et al. (2018)).

Note that the reconstruction error (Eq. (3)) is not a like-
lihood of a datum, and therefore the minimization of the
reconstruction error does not correspond to the maximiza-
tion of the likelihood. Without modification, an autoencoder
per se is not a probabilistic model.

Outlier Detection A datum is an outlier or called OOD if
it lies in the ρ-sublevel set of a data density {x|p(x) ≤ ρ}
(Steinwart et al., 2005). We particularly focus on ρ = 0,
where an outlier is defined as an input from the outside of
the data distribution’s support. Most of the OOD examples
which attract the attention of the research community are
in fact out-of-support samples. For example, SVHN and
CIFAR-10 are out-of-support to each other, as confirmed
by a supervised classifier perfectly discriminating the two
datasets. Note that the support-based definition provides
invariant characterization of outliers, as no invertible trans-
form defined on the data space alters whether a sample is in-
or out-of-support. Meanwhile, for ρ 6= 0, the characteriza-
tion of outliers are not invariant to the choice of coordinates
Lan & Dinh (2020).

https://github.com/swyoon/normalized-autoencoders
https://github.com/swyoon/normalized-autoencoders
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In the autoencoder-based outlier detection (Japkowicz et al.,
1995), an input is classified as OOD if its reconstruction
error lθ(x) is greater than a threshold τ : lθ(x) > τ . The
outlier reconstruction indicates that there exists an input x∗

with p(x∗) ≤ ρ, but lθ(x∗) < τ . Appendix includes the
detailed investigation on outlier reconstruction.

2.2. Energy-based Models

Unlike autoencoders, energy-based models (EBMs) are
valid models for a normalized probability distribution. The
EBM represents a probability distribution through the un-
normalized negative log probability, also called the energy
function Eθ(x). Here, θ denotes the model parameters.

For a continuous input x ∈ X ⊂ RDx , Eθ(x) defines the
model density function pθ(x) through Gibbs distribution:

pθ(x) =
1

Ωθ
exp(−Eθ(x)/T ), (4)

where T ∈ R+ is called the temperature and is often ignored
by setting T = 1. Ωθ is the normalization constant and is
defined as:

Ωθ =

∫
X

exp(−Eθ(x)/T )dx <∞. (5)

The computation of Ωθ is usually difficult for high-
dimensional x. However, maximum likelihood learning
can still be performed without the explicit evaluation of Ωθ.
The gradient of negative log likelihood of data is given as
follows (Younes, 1999):

Ex∼p(x)[−∇θ log pθ(x)]

=Ex∼p(x)[∇θEθ(x)]/T +∇θ log Ωθ (6)
=Ex∼p(x)[∇θEθ(x)]/T − Ex′∼pθ(x)[∇θEθ(x

′)]/T (7)

∇θ log Ωθ in Eq. (6) is evaluated from the energy gradients
of samples x′ generated from the model in Eq. (7). The
samples from pθ(x) are often called ”negative” samples.
The derivation of Eq. (7) is provided in Appendix.

In Eq. (7), the first term decreases the energy of the training
data, or “positive” samples, while the second term increases
the energy of the generated samples, or “negative” samples.
The training converges when pθ(x) becomes identical to
p(x), as the two gradient terms cancel out. In practice, the
two expectations in Eq. (7) are approximated with a mini-
batch of samples during each iteration. Figure 2 visualizes
the gradients in Eq. (7).

Langevin Monte Carlo (LMC) The negative samples are
generated using MCMC. LMC (Parisi (1981); Grenander
& Miller (1994)) is a simple yet effective MCMC method
used in recent work on deep EBMs (Du & Mordatch, 2019;
Grathwohl et al., 2020; Nijkamp et al., 2019). In LMC, a

Figure 2. An illustration of the energy gradients in Eq. (7). The
red and blue shades represent the model and the data density,
respectively. The gradient update following Eq. (7) increases the
energy of samples from pθ(x) (the red dots) and decreases the
energy of training data (the blue crosses).

starting point x0 is drawn from a noise distribution p0(x),
typically a Gaussian or uniform distribution. Starting from
x0, a Markov chain evolves as follows:

xt+1 = xt + λx∇x log pθ(xt) + σxεt, (8)

where εt ∼ N (0, I). λx and σx are the step size and
the noise parameters, respectively. A theoretically moti-
vated choice is 2λx = σ2

x, but the parameters are often
tweaked separately for better performance (Du & Mordatch,
2019; Grathwohl et al., 2020; Nijkamp et al., 2019). As
∇x log pθ(x) = −∇xE(x)/T , tweaking the step size can
be seen as adjusting the temperature T .

To ensure the convergence of the chain, either Metropolis-
Hastings rejection (Roberts et al., 1996) or annealing of
the noise parameter to zero (Welling & Teh, 2011) may be
employed, but often omitted in practice.

We discuss specific strategies to evaluate the second term in
Eq. (7) in Section 4. For a comprehensive review on various
strategies for training an EBM, readers may refer to Song &
Kingma (2021).

3. Normalized Autoencoders
3.1. Definition

We propose Normalized Autoencoder (NAE), a normal-
ized probabilistic model defined from an autoencoder. The
probability density of NAE pθ(x) is defined as a Gibbs
distribution (Eq. (4)) the energy of which is defined as the
reconstruction error of an autoencoder:

Eθ(x) = lθ(x). (9)

Thus, the model density of NAE is given as

pθ(x) =
1

Ωθ
exp(−lθ(x)/T ), (10)

where Ωθ is defined as in Eq. (5). Due to the normalization
constant, pθ(x) is a properly normalized probability density.

As a probabilistic model, NAE is trained to maximize the
likelihood of data. The loss function to be minimized is the
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negative log-likelihood of data:

Ex∼p(x)[− log pθ(x)] = Ex∼p(x)[lθ(x)]/T + log Ωθ.
(11)

The gradient for the negative log-likelihood is evaluated as
in conventional EBMs (Eq. (7)).

Ex∼p(x)[−∇θ log pθ(x)]

= Ex∼p(x)[∇θlθ(x)]/T − Ex′∼pθ(x)[∇θl(x
′)]/T. (12)

Therefore, each gradient step decreases the reconstruction
error of training data x, while increasing the reconstruction
error of negative samples x′ generated from pθ(x).

3.2. Remarks

Normalization as Regularization In NAE, enforcement
of normalization can be viewed as a regularizer for the
reconstruction loss (1). A typical formulation for a regu-
larized autoencoder is given as L = LAE + Lreg, where
Lreg is a regularizer. By setting the loss function of NAE as
L = TEx∼p(x)[− log pθ(x)], we have L = LAE +T log Ωθ.
Therefore, the normalization constant contributes as a regu-
larizer: Lreg = T log Ωθ.

Suppression of Outlier Reconstruction During the train-
ing of NAE, the reconstruction of an outlier is inhibited by
enforcing the normalization constraint. Given a successful
sampling process, the negative samples should cover all high
density regions of pθ(x). A sample from a high density re-
gion of pθ(x) has a low lθ(x) by definition (Eq. (9)). Hence,
if there exist a reconstructable outlier, which has high pθ(x)
due to low lθ(x), it will appear as a negative sample from
MCMC. As the gradient update given in Eq. (12) increases
the reconstruction error of negative samples, the reconstruc-
tion quality of a reconstructable outlier will be degraded. As
a result, the reconstruction error of NAE becomes a more
informative predictor that discriminates outliers from inliers
than that of a conventional autoencoder.

Outlier Detection with Likelihood NAE bridges the two
popular outlier detection criteria, namely, the reconstruction
error (Japkowicz et al., 1995) and the likelihood (Bishop,
1994). The reconstruction error criterion classifies an in-
put with a large reconstruction error as OOD lθ(x) > τ ,
whereas the likelihood criterion predicts an input as an
outlier if the log-likelihood is smaller than the threshold
log pθ(x) < τ ′. These two criteria are equivalent in
NAE for appropriately set τ and τ ′, as the reconstruc-
tion error and the log-likelihood has a linear relationship:
log pθ(x) = −lθ(x) − log Ωθ. Note that the two criteria
rarely coincide in other models, for example, denoising au-
toencoders (DAE, Vincent et al. (2008)), VAE (Kingma &
Welling, 2014)), and DSEBMs (Zhao et al., 2016), caus-
ing confusion on which of the decision rules should be
employed for outlier detection.

