
Accelerated O(1/k2) Rate for Smooth Convex-Concave Minimax Problems on Squared Gradient Norm

A. Algorithm specifications
For the sake of clarity, we precisely specify all the algorithms discussed in this work.

Simultaneous gradient descent for smooth minimax optimization is defined as

xk+1 = xk − α∇xL(xk,yk)

yk+1 = yk + α∇yL(xk,yk).

The notation becomes more concise with the joint variable notation zk = (xk,yk) and the saddle operator (2), where the
sign change in y-gradient is already included:

zk+1 = zk − αG(zk).

Alternating gradient descent-ascent is defined as

xk+1 = xk − α∇xL(xk,yk)

yk+1 = yk + α∇yL(xk+1,yk).

Note that we update the x variable first and then use it to update the y-iterate.

The extragradient (EG) algorithm is defined as

zk+1/2 = zk − αG(zk),

zk+1 = zk − αG(zk+1/2).

Popov’s algorithm, or optimistic descent, is defined as

zk+1 = zk − αG(zk)− α
(
G(zk)−G(zk−1)

)
.

Simultaneous gradient descent with anchoring (SimGD-A) (Ryu et al., 2019) is defined as

zk+1 = zk − 1− p
(k + 1)p

G(zk) +
(1− p)γ
k + 1

(z0 − zk),

where p ∈ (1/2, 1) and γ > 0. It has been proved in Ryu et al. (2019) that SimGD-A converges at O(1/k2−2p) rate. In this
paper, we always used γ = 1 and p = 1

2 + 10−2.

B. Omitted proofs of Section 2
The following identities follow directly from the definition of EAG iterates:

zk − zk+1 = βk(zk − z0) + αkG(zk+1/2) (26)

zk+1/2 − zk+1 = αk

(
G(zk+1/2)−G(zk)

)
(27)

z0 − zk+1 = (1− βk)(z0 − zk) + αkG(zk+1/2). (28)

B.1. Proof of Lemma 2

Recall that G is a monotone operator, so that

0 ≤
〈
zk − zk+1,G(zk)−G(zk+1)

〉
.
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Therefore,

Vk − Vk+1

≥ Vk − Vk+1 −
Bk
βk

〈
zk − zk+1,G(zk)−G(zk+1)

〉
= Ak

∥∥G(zk)
∥∥2

+Bk
〈
G(zk), zk − z0

〉
−Ak+1

∥∥G(zk+1)
∥∥2 −Bk+1

〈
G(zk+1), zk+1 − z0

〉
− Bk
βk

〈
zk − zk+1,G(zk)−G(zk+1)

〉
(a)
= Ak

∥∥G(zk)
∥∥2

+Bk
〈
G(zk), zk − z0

〉
−Ak+1

∥∥G(zk+1)
∥∥2

+Bk+1

〈
G(zk+1), (1− βk)(z0 − zk) + αkG(zk+1/2)

〉
−Bk

〈
zk − z0,G(zk)−G(zk+1)

〉
− αkBk

βk

〈
G(zk+1/2),G(zk)−G(zk+1)

〉
(b)
= Ak

∥∥G(zk)
∥∥2 −Ak+1

∥∥G(zk+1)
∥∥2

+ αkBk+1

〈
G(zk+1),G(zk+1/2)

〉
− αkBk

βk

〈
G(zk+1/2),G(zk)−G(zk+1)

〉
,

(29)

where (a) follows from (26) and (28), and (b) results from cancellation and collection of terms using (7). Next, we have

0 ≤ R2
∥∥zk+1/2 − zk+1

∥∥2 −
∥∥G(zk+1/2)−G(zk+1)

∥∥2

= α2
kR

2
∥∥G(zk)−G(zk+1/2)

∥∥2 −
∥∥G(zk+1/2)−G(zk+1)

∥∥2
(30)

from R-Lipschitzness of G and (27). Now multiplying the factor Ak
α2
kR

2 to (30) and subtracting from (29) gives

Vk − Vk+1

≥ Ak
∥∥G(zk)

∥∥2 −Ak+1

∥∥G(zk+1)
∥∥2

+ αkBk+1

〈
G(zk+1),G(zk+1/2)

〉
− αkBk

βk

〈
G(zk+1/2),G(zk)−G(zk+1)