Figure 3. Density estimates and negative samples from NAEs
trained by various approximate sampling methods. The gener-
ated samples (blue dots) are visualized along with the true density,
a 2D mixture of 8 Gaussians. The data density is depicted in Figure
5. CD: The learned density has a spurious mode, marked by an ar-
row. The black crosses denote training data. PCD without restart:
The highly correlated samples result in an oscillating density es-
timate. PCD with restart: Despite the good quality of sampling,
the density is poorly estimated. On-manifold: Both density esti-
mation and sample generation are performed well. More details
are specified in Section 4.1 and Section 6.2.

Sample Generation Samples from pθ(x) are generated
through MCMC. Unlike VAE, the forward pass of a de-
coder should not be considered as sample generation.

4. On-Manifold Initialization
The main challenge in the training of NAE through Eq. (12)
is that each iteration requires negative sample generation
using MCMC, which is computationally expensive. In this
section, we first discuss the failure modes of popular approx-
imate sampling strategies for EBMs, namely Contrastive
Divergence (CD; Hinton (2002)) and Persistent CD (PCD;
Tieleman (2008)). We argue that the method on how the
initial state of MCMC is chosen have incurred such failure
modes. Then, we propose on-manifold initialization, an ap-
proximate sampling strategy effective in training the NAE.
On-manifold initialization provides a better initial state for
MCMC by leveraging the structure of an autoencoder.

There exist other training methods for EBMs which do
not rely on MCMC, for example denoising score matching
(Vincent, 2011) or noise contrastive estimation (Gutmann &
Hyvärinen, 2010), and they may also be applicable to NAE.
We leave application of such methods on NAE as future
work.

4.1. Failure Modes of CD and PCD

Failure Mode of CD CD, often called CD-k, draws a nega-
tive sample by first initializing a Markov chain of MCMC
at a training data point, then proceeding k steps of MCMC
transitions. The strength of CD is that the number of steps k
can be radically smaller, e.g., k = 1, than the usual number
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of steps required in a convergent MCMC run, significantly
reducing the amount of computation.

However, when k is small, CD-k is not able to suppress a
spuriously high mode in the model density pθ(x) located far
from the data distribution p(x), because negative samples
are only generated in the vicinity of training data. Figure 3
shows an instance of a spurious mode in the model density.
Negative samples (blue dots) are close to training data (black
crosses) so that they do not reach for the density mode in
the middle. As a result, the mode is not suppressed. Such a
spurious mode will result in outlier detection failures and,
in case of NAE, reconstructed outliers. The possibility of
accidentally assigning high density in the unvisited area was
acknowledged in the original article (Section 3 of Hinton
(2002)). Spurious modes are also observed in DAE, where
a corrupted datum is located only in the neighborhood of
a training data point (Alain & Bengio, 2014). Increasing k
will decrease the chance of have spurious modes, but the
computational advantage of CD will be lost when k is large.

Failure Mode of PCD An initial state of MCMC in PCD
is given as the negative sample generated from MCMC
in the previous training iteration. PCD was originally im-
plemented using fully persistent MCMC (Tieleman, 2008).
However, without a restart, MCMC chains in a mini-batch
may become highly correlated to each other. When pθ(x) is
multi-modal, the correlated chains yield degenerate negative
samples which only cover a subset of density modes as in
Figure 3. The degenerate samples make the density estimate
oscillatory, slowing the convergence of the model.

The degeneracy between chains can be mitigated by ran-
domly resetting the initial state to a sample from the noise
distribution p0(x) with a small probability (typically 5%)
(Du & Mordatch, 2019; Grathwohl et al., 2020). However,
learning with PCD still fails to yield an accurate density
estimate (Figure 3). This failure mode can be explained by
the study of Nijkamp et al. (2019): When a short MCMC
chain initialized from p0(x) is used in training, an EBM
simply learns a flow that maps p0(x) to p(x), and the energy
no longer models the data density. Using a restart drives an
EBM to become such a flow, as restarted chains are short
and start from p0(x).

In summary, CD initializes MCMC from the data distribu-
tion pθ(x), and PCD initializes MCMC from a noise distri-
bution p0(x). The convergence of MCMC is independent of
its initialization in theory, but the initialization method can
be crucial in practice, as shown in Figure 3. When pθ(x),
from which we want to sample, deviates significantly from
pθ(x) or p0(x), these initialization methods may lead to
a poor density estimate and a suboptimal performance in
outlier detection.

Figure 4. An illustration of the on-manifold initialization. The one-
dimensional latent space Z and the two-dimensional input space
X are shown. The red star is the on-manifold initialized state. The
cross denotes a negative sample obtained at the end of the whole
process.

4.2. On-manifold Initialization

We propose on-manifold initialization (OMI), a novel
MCMC initialization strategy which eventually leads to
a significantly better density estimate. We aim to initialize a
MCMC chain from a high-density region of pθ(x) instead
of p0(x) or p(x). While finding a high-density region given
an energy function is difficult in general, it is possible for
NAE’s distribution, since we can exploit the structure of an
autoencoder. For a sufficiently well-trained autoencoder, a
point with high pθ(x), i.e., a small reconstruction error, will
lie near the decoder manifold, which we define as:

M = {x|x = fd(z), z ∈ Z}. (13)

In on-manifold initialization, we initialize MCMC from a
point in the decoder manifold x0 ∈M.

Not all points inM have high pθ(x). To find points with
high pθ(x), we run a preliminary MCMC named as latent
chain in the latent space Z . The latent chain generates a
sample from on-manifold density qθ(z) defined from on-
manifold energy Hθ(z).

qθ(z) =
1

Ψθ
exp(−Hθ(z)/Tz), (14)

Hθ(z) =Eθ(fd(z)), (15)

where Ψθ =
∫

exp(−Hθ(z)/Tz)dz is the normalization
constant and Tz is the temperature. A latent vector x with a
small Hθ(z) will result in a small Eθ(x) when it is mapped
to the input space by x = fd(z). Thus, Hθ(z) guides the
latent chain to find z which produce x0 ∈ M which has a
small energy, i.e., a small reconstruction error.

Similarly to Eq. (8), we use LMC to run the latent chain.
An initial state z0 is drawn from a noise distribution defined
on the latent space. Then the state propagates as:

zt+1 = zt + λz∇z log qθ(zt) + σzεt, (16)

where λz and σz are the step size and the noise parameters
as in Eq. (8). A sample replay buffer (Du & Mordatch,
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2019) is applicable in the latent chain. Figure 4 illustrates
negative sample generation process using the on-manifold
initialization. We also write the process as an algorithm in
Appendix.

5. Related Work
Autoencoders There have been several attempts to formu-
late a probabilistic model from an autoencoder. VAE uses a
latent variable model by introducing a prior distribution p(z).
However, the prior may deviate from the actual distribution
of data inZ , which may cause problems. GPND (Pidhorskyi
et al., 2018) models probability density by factorizing into
on- and off-manifold components but still requires a prior
distribution. M-flow (Brehmer & Cranmer, 2020) only de-
fines a probability density on the decoder manifold and does
not assign a likelihood to off-manifold data. DAE models
a density by learning the gradient of log-density (Alain &
Bengio, 2014).

MemAE (Gong et al., 2019) is a rare example that directly
tackles the outlier reconstruction problem. MemAE em-
ploys a memory module that memorizes training data to
prevent outlier reconstruction, but in this case, the recon-
struction error for an inlier can be large because the model’s
generalization ability is also limited.

Design of Energy Functions Specifying the class of Eθ(x)
not only has computational consequences but alters the in-
ductive bias that an EBM encodes. Feed-forward convolu-
tional networks are used in Xie et al. (2016), Du & Mor-
datch (2019) and Grathwohl et al. (2020) and are shown to
effectively model the distribution of images. The energy
can also be modeled in an auto-regressive manner (Nash &
Durkan, 2019; Meng et al., 2020). Auto-regressive energy
functions are very flexible and thus are capable of model-
ing high-frequency patterns in data. VAEBM (Xiao et al.,
2021) combines VAE and a feed-forward EBM to model
complicated data distribution.

The reconstruction error of an autoencoder is used as a
discriminator in EBGAN (Zhao et al., 2016). Although
the reconstruction error was called “energy” in EBGAN,
the formulation is clearly different from NAE. EBGAN
does not utilize Gibbs distribution formulation (Eq. (4))
to model a distribution, and samples are generated from a
separate generator network. In DSEBM (Zhao et al., 2016),
the difference between an input and its reconstruction is
interpreted as the gradient of log-density.

6. Experiments
6.1. Technicalities for NAE Training

Pre-training as a Conventional Autoencoder NAE can be
pre-trained as a conventional autoencoder by minimizing the

Figure 5. Estimating 8 Gaussians using various autoencoders. The
density of an autoencoder (AE) is computed from Eq. (10). AE
gives a significant amount of probability to low-data-density area.
VAE also assigns some probability mass in between Gaussians.
Meanwhile, the density estimate from NAE agrees well with the
data distribution.

reconstruction error following Eq. (2), before the main train-
ing. By providing a good initialization for network weights
and the decoder manifold, pre-training greatly reduces the
number of NAE training iterations (Eq. (12)) required un-
til convergence. Pre-training is not always necessary: In
our experiments, we observe that NAE can be trained suc-
cessfully without pre-training for synthetic data. However,
pre-training was essential to obtain decent results for larger
scale data, such as MNIST and CIFAR-10.

Latent Space Structure Two configurations for the latent
space is used in experiments: the unbounded real space RDz

and the surface of a hypersphere SDz−1. When Z = RDz ,
a linear layer is used as the output of an encoder. q0(z)
is set as N (0, I). The squared norm of the latent vectors
are added to the loss function as a regularizer so that z’s
concentrate near the origin (Ghosh et al., 2020).

For the hyperspherical space Z = SDz−1 (Davidson et al.,
2018; Xu & Durrett, 2018; Zhao et al., 2019), the output of
an encoder is projected to the surface of a unit ball through
the division by its norm: z← z/||z||. In Langevin dynam-
ics, a sample is projected to SDz−1 at the end of each step.
q0(z) is set to a uniform distribution on SDz−1.

The hyperspherical latent space has a few advantages over
RDz . First, it is impossible to draw uniformly random sam-
ples, because RDz is not compact. Second, for large Dz, it
is difficult to draw samples near the origin, because of its ex-
ponentially decreasing volume. However, we believe more
works needs to be done to completely understand the effect
of hyperspherical geometry on the latent representation.

Regularizing Negative Sample Energy As introduced in
Du & Mordatch (2019), we regularize the energy of nega-
tive samples to prevent its divergence. We add the average
squared energy of negative samples in a mini-batch to the
loss function: L = LNAE +α

∑B
i=1E(x′i)

2/B for the batch
size B and the hyperparameter α. We set α = 1.
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Table 1. MNIST hold-out class detection AUC scores. The values in parentheses denote the standard error of mean after 10 training runs.
HOLD-OUT: 0 1 2 3 4 5 6 7 8 9 AVG

NAE-OMI .989(.002) .919(.013) .992(.001) .949(.004) .949(.005) .978(.003) .938(.004) .975(.024) .929(.004) .934(.005) .955
NAE-CD .799 .098 .878 .769 .656 .806 .874 .537 .876 .500 .679
NAE-PCD .745 .114 .879 .754 .690 .813 .872 .509 .902 .544 .682
AE .819 .131 .843 .734 .661 .755 .844 .542 .902 .537 .677
DAE .769 .124 .872 .935 .884 .793 .865 .533 .910 .625 .731
VAE(R) .954 .391 .978 .910 .860 .939 .916 .774 .946 .721 .839
VAE(L) .967 .326 .976 .906 .798 .927 .928 .751 .935 .614 .813
WAE .817 .145 .975 .950 .751 .942 .853 .912 .907 .799 .805
GLOW .803 .014 .624 .625 .364 .561 .583 .326 .721 .426 .505
PXCNN++ .757 .030 .663 .663 .483 .642 .596 .307 .810 .497 .545
IGEBM .926 .401 .642 .644 .664 .752 .851 .572 .747 .522 .672
DAGMM .386 .304 .407 .435 .444 .429 .446 .349 .609 .420 .423

6.2. 2D Density Estimation

We demonstrate the density estimation capability of NAE
with a two-dimensional mixture of 8 Gaussians. First,
we benchmark negative sample generation strategies for
NAE, including CD, PCD with and without restart, and on-
manifold initialization. The results are shown in Figure 3
and discussed in Section 4.1 in detail.

Second, we compare NAE trained with the on-manifold ini-
tialization to a conventional autoencoder and VAE (Figure
5). An autoencoder assigns high densities on regions be-
tween Gaussian modes, meaning that an autoencoder gives
a small reconstruction error from a points from the region.
For the overcomplete case (Dz = 3 > Dx), an autoencoder
almost becomes the identity map, and its reconstruction
error is not an informative predictor for an outlier. VAE and
NAE learn a non-identity function under the overcomplete
setting, showing the effectiveness of their regularizers.

In the experiments, the identical network architecture is
used, and the temperature is optimized by gradient descent.
In on-manifold initialization, temperature values are shared
by the main MCMC and the latent chain. When perform-
ing MCMC in X , Metropolis-Hastings rejection is applied
to ensure the detailed balance but is not applied in the la-
tent chain. For visualization, the normalization constants
for an autoencoder and NAE are computed by numerically
integrating over the domain, [−4, 4]2.

6.3. Outlier Detection

Experimental Setting We empirically demonstrate the ef-
fectiveness of NAE as an outlier detector. In outlier detec-
tion tasks, an outlier detector is trained only using inlier
data and then asked to discriminate outliers from inliers
during test phase. Given an input, a detector is assumed to
produce a scalar decision function which indicates the out-
lierness of the input. We measure the detection performance
in AUC, i.e., the area under the receiver operating character-
istic curve. Following the protocol of Ren et al. (2019) and
Hendrycks et al. (2019), we use an OOD dataset different

from the datasets used in test phase to tune model hyper-
pamraeters. Additional details on model implementation
and datasets can be found in the supplementary material.

The identical networks architectures are used for all
autoencoder-based methods. The reconstruction error is
used as the decision function, except for VAE. For deep
generative models, PixelCNN++ (PXCNN++, Salimans
et al. (2017)), Glow (Kingma & Dhariwal, 2018) and a
feed-forward EBM (IGEBM, Du & Mordatch (2019)), we
use the negative log-likelihood (i.e., the energy) as the de-
cision function. For VAE, we show two results from using
the reconstruction error (R) or the negative log-likelihood
(L) as decision functions.

MNIST Hold-Out Class Detection One class from
MNIST is set as the outlier class and the rest as the inlier
class. Then, the procedure is repeated for all ten classes in
MNIST. ConstantGray dataset is used for model selection.

This problem is not as easy as it seems, as confirmed in
the very low performance of various algorithms in Table
1. When a class is held out from MNIST, the remaining
9 classes may contain a set of visual features sufficient to
reconstruct the hold-out class, i.e., the outlier reconstruction
occurs. The outlier reconstruction is particularly severe for
the digit 1, 4, 7 and 9, possibly because their shape can be
reconstructed from the recombination of other digits. For
example, overlapping 4 and 7 produces a shape similar to
9. Interestingly, most of the other baseline algorithms also
show poor performance when 1, 4, 7 or 9 are held out as the
outlier. NAE shows the highest AUC score for all classes
and effectively suppresses the reconstruction of the outlier
class (Figure 6).

We also compare CD and PCD along with OMI in training
NAEs. Using CD and PCD show poor outlier detection
performance, although given the identical set of MCMC
parameters.