〉
−Ak

∥∥∥G(zk)−G(zk+1/2)
∥∥∥2

+
Ak
α2
kR

2

∥∥∥G(zk+1/2)−G(zk+1)
∥∥∥2

=
Ak(1− α2

kR
2)

α2
kR

2

∥∥∥G(zk+1/2)
∥∥∥2

+

(
Ak
α2
kR

2
−Ak+1

)∥∥G(zk+1)
∥∥2

+

(
2Ak −

αkBk
βk

)〈
G(zk),G(zk+1/2)

〉
+

(
αkBk+1 +

αkBk
βk

− 2Ak
α2
kR

2

)〈
G(zk+1/2),G(zk+1)

〉
.

(31)

Observe that the
〈
G(zk),G(zk+1/2)

〉
term vanishes because of (6), and that

αkBk+1 +
αkBk
βk

= αk

(
Bk

1− βk
+
Bk
βk

)
=

αkBk
βk(1− βk)

=
2Ak

1− βk
.

Furthermore, by (8), we have

Ak+1 = αk+1
Bk+1

2βk+1
=
αkβk+1(1− α2

kR
2 − β2

k)

(1− α2
kR

2)βk(1− βk)

Bk
2βk+1(1− βk)

=
Ak(1− α2

kR
2 − β2

k)

(1− α2
kR

2)(1− βk)2
.
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Plugging these identities into (31) and simplifying, we get

Vk − Vk+1

≥ Ak(1− α2
kR

2)

α2
kR

2

∥∥∥G(zk+1/2)
∥∥∥2

+
Ak(1− α2

kR
2 − βk)2

α2
kR

2(1− α2
kR

2)(1− βk)2

∥∥G(zk+1)
∥∥2

− 2Ak(1− α2
kR

2 − βk)

α2
kR

2(1− βk)

〈
G(zk+1/2),G(zk+1)

〉
≥ 0,

where the last inequality is an application of Young’s inequality.

B.2. Proof of Lemma 1

We may assume R = 1 without loss of generality because we can recover the general case by replacing αk with αkR.
Rewrite (5) as

αk − αk+1 =
α3
k

(k + 1)(k + 3)(1− α2
k)
. (32)

Suppose that we have already established 0 < αN < ρ for some N ≥ 0 and ρ ∈ (0, 1), where ρ satisfies

γ :=
1

2

(
1

N + 1
+

1

N + 2

)
ρ2

1− ρ2
< 1. (33)

Note that (33) holds true for all N ≥ 0 if ρ < 3
4 . Now we will show that given (33),

αN > αN+1 > · · · > αN+k > (1− γ)αN for all k ≥ 0,

so that αk ↓ α for some α ≥ (1− γ)αN . It suffices to prove that (1− γ)αN < αN+k < ρ for all k ≥ 0, because it is clear
from (32) that {αk}k≥0 is decreasing.

We use induction on k to prove that αN+k ∈ ((1− γ)αN , ρ). The case k = 0 is trivial. Now suppose that (1− γ)αN <
αN+j < ρ holds true for all j = 0, . . . , k. Then by (32), for each 0 ≤ j ≤ k we have

0 < αN+j − αN+j+1 =
1

(N + j + 1)(N + j + 3)

α3
N+j

1− α2
N+j

<
1

(N + j + 1)(N + j + 3)

ρ2αN
1− ρ2

.

Summing up the inequalities for j = 0, . . . , k, we obtain

0 < αN − αN+k+1 <

k∑
j=0

1

(N + j + 1)(N + j + 3)

ρ2αN
1− ρ2

<
ρ2αN
1− ρ2

∞∑
j=0

1

(N + j + 1)(N + j + 3)

=
ρ2αN
1− ρ2

1

2

(
1

N + 1
+

1

N + 2

)
= γαN ,

which gives (1− γ)αN < αN+k+1 < αN < ρ, completing the induction.

In particular, when α0 = 0.618, direct calculation gives 0.437 > αN > 0.4366 when N = 1000. With ρ = 0.437 and
N = 1000, we have γ = 1

2

(
1

N+1 + 1
N+2

)
ρ2

1−ρ2 < 2.5× 10−4, which gives α ≥ (1− γ)αN ≈ 0.4365.
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B.3. Proof of Theorem 1

As in the proof of Theorem 2, assume without loss of generality that R = 1. The strategy of the proof is basically the
same as in Theorem 2; we construct a nonincreasing Lyapunov function by combining the same set of inequalities, but with
different (more intricate) coefficients. For k ≥ 0, let

Vk = Ak
∥∥G(zk)

∥∥2
+Bk

〈
G(zk), zk − z0

〉
.