Out-of-Distribution Detection The samples from differ-
ent datasets are used as the outlier class. We test two in-
lier datasets, CIFAR-10 or ImageNet 32×32 (ImageNet32).
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Table 2. OOD detection performance in AUC.
In: CIFAR-10 ConstantGray FMNIST SVHN CelebA Noise

NAE .963 .819 .920 .887 1.0
AE .006 .650 .175 .655 1.0

DAE .001 .671 .175 .669 1.0
VAE(R) .002 .700 .191 .662 1.0
VAE(L) .002 .767 .185 .684 1.0

WAE .000 .649 .168 .652 1.0
GLOW .384 .222 .260 .419 1.0

PXCNN++ .000 .013 .074 .639 1.0
IGEBM .192 .216 .371 .477 1.0

In: ImageNet32 ConstantGray FMNIST SVHN CelebA Noise

NAE .966 .994 .985 .949 1.0
AE .005 .915 .102 .325 1.0

DAE .069 .991 .102 .426 1.0
VAE(R) .030 .936 .132 .501 1.0
VAE(L) .028 .950 .132 .545 1.0

WAE .069 .991 .081 .364 1.0
GLOW .413 .856 .169 .479 1.0

PXCNN++ .000 .004 .027 .238 1.0

Figure 6. Reconstruction examples in MNIST hold-out class de-
tection. Data and their reconstructions are shown for four difficult
hold-out settings (1, 4, 7 and 9). Digit 2 is shown as an inlier
example. The bottom two rows depict the reconstructions from
four autoencoders (AE) and four NAEs trained on each setting.
AEs reconstruct the outlier class well, while NAEs selectively
reconstruct only inliers.

Zero-padded 32×32 MNIST images are used for model
selection. Results are shown in Table 2.

It is known that constant images and SVHN images are
particularly difficult outliers for generative models trained
on a set of images with rich visual features (Nalisnick et al.,
2019; Serrà et al., 2020). However, NAE detect such difficult
outliers successfully. All models are able to discriminate
noise outliers, indicating that their poor performance is not
from the failure of training.

6.4. Sample Generation

Samples are generated from NAE using MCMC with OMI.
Figure 7 shows the samples from NAEs trained on MNIST
and on CelebA 64×64. The random initial states of the
latent chain (z0) map to unrecognizable images. After
the latent chain, OMI produces somewhat realistic images.
MCMC on X refines the OMI images. Although quantita-
tive image (in Appendix) quality metric for samples gener-
ated from NAE is not on a par with that of generative models

Figure 7. Sampling with NAEs trained on MNIST and CelebA
64×64. (z0) The random initialization of the latent chain. We
visualize fd(z0). (OMI) Images after OMI. (Samples) Samples
obtained after MCMC starting from OMI. OMI images and Sam-
ples corresponds to the red start and the green cross in Figure 4,
respectively.

which specialize in sampling, but the generated samples are
indeed visually sensible.

7. Discussion and Conclusion
Comparison to Other EBMs NAE uses Gibbs distribu-
tion to define a density function as in other EBMs (Eq. 4).
The main difference between NAE and other EBMs is the
choice of an energy function. However, this difference re-
sults in significant theoretical and practical consequences.
First, we naturally incorporate the manifold hypothesis, i.e.
the assumption that high-dimensional data lie on a low-
dimensional manifold, into a model. Second, the energy
function of NAE can be pre-trained as a conventional au-
toencoder. Third, more effective sampling can be performed
by using OMI, leading to a more accurate density estimate.

Likelihood-based Outlier Detection and Inductive Bias
The likelihood is considered as a poor decision function for
outlier detection, after the failures of likelihood-based deep
generative models such as VAE, PixelCNN++, and Glow
(Nalisnick et al., 2019; Hendrycks et al., 2019). Those gen-
erative models fail to detect obvious outlier images which
typically have low complexity. However, we believe that the
failures should not be attributed to the use of the likelihood.
There are likelihood-based models, particularly EBMs (Du
& Mordatch, 2019; Grathwohl et al., 2020), including NAE,
that show better outlier detection performance than VAE,
PixelCNN++ and Glow. Instead, inductive bias of a gen-
erative model is likely to be responsible for the failure of
detecting low-complexity outliers. It is reported that the
likelihoods of the failed models are negatively correlated to
the complexity of images (Serrà et al., 2020). Meanwhile,
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Figure 8. Sampling with randomly initialized NAE.

the reconstruction of low-complexity images are explicitly
suppressed in NAE training, as the simple images tend to
lie on the decoder manifold.

OMI in Early Stage of Training Sampling with OMI gen-
erates samples with high model density pθ(x) even in the
early stage of training. In fact, the early stage is where the
advantage of OMI over CD is salient, because pθ(x) differs
from p(x) significantly. Figure 8 visualizes samples gener-
ated via CD and OMI from a randomly initialized NAE and
shows that CD fails to draw samples from pθ(x).

OMI draws high-model-density proposals because it is de-
signed to exploit the assumption that well-reconstructed
points lie on the decoder manifold. We find that this as-
sumption holds well for all experimental settings used in
the paper.

Analytic Solution for Linear Case Linear NAEs reduce to
Gaussian distributions. Consider fe(x) = Wx and fd(z) =
W>z with W ∈ RDz×Dx . Given the squared L2 distance
reconstruction error, the density of NAE is written as:

pθ(x) = exp(−x>Σ−1x/2)/Ωθ, (17)

where Σ−1 = 2(I −W>W )2/T . When the determinant
of I −W>W is non-zero, pθ(x) becomes a well-defined
Gaussian. Under certain conditions (see Appendix), the
maximum likelihood estimate of Σ becomes the empirical
covariance of data, as in a usual Gaussian distribution.

It is interesting to note that a linear VAE also reduces into a
Gaussian, as it is equivalent to probabilistic PCA(Kingma
& Welling, 2014). On the other hand, a linear autoencoder
is equivalent to PCA (Bourlard & Kamp, 1988), which is
not a generative model.

Conclusion We have introduced a novel interpretation of

the reconstruction error as an energy function. Our interpre-
tation leads to a novel class of probabilistic autoencoders,
which shows impressive OOD detection performance and
bridges EBMs and autoencoders.
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The Appendix is organized as follows: Section A provides
mathematical derivations, Section B contains extended ex-
perimental results, Section C addresses additional topics
for discussions, and experimental details are provided in
Section D.

A. Derivations
A.1. Derivation for Log-Likelihood Gradient in EBM

Here, we present the derivation for the gradient of log likeli-
hood in Eq. (7).

Ex∼p(x)[∇θ log pθ(x)]

= −Ex∼p(x)[∇θE(x)]/T + Ex′∼pθ(x)[∇θE(x′)]/T.

This expression is well-known in EBM literature (Younes,
1999), but we provide its derivation to make the paper self-
contained.

Recall that the model density function pθ(x) is defined from
an energy functionEθ(x) using Gibbs distribution: pθ(x) =
exp(−Eθ(x)/T )/Ωθ for the normalization constant Ωθ =∫

exp(−Eθ(x)/T )dx < ∞ with the temperature T . The
gradient for the log likelihood of a single datum x is given
as follows:

∇θ log pθ(x)

=−∇θE(x)/T −∇θ log Ωθ

=−∇θE(x)/T − ∇θΩθ
Ωθ

=−∇θE(x)/T − 1

Ωθ
∇θ
∫

exp(−Eθ(x′)/T )dx′

=−∇θE(x)/T − 1

Ωθ

∫
∇θ exp(−Eθ(x′)/T )dx′

=−∇θE(x)/T

+

∫
1

Ωθ
exp(−Eθ(x′)/T )∇θEθ(x′)/Tdx′

=−∇θE(x)/T + Ex′∼pθ(x′) [∇θEθ(x′)/T ] .

Taking the expectation over the data density p(x),

Ex∼p(x)[∇θ log pθ(x)]

= −Ex∼p(x) [∇θE(x)/T ]

+ Ex∼p(x)
[
Ex′∼pθ(x′) [∇θEθ(x′)/T ]

]
= −Ex∼p(x) [∇θE(x)/T ] + Ex′∼pθ(x′) [∇θEθ(x′)/T ] .

Thus, we obtain Eq. (7) of the main manuscript.

A.2. Analytic Solution for Linear Case

We provide a more detailed derivation for linear NAE. When
a linear overcomplete autoencoder is used, NAE reduces
into a Gaussian distribution. Consider a linear deterministic

encoder fe(x) = Wx and a decoder fd(z) = W>z, where
W ∈ RDz×Dx . For the squared L2 distance reconstruction
error,

l(x) = ||x−W>Wx||2 (18)

= x>(I −W>W )2x, (19)

and therefore the density of NAE can be written as:

pθ(x) =
1

Ωθ
exp(−x>Σ−1x/2), (20)

where Σ−1 = 2(I −W>W )2/T .

Eq. (20) is a Gaussian distribution with zero mean and
Σ covariance. For this Gaussian to be well-defined, the
normalization constant should be finite Ωθ < ∞. To the
covariance positive definite, we need that the determinant
of (I −W>W ) is non-zero, i.e., no eigenvalue of W>W
should be one. This means that the autoencoder should not
be the identity along any of orthogonal bases.

As an interesting special case, consider W = 0. This zero-
autoencoder is uninformative, since all inputs are mapped to
the origin, but it still defines a valid probability distribution.
In fact, pθ(x) becomes a standard normal distribution.

Now, we consider the overcomplete setting, where Dz ≥
Dx, and look for the maximum likelihood parameter esti-
mate. When Dz ≥ Dx, the matrix (I −W>W )2 spans
all positive semidefinite matrices. Given a zero-centered
dataset D = {xi}Ni=1, Σ that maximizes the the likelihood
of data is the empirical covariance ΣML =

∑N
i=1 xix

>
i /N .

Therefore, NAE trained to maximum the likelihood of data
is identical to a Gaussian distribution fitted via maximum
likelihood.

Recall that a conventional linear autoencoder becomes the
identity when Dz ≥ Dx.

B. Extended Experimental Results
In this section, we provide additional experimental results.

B.1. MNIST Hold-Out Class Detection

Table 3 augments Table 1 by providing results from VQVAE
(Oord et al., 2017) and Ganomaly (Akcay et al., 2018).

We could not experiment with MemAE (Gong et al., 2019)
as the training code was not provided by the authors. In-
stead, we experiment with VQVAE, since it has a similar
inductive bias that the only finite number of discrete latent
representation can be used.

For Ganomaly, we report two versions of results.
Ganomaly(Repro) indicates our re-implementation that
shares the network architectures with other autoencoders
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Table 3. MNIST hold-out class detection AUC scores. The values in parentheses denote the standard error of mean after 10 training runs.
The values below the horizontal divider line are the newly appended values.

HOLD-OUT: 0 1 2 3 4 5 6 7 8 9 AVG

NAE-OMI .989(.002) .919(.013) .992(.001) .949(.004) .949(.005) .978(.003) .938(.004) .975(.024) .929(.004) .934(.005) .955
NAE-CD .799 .098 .878 .769 .656 .806 .874 .537 .876 .500 .679
NAE-PCD .745 .114 .879 .754 .690 .813 .872 .509 .902 .544 .682
AE .819 .131 .843 .734 .661 .755 .844 .542 .902 .537 .677
DAE .769 .124 .872 .935 .884 .793 .865 .533 .910 .625 .731
VAE(R) .954 .391 .978 .910 .860 .939 .916 .774 .946 .721 .839
VAE(L) .967 .326 .976 .906 .798 .927 .928 .751 .935 .614 .813
WAE .817 .145 .975 .950 .751 .942 .853 .912 .907 .799 .805
GLOW .803 .014 .624 .625 .364 .561 .583 .326 .721 .426 .505
PXCNN++ .757 .030 .663 .663 .483 .642 .596 .307 .810 .497 .545
IGEBM .926 .401 .642 .644 .664 .752 .851 .572 .747 .522 .672
DAGMM .386 .304 .407 .435 .444 .429 .446 .349 .609 .420 .423

VQVAE .937 .272 .915 .807 .673 .807 .892 .643 .816 .596 .736
GANOMALY(REPRO) .418 .676 .479 .750 .591 .615 .480 .546 .551 .427 .553
GANOMALY(PUB) .740 .142 .873 .699 .695 .725 .787 .502 .840 .508 .651

Table 4. OOD detection performance for MNIST as the in-
distribution dataset. AUC scores are shown. Half indicates HalfM-
NIST dataset, and Chimera indicates ChimeraMNIST dataset.

CONSTANTGRAY HALF CHIMERA OMNIGLOT NOISE

NAE 1.00 .999 .992 .995 1.00
AE .934 .523 .761 .885 1.00
PXCNN .982 .154 .334 .665 1.00
GLOW 1.00 .948 .445 .653 1.00
IGEBM 1.00 .986 .948 .946 1.00

used in the experiment. Ganomaly(Pub) is the result pub-
lished by the original paper. We obtained the numbers by
running the scripts provided by the authors’ official reposi-
tory.

As shown in Table 3, VQVAE and Ganomaly show unsatis-
factory performance in detecting the hold-out digit.

B.2. Out-of-Distribution Detection

We repeat OOD detection experiment in Section 6.3 with
MNIST as the in-distribution dataset. The results are present
in Table 4.

We use images from Constant Gray, HalfMNIST,
ChimeraMNIST, Omniglot, FashionMNIST and Noise
dataset for OOD inputs. The whole MNIST training set
without holding out is used to train models. As shown in
Figure 1, an autoencoder shows limited performance due to
outlier reconstruction. Note that the blank image used in
Figure 1 is an instance of ConstantGray dataset. However,
NAE successfully detects all the specified OOD inputs. We
omit FashionMNIST results from Table 4, because all mod-
els detects FashionMNIST inputs with AUC very close to
1.0.

B.3. Sample Generation

Visualization of Negative Samples We collect negative
samples used in training NAE on MNIST and visualize
them in Figure 9. Additionally, OMI samples generated
from the latent chain are also visualized.

Samples obtained right after pre-training (“Iter:0” in the
figure) does not visually close to digits. Since sampling pro-
cedure tends to generates images with high pθ(x), i.e., log
lθ(x), these samples may have lower reconstruction error
than in-distribution MNIST digits. As training proceeds, the
samples become more visually similar to digits in MNIST.

Figure 9. Samples collected from NAE during training. Initial
states given by OMI and final states after MCMC on X are shown.
Each column corresponds to a training iteration of NAE. Iter 0 is
right after the autoencoder pre-training. NAE is trained on MNIST
excluding the digit 9.

Quantitative Result for Sample Quality We generate
50,000 samples from NAE trained on CelebA 64×64 and
compute FID score (Heusel et al., 2017). We also visualize
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Table 5. FID score of 50,000 images generated from a model
trained on CelebA 64×64. A low FID score indicates that the
generated images have similar statistics to the real images in In-
ception network’s feature space.

MODEL FID

NAE 94.00

FROM GHOSH ET AL. (2020)
AE 127.85
AE-L2 346.29
VAE 48.12
RAE-GP 116.30
RAE-L2 51.13
RAE-SN 44.74

FROM SONG & ERMON (2020)
NCSN (W/ DENOISING) 26.89
NCSNV2 (W/ DENOISING) 10.23

some of images generated by NAE in Figure 10. While
FID score of NAE was not as low as ones from models
specialized in generation, such as NCSN (Song & Ermon,
2020), FID score of NAE resides in a ballpark of what is
achievable by autoencoder-based methods. We believe that
tuning network architecture and sampling procedure will
result in enhanced samples.

C. Additional Discussion
C.1. Parameter Sensitivity Study

To demonstrate the contribution of learning techniques and
components used in NAE, we alter or ablate components in
NAE and observe how it behaves differently. As a model
scenario, we consider a setting where digit 0-8 in MNIST
are the inlier class and MNIST 9 is the outlier class. To
run multiple experiments, we shorten the number of NAE
epochs to 20 for these experiments.