As in Lemma 2, we will use Bk = 1
1−βk = k + 1, and ak ≥ 0 will be specified later. Because we have the fixed step-size α,

the identities (26), (27), and (28) become

zk+1/2 − zk+1 = α
(
G(zk+1/2)−G(zk)

)
zk − zk+1 =

1

k + 2
(zk − z0) + αG(zk+1/2)

zk+1 − z0 =
k + 1

k + 2
(zk − z0)− αG(zk+1/2).

Now, subtracting the same inequalities from monotonicity and Lipschitzness from Vk − Vk+1 as in Lemma 2, each with
coefficients (k + 1)(k + 2) and τk ≥ 0 (to be specified later), we obtain

Vk − Vk+1

≥ Vk − Vk+1 − (k + 1)(k + 2)
〈
zk − zk+1,G(zk)−G(zk+1)

〉
− τk

(∥∥∥zk+1/2 − zk+1
∥∥∥2

−
∥∥∥G(zk+1/2)−G(zk+1)

∥∥∥2
)

= (Ak − α2τk)
∥∥G(zk)

∥∥2
+ τk(1− α2)

∥∥∥G(zk+1/2)
∥∥∥2

+ (τk −Ak+1)
∥∥G(zk+1)

∥∥2

+
(
2α2τk − α(k + 1)(k + 2)

) 〈
G(zk),G(zk+1/2)

〉
+
(
α(k + 2)2 − 2τk

) 〈
G(zk+1/2),G(zk+1)

〉
= Tr (MkSkM

ᵀ
k) ,

where we define Mk :=
[
G(zk) G(zk+1/2) G(zk+1)

]
and

Sk :=

 Ak − α2τk α2τk − α
2 (k + 1)(k + 2) 0

α2τk − α
2 (k + 1)(k + 2) τk(1− α2) α

2 (k + 2)2 − τk
0 α

2 (k + 2)2 − τk τk −Ak+1

 . (34)

If Sk � O, then Tr (MkSkM
ᵀ
k) = Tr (SkM

ᵀ
kMk) ≥ 0 because the positive semidefinite cone is self-dual with respect

to the matrix inner product 〈A,B〉 = Tr(AᵀB). Because Bk = k + 1 grows linearly, provided that the sequence {Ak}
grows quadratically, we can derive O(1/k2) convergence by using similar line of arguments as in the proof of Theorem 2.
This reduction of the proof into a search of appropriate parameters (i.e., τk) that meet semidefiniteness constraints (Sk � O
in our case) while allowing for desired rate of growth in Lyapunov function coefficients (Ak in our case) was inspired by
works of Taylor et al. (2017) and Taylor & Bach (2019). In the following, we demonstrate that careful choices of A0 and
τk make Ak asymptotically close to α(k+1)(k+2)

2 , so quadratic growth is guaranteed. We begin with the following lemma,
which will be used throughout the proof.

Lemma 5. Let k ∈ N≥0 and α ∈
(
0, 1

2

]
be fixed, and define

`k :=
α(k + 2)(k + 1 + kα)

2(1 + α)
, uk :=

α(k + 2)(k + 1− kα)

2(1− α)
.



Accelerated O(1/k2) Rate for Smooth Convex-Concave Minimax Problems on Squared Gradient Norm

Then,

uk >
α(k + 1)(k + 2)

2
> `k (35)

≥ α(k + 1)(k + 1 + α(k + 2))

2(1 + α)
(36)

≥ α(k + 1)2 − α3k(k + 2)

2(1− α2)
(37)

≥ max

{
α(k + 1)(k + 1− α(k + 2))

2(1− α)
,
α2(k + 1)(k + 2)

1 + α

}
(38)

≥ α2(k + 1)(k + 2) + α3(k + 2)2

2(1 + α)
. (39)

We shall prove Lemma 5 after the proof of the main theorem and for now, focus on why we need such results. Observe
that all the quantities within the lines (35) through (37) are asymptotically close to αk2

2 . We show that Ak ∈ Ik := [`k, uk]
for all k ≥ 0, which implies the quadratic growth. The quantities in Lemma 5 are used for choosing the right τk and for
showing the positive semidefiniteness of Sk.