The Effect of Pre-training We alter the number of training
epochs in pre-training and observe how AUC of detection
changes. The results are shown in Table 6. Training as NAE
is beneficial for the outlier detection, since AUC scores
always increase after NAE training. The gain from the pre-
training starts to saturate after a certain number (50 in Table
6) of epochs, and the resulting performance remains within
a certain range. Therefore, significant performance boost
can be obtained with the limited amount of pre-training.

The Effect of Sampling Parameters We mainly investi-
gate the effect of three components: latent LMC chain, sam-
ple replay buffer, and spherical latent space. Table 7 shows
different configurations experimented and their anomaly de-
tection performance in AUC. Experiment No.1 represents
the original NAE configuration used in the experiments in
the main manuscript.

Figure 10. More samples from NAE trained on CelebA 64×64.
While most of the samples are visually sensible, a few generation
failures can be spotted. Improving the sample generation process
will be able to eliminate such non-realistic images.
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Table 6. The effect of pre-training as a conventional autoencoder.
We vary the number of pre-training epochs and observe AUC
scores before and after NAE training. Note that “AUC Before
NAE” indicates the outlier detection performance as a conventional
autoencoder.

PRE-TRAINING AUC AUC
EPOCHS BEFORE NAE AFTER NAE

0 .486 .552
10 .581 .754
50 .539 .945

100 .532 .937
150 .548 .914
200 .537 .919

Table 7. Experiments with sampling parameters.

No. Latent chain Using sample Using spherical AUClength replay buffer latent space

1 10 Yes Yes .957
2 0 No Yes .839
3 50 Yes Yes .944
4 10 No Yes .936
5 50 No Yes .952
6 10 Yes No .662

• The use of latent chain is substantially beneficial, as
shown from the comparison between No.1 and No.2.

• A longer latent chain is needed for a better result. Com-
paring No.2, No.4, and No.5, the performance increases
monotonically with the chain length. Note that longer
chain length requires proportionally longer time in train-
ing.

• The sample replay buffer helps to reduce the length of
the latent chain required in training. We see that with
the sample replay buffer, the latent chain with 10 steps
(No.1) can achieve performance comparable to that of 50
latent chain steps (No.5). In other words, using sample
replay buffer may reduce the training time up to five times
without the loss of performance.

• The gain from a longer latent chain saturates. Especially
when a sample replay buffer is used, a chain longer than a
certain threshold does not improve the performance (No.1
& No.3).

• The use of spherical latent space is essential in achieving
a good performance.

The Effect of Dz One of the most critical hyperparameter
in autoencoders is the size of the latent space. We vary Dz

from 2 to 256 and observe how the performance of detecting
digit 9 varies accordingly. The result is shown in Table 8

The performance of an autoencoder is very sensitive to
the choice of Dz, achieving good performance only in the
vicinity of Dz = 8. Meanwhile, NAE achieves better per-

formance than NAE in a wider range of Dz, from 16 to 128.
Therefore, NAE is more robust to the choice of Dz than an
autoencoder.

Table 8. The effect of the latent dimensionality Dz. The best per-
formance from an autoencoder is underlined, and the performance
of NAE better than the best performance of an autoencoder is
marked as bold.

Dz AE AUC NAE AUC

2 .626 .591
4 .748 .550
8 .825 .723

16 .614 .911
32 .525 .926
64 .506 .884

128 .546 .830
256 .556 .732

C.2. Computational Properties of NAE

The inference step of NAE is as fast as that of a conventional
autoencoder, requiring no more than a single forward pass.
The Langevin Monte Carlo (LMC) is the most time consum-
ing procedure in NAE training and sampling A single draw
of sample involves dozens of LMC transition steps, and
each transition step requires multiple backward passes one
of which is comparable to a single training step for an au-
toencoder. However, the number of transition step required
is less than 100 per step, and it is feasible to run it on a
modern hardware. Thanks to availability of the pre-training,
NAE becomes a decent sampler as well as an outlier detec-
tor even after a few epochs, while the performance tends
to gradually increase for a few dozens of epochs. A single
epoch of NAE training on MNIST with Conv28 network
takes 10 minutes using a single Tesla V100 GPU. A single
epoch of NAE training on CIFAR-10 with Conv32 network
takes 500 seconds.

C.3. Outlier Reconstruction

The outlier reconstruction is a phenomenon that an autoen-
coder unexpectedly succeeds in reconstructing an input even
though it is located outside of the training distribution. In
this section, we provide illustrative examples that show that
outlier reconstruction is a consequence from the inductive
biases of an autoencoder.

Multi-modal data When the training data distribution con-
sists of multiple clusters, the outliers from the region be-
tween the clusters are likely to be reconstructed. Figure 11
depicts 2D synthetic data generated from a mixture of two
disconnected uniform distributions and their reconstruction
from autoencoders with one-dimensional latent space. The
outliers (red crosses) from the middle of two clusters show
reconstruction errors (the length of thin black lines) smaller
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Figure 11. AE and NAE trained on a bi-modal distribution. Here,
NAE is trained with its decoder fixed. The green lines denotes
the decoder manifolds. The dotted lines link inputs and their
reconstructions.

than some inliers (blue dots). (Tong et al., 2019) noted this
type of outlier reconstruction and mentioned that outliers
“close to the mean” of data or “in the convex hull” of data
are likely to be reconstructed.

This phenomenon arises from the inductive bias of an au-
toencoder that its encoder and decoder are smooth mappings.
The extreme case of this inductive bias can be found in linear
principal component analysis (PCA). PCA, a linear coun-
terpart of an autoencoder (Bourlard & Kamp, 1988), would
reconstruct any outliers which reside on the principal axis.
Note that this phenomenon is consistent with the objective
function of an autoencoder and PCA, as the objective does
not penalize the reconstruction of outliers.

Compositionality When there is a compositional structure
in data, we can still observe a reconstructed outlier even if
it lies outside of the convex hull of training data. The data
are compositional if each datum can be broken down into
smaller reusable components; For example, MNIST can be
considered highly compositional, since a digit image can be
decomposed into smaller sub-patterns, such as straight lines
and curves. An outlier can be successfully reconstructed
when composed of a subset of components existing in the
training data.

HalfMNIST and ChimeraMNIST datasets (See Section D.1)
are constructed to demonstrate the effect of compositionality
in outlier reconstruction. Although these images are not in
the convex hull of MNIST digits, they share components
found in MNIST. As shown in Figure 1, an autoencoder
trained on MNIST have no problem reconstructing them
and achieves poor AUC scores in classifying HalfMNIST
and ChimeraMNIST from MNIST (See Table 4).

It seems that an autoencoder learns to reconstruct each part

of an image separately but is not able to judge whether the
combination of the parts is valid as a whole. This composi-
tional way of processing facilitates generalization of a model
(Keysers et al., 2019), but the generalization of reconstruc-
tion in OOD inputs is not desirable for an autoencoder-based
outlier detector.

Figure 12. Detecting hold-out digit 9 from the rest of MNIST. Re-
construction errors and AUC scores are shown across multiple
values of Dz. The error bars denote 80-percentile around the
means.

Distributed representation We suspect the outlier recon-
struction due to compositional processing may be attributed
to the distributed representation (Mikolov et al., 2013) used
in an autoencoder. To show the effect of the distributed
representation, we train autoencoders on MNIST with the
digit 9 excluded (MNISTnot9) and measure the reconstruc-
tion error of the digit 9 (MNIST9) under multiple values of
latent dimensionality Dz. Figure 12 shows the result. We
observe the outlier reconstruction of 9 possibly due to the
compositional processing mentioned above. However, the
outlier reconstruction occurs only when Dz is large. The
latent representation is more distribution for large Dz, as a
larger number of hidden neurons are used to represent an
input. This observation suggests that the distributed repre-
sentation used in an autoencoder enables the compositional
processing and thus facilitates outlier reconstruction.

D. Experimental Detail
Here, we present details on our experiments, including
datasets, network architectures, and details regarding im-
plementing NAE and baselines. A sample code is provided
in the supplementary material. We will make the whole
experiment codebase public.

D.1. Datasets

Here, we present the details on the datasets used in the
experiments.

2D Synthetic Dataset We use a two-dimensional mix-
ture of 8 Gaussians initially used in (Grathwohl et al.,
2018). The means of 8 Gaussians are [2

√
2, 0]>, [0, 2

√
2]>,

[−2
√

2, 0]>, [0,−2
√

2]>, [2, 2]>, [−2, 2]>, [2,−2]>,
[−2,−2]>. All Gaussians are isotropic and have a covari-
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ance matrix of
√
2
4 I.

Image Dataset Table 9 summarizes image datasets used in
our experiment. Pixel values are de-quantized by adding
uniform noise u ∼ U(0, 1) and then normalized to interval
[0, 1].

For MNIST, FashionMNIST, SVHN, and CIFAR-10, we
use the predefined test splits as the test sets and randomly
select 10% from the train splits as validation set.

We use the non-background Omniglot dataset only during
the test phase. Omniglot images are inverted in order to
produce black background.

For CelebA, we used the official train-validation-test split.
Each image in CelebA is center-cropped in 140×140 and
then resized into 32×32 or 64×64 depending on the exper-
iment. When MNIST and Fashion MNIST are needed to
be fed to a network trained on 32×32 images, an input is
resized into 32×32. The training set of ImageNet32 (Oord
et al., 2016) is the randomly selected 80% from the original
train split, and the rest 20% are used as the validation set.
We use the original validation split as the test set in our
experiment.

ConstantGray dataset is a synthetic dataset with images all
pixels of which have the same gray-scale value. An image
in ConstantGray dataset is a 1×28×28 or 3×32×32 array
filled with a single number drawn from the interval [0, 1].
As shown in our experiment, most of existing autoencoders
tend to reconstruct an image from ConstantGray with sig-
nificantly low reconstruction error. Similarly, generative
models tend to assign a very high likelihood to an image
from ConstantGray. A similar observation is provided in
Serrà et al. (2020).

Noise dataset is created by randomly generating each pixel
value from interval [0, 1]. Noise dataset is very difficult
to reconstruct exactly. Classifying Noise dataset can be a
sanity check for an outlier detection that it can detect very
obvious outliers.

Two additional datasets synthesized from MNIST are used.
HalfMNIST dataset is created by randomly replacing the
upper or the lower half of an MNIST test image with zero
pixels. An image in ChimeraMNIST dataset is constructed
by randomly joining the upper and the lower part of two
MNIST test images from different classes. We add six
zero pixels in the middle as a padding. HalfMNIST and
ChimeraMNIST images are clearly OOD from MNIST but
partially shares local visual features.

D.2. Network Architecture

Several network architectures are used throughout the exper-
iments, and the architectures are summarized in Table 10.
We name the architectures as FCRes2, Conv28, Conv32,

Conv32Big, and Conv64. The numbers indicate the dimen-
sionality of an input or a spatial dimension of an input image.
All networks do not have batch normalization, as batch nor-
malization violates the assumption in EBM that the energy
is a deterministic function of an input. Conv32 and Conv64
architectures are similar to ones used in (Ghosh et al., 2020).
The encoder of Conv32Big is the energy function used in
Du & Mordatch (2019), and the decoder of Conv32big is
the generator used in Miyato et al. (2018).

FCRes2 is used in 2D density estimation. Conv28 is used
in the experiments with MNIST dataset. Conv32 is used
in the experiments with CIFAR-10 dataset, and Conv32Big
is used in the experiments with ImageNet 32×32 dataset.
Conv64 is used in the experiments with CelebA 64×64.

We use the following notations to denote operations in net-
works.

• Conv2d(in, out, kernel, stride, padding): A
2D convolutional operation with bias.

• ConvT2d(in, out, kernel, stride, padding): A
2D transposed convolutional operation with bias.

• ReLU: A rectified linear unit activation function. y =
max{0, x}.

• LReLU: A leaky ReLU function with the negative slope
of 0.2.

• Sigmoid: A sigmoid activation function. y = 1/(1 +
exp(−x)).

• MaxPool(kernel size): A max-pooling operator with
the window of kernel size×kernel size and the
stride of kernel size.

• Bilinear(scale factor): A bilinear upscaling op-
eration that upsamples an input array into an
scale factor times larger array.

• Nearest(scale factor: A nearest upscaling opter-
ation which upsamples an input array into an
scale factor times larger array.

• FC(in, out): A fully-connected layer performing a lin-
ear mapping with a bias.

• FCRes(in, hidden, out): A residual block composed
of two fully-connected layers.

F1 =FC(in, hidden)
F2 =FC(hidden, out)
y =x+ F2(ReLU(F1(ReLU(x))))

for an input x and an output y.

• Res(in, hidden, out): A convolutional residual block
composed of two Conv2d layers. For an input x and an
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Table 9. Summary of dataset statistics.
Dataset Original Shape Training Validation Test

Constant (Synthetic) - - 4,000 4,000
MNIST 1×28×28 54,000 6,000 10,000

FashionMNIST 1×28×28 54,000 6,000 10,000
Omniglot 1×28×28 - - 13,180

SVHN 3×32×32 65,930 7,327 20,632
CIFAR-10 3×32×32 45,000 5,000 10,000

CelebA 3×178×218 162,079 20,260 20,260
ImageNet32 3×32×32 1,024,919 256229 49999

Noise (Synthetic) 3×32×32 - 4,000 4,000
HalfMNIST (Synthetic) 1×28×28 - - 10,000

ChimeraMNIST (Synthetic) 1×28×28 - - 10,000

output y,

F1 = Conv2d(in, hidden, 3, 1, 1)
F2 = Conv2d(hidden, out, 3, 1, 1)
y = x+ F2(LReLU(F1(LReLU(x))))

• ResUp(in, hidden, out, scale): A residual block
with upsampling.

F1 = Conv2d(in, hidden, 3, 1, 1)
F2 = Conv2d(hidden, out, 3, 1, 1)
U = Nearest(scale)

y = U(x) + F2(ReLU(F1(U(ReLU(x)))))

• ResAtt(in, hidden, out): A residual at-
tention block which has two residual blocks
R1 = Res(in, hidden, out) and R2 =
Res(in, hidden, out) and operates as y =
x + R1(x) � Sigmoid(R2(x)), where � denotes
an element-wise product.

D.3. NAE Implementation

The procedure for generating a negative sample in NAE is
described in Algorithm 1.

Sampling Parameters and Techniques The most impor-
tant hyperparameter in NAE is the parameters related to
MCMC sampling. Detailed MCMC parameters can be
found in Table 11.

Note that the step size parameters and the noise parameters
in 2D setting follows the theoretically motivated relationship
2λ = σ2. For the rest of the cases, 2λ 6= σ2, meaning
that the effective temperatures are implicitly fixed to values
different from 1. In all experiments, we set T = Tz, i.e., the
temperature of the latent chain is tied to the temperature of
NAE. In 2D dataset experiments, the temperature is tuned
with gradient descent. For faster convergence, in updating
T , we use a learning rate 100 times larger than that used to
update the model parameters.

Following Du & Mordatch (2019), we clip the gradient
∇x logEθ(x) is clipped at 0.01.

We use the sample replay buffer with the buffer size of
10,000 and the replay ratio of 95% as described in Du &
Mordatch (2019). A starting point of a latent chain is drawn
from the noise distribution q0(z) with the probability of
5% or randomly drawn from the replay buffer with the
probability of 95%.

The choice of a noise distribution q0(z) is dependent on the
configuration of the latent space. For RDz , q0(z) is a stan-
dard normal distribution. For SDz−1, a uniform distribution
is used. Samples from a uniform distribution on SDz−1 is
generated by first draw samples from a standard normal dis-
tribution in RDz , then project them onto SDz−1 by dividing
with its norm.

σx annealing in Table 11 indicates that during MCMC in X ,
we let the standard deviation of εx decay as the visible chain
proceeds: std(εx) = 0.05/(1 + step) for step = 0, · · · , s
with s as the number of steps in X . This contributes to
obtaining finer samples.

For generating new samples, a longer latent chain is used
instead of a sample replay buffer. In our experiments, we
let a latent chain be 8 times longer than the chain used in
training.

Learning of NAE NAE is trained using Adam optimizer
(Kingma & Ba, 2014) with the learning rate of 1 × 10−5

for 50 epochs. When using the reconstruction error as the
energy function, we divide the reconstruction error by the
dimensionality of an input data. This keeps the energy in a
reasonable scale and facilitates hyperparameter setting.

Autoencoder pre-training is not used in 2D experiments but
is conducted for 100 epochs for MNIST and 120 epochs for
CIFAR-10.

The encoders and the decoders in NAE are regularized as
follows:

• FCRes2: No regularization;
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Table 10. Network architectures for autoencoders.
FCRes2 (Dx=2) Conv28 (Dx =1×28×28) Conv32 (Dx =3×32×32)

Encoder

FC(2, 256)-
FCRes(256, 1024)-
FCRes(256, 1024)-
FCRes(256, 1024)-
FCRes(256, 1024)-
FCRes(256, 1024)-ReLU-
FC(256, Dz)

Conv2d(1, 32, 3, 1, 1)-ReLU-
Conv2d(32, 64, 3, 1, 1)-ReLU-MaxPool(2)-
Conv2d(64, 64, 3, 1, 1)-ReLU-
Conv2d(64, 128, 3, 1, 1)-ReLU-MaxPool(2)-
Conv2d(128, 1024, 4, 1, 0)-ReLU-
FC(1024, Dz)

Conv2d(3, 32, 4, 2, 0)-ReLU-
Conv2d(32, 64, 4, 2, 0)-ReLU-
Conv2d(64, 128, 4, 2, 0)-ReLU-
Conv2d(128, 256, 2, 2, 0)-ReLU-
Conv2d(256, Dz, 1, 1, 0)-ReLU-
ResAtt(Dz, 1024, Dz)

Decoder

FC(Dz, 256)-
FCRes(256, 1024)-
FCRes(256, 1024)-
FCRes(256, 1024)-
FCRes(256, 1024)-
FCRes(256, 1024)-ReLU-
FC(256, 2)

ConvT2d(Dz, 128, 4, 1, 0)-ReLU-Bilinear(2)-
ConvT2d(128, 64, 3, 1)-ReLU-
ConvT2d(64, 64, 3, 1)-ReLU-Bilinear(2)-
ConvT2d(64, 32, 3, 1)-ReLU-
ConvT2d(32, 1, 4, 1)-Sigmoid

ConvT2d(Dz, 256, 6, 1)-ReLU-
ConvT2d(256, 128, 4, 2)-ReLU-
ConvT2d(128, 64, 4, 2)-ReLU-
ConvT2d(64, 3, 3, 1)-Sigmoid

Conv32Big (Dx =3×32×32) Conv64 (Dx =3×64×64)

Encoder

Conv2d(3, 128, 3, 1, 1)-
Res(128, 128, 128)-AvgPool(2)-
Res(128, 128, 128)-
Res(128, 256, 256)-AvgPool(2)-
Res(256, 256, 256)-
Res(256, 256, 256)-AvgPool(2)-
Res(256, 256, 256)-LReLU-
AvgPool(4)-FC(256, Dz)

Conv2d(3, 256, 5, 2, 0)-ReLU-
Conv2d(245, 512, 5, 2, 0)-ReLU-
Conv2d(512, 1024, 5, 2, 0)-ReLU-
Conv2d(1024, 2048, 5, 2, 0)-ReLU-
FC(2048, Dz)

Decoder

ConvT2d(Dz, 128, 4, 1)-
ResUp(128, 128, 128, 2)-
ResUp(128, 128, 128, 2)-
ResUp(128, 128, 128, 2)-ReLU-
Conv2d(128, 3, 3, 1, 1)-Sigmoid

ConvT2d(Dz, 1024, 8, 1)-ReLU-
ConvT2d(1024, 512, 4, 2, 1)-ReLU-
ConvT2d(512, 256, 4, 2, 1)-ReLU-
ConvT2d(256, 128, 4, 2, 1)-ReLU-
ConvT2d(128, 3, 1, 1, 0)-Sigmoid

• Conv28: L2 norm of the encoder’s weights with the coef-
ficient 0.0001;

• Conv32: L2 norm of the encoder’s weights with the coef-
ficient 0.0001;

• Conv32Big: Spectral normalization (Miyato et al., 2018)
(encoder) and group normalization (Wu & He, 2018) with
8 groups (decoder);

• Conv64: group normalization with 8 groups (encoder &
decoder).

D.4. Baseline Implementation

In all autoencoder-based methods, i.e., NAE, AE, DAE,
WAE, VAE, DAGMM, VQVAE and Ganomaly, we ensure
that they all use the same network architecture.

The optimal Dz is searched among
{2, 4, 8, 16, 32, 64, 128, 256}. The best parameter is
selected according to AUC of classifying a separate OOD
dataset, as described in the main manuscript.

PixelCNN++ (Salimans et al., 2017) is implemented based
on an open-source code base1. We use set parameters as

1https://github.com/pclucas14/

nr resnet=5 and nr filters=80. Input values are
scales to [−1, 1] only when running PixelCNN++.

Glow (Kingma & Dhariwal, 2018) is also implemented
based on the open-source repository2. We set K = 12,
L = 1, hidden channels = 64.

We failed to obtain sensible result using GPND (Pidhorskyi
et al., 2018)3.

DAGMM (Zong et al., 2018) is implemented based on the
public repository4. We failed to train it on CIFAR-10 such
that it produces AUC of 1.0 for Noise dataset, and there-
fore we exclude the result from the Table 2 of the main
manuscript.

WAE-MMD is implemented. We use median heuristic to de-
termine the kernel parameter of RBF kernel. Regularization
coefficient is searched between 0.001 and 0.1

For DAE, we use Gaussian noise with standard deviation of

pixel-cnn-pp
2https://github.com/chaiyujin/

glow-pytorch
3https://github.com/podgorskiy/GPND
4https://github.com/danieltan07/dagmm
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Table 11. Sampling parameters for NAE. See Section D.3 for description.
2D MNIST CIFAR-10 CELEBA

LATENT SPACE RDz SDz−1 SDz−1 SDz−1

STEP SIZE λz 0.005 0.2 1 1
NOISE σz 0.1 0.05 0.02 0.02
LATENT CHAIN LENGTH τz 10 10 20 20
REPLAY BUFFER FOR LATENT CHAIN O O O O
STEP SIZE λx 0.005 10 10 10
NOISE σx 0.1 0.05 0.02 0.02
MAIN CHAIN LENGTH τx 30 50 40 40
σx ANNEALING X O O O
GRADIENT CLIPPING IN X X O O O
TEMPERATURE T = Tz 0.5, TRAINABLE 1, FIXED 1, FIXED 1, FIXED
MH REJECTION O X X X

Algorithm 1 Negative sample generation using OMI

Input: Sample replay buffer B, noise distribution q0(z),
latent energy Hθ(z), NAE energy Eθ(z), decoder fd(z)

Latent chain parameters σz, λz, τz
Main chain parameters σx, λx, τx

// Initialization
Draw u from Uniform(0, 1).
if u < 0.95 then

Draw z0 from B
else

Draw z0 from q0(z)
end if
// Latent chain
for t = 0 to τz do
zt = −λz∇Hθ(zt−1) + σzε, ε ∼ N (0z, Iz)
// Project zt to SDz−1 if needed

end for
Append zτz to B
x0 = fd(zτz) // On-manifold initialization
// Main chain
for t = 0 to τx do
xt = −λx∇Eθ(xt−1) + σxε, ε ∼ N (0x, Ix)
// Metropolis-Hastings rejection step if needed
// Anneal σx if needed

end for
return xτx // Negative sample

0.3.

We implement VQVAE based on the PyTorch version5. In
the reproduction of Ganomaly, we use the official imple-
mentation from the authors6.

5https://github.com/ritheshkumar95/
pytorch-vqvae

6https://github.com/samet-akcay/ganomaly
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