Subdivide the interval Ik into two parts:

I−k =

[
`k,

α(k + 1)(k + 2)

2

]
, I+

k =

[
α(k + 1)(k + 2)

2
, uk

]
.

We divide cases: Ak ∈ I−k and Ak ∈ I+
k . However, the latter case is in fact not needed unless we wish to extend the proof

for α beyond 0.1265
R . If that is not the case, we recommend the readers to refer to Case 1 only. Nevertheless, we exhibit

analysis of both cases because Case 2 might provide useful data for enlarging or even completely determining the range of
convergent step-sizes for EAG-C.

Case 1. Suppose that Ak ∈ I−k . In this case, we choose

τk =
(k + 2)2 (2(1− α)Ak − α(k + 1)(k + 1− α(k + 2)))

2 (α(k + 2)(k + 1− kα)− 2(1− α)Ak)
. (40)

The denominator and numerator of (40) are both positive because uk > Ak >
α(k+1)(k+1−α(k+2))

2(1−α) (see (38)). Thus, τk > 0.
Next, define Ak+1 as

Ak+1 =
α(k + 2)2

(
4(1− α)Ak − α(k + 1− α(k + 2))2

)
4(1− α) ((1− α)Ak + α2(k + 1)(k + 2))

=
α(k + 2)2

1− α

(
1− α(k + 1 + α(k + 2))2

4((1− α)Ak + α2(k + 1)(k + 2))

)
. (41)

Then (34) can be rewritten as

Sk =

s11 s12 0
s12 s22 s23

0 s23 s33

 ,
where

s11 =
(α(k + 1)(k + 2)− 2Ak)

(
2(1− α)Ak + α2(k + 1)(k + 2)− α3(k + 2)2

)
2 (α(k + 2)(k + 1− kα)− 2(1− α)Ak)

(42)

s12 = −α(1− α)(k + 2)(k + 1 + α(k + 2))(α(k + 1)(k + 2)− 2Ak)

2 (α(k + 2)(k + 1− kα)− 2(1− α)Ak)
(43)
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s22 =
(1− α2)(k + 2)2 (2(1− α)Ak − α(k + 1)(k + 1− α(k + 2)))

2 (α(k + 2)(k + 1− kα)− 2(1− α)Ak)
(44)

s23 = −
(k + 2)2

(
2(1− α2)Ak − α(k + 1)2 + α3k(k + 2)

)
2 (α(k + 2)(k + 1− kα)− 2(1− α)Ak)

(45)

s33 =
(k + 2)2

(
2(1− α2)Ak − α(k + 1)2 + α3k(k + 2)

) (
2(1− α)Ak + α2(k + 1)(k + 2)− α3(k + 2)2

)
4(1− α) (α(k + 2)(k + 1− kα)− 2(1− α)Ak) ((1− α)Ak + α2(k + 1)(k + 2))

. (46)

The expressions seem ridiculously complicated, but there are a number of repeating terms. Let

E1 = α(k + 2)(k + 1− kα)− 2(1− α)Ak

E2 = α(k + 1)(k + 2)− 2Ak.

Because Ak ≤ α(k+1)(k+2)
2 < uk (see (35)), we have E1 > 0, E2 ≥ 0. (Note that E2 = 0 only in the boundary case

Ak = sup I−k .) Next, put

E3 = 2(1− α)Ak − α(k + 1)(k + 1− α(k + 2)),

which is a factor that appears within the definition of τk (40); we have already seen that E3 > 0. Further, let

E4 = 2(1− α)Ak + α2(k + 1)(k + 2)− α3(k + 2)2

E5 = (1− α)Ak + α2(k + 1)(k + 2)

E6 = 2(1− α2)Ak − α(k + 1)2 + α3k(k + 2)

E7 = k + 1 + α(k + 2).

It is obvious that E5, E7 > 0, and E6 > 0 follows directly from (37). To see that E4 > 0, observe that k + 1− α(k + 2) =

(k + 2)
(
k+1
k+2 − α

)
≥ (k + 2)

(
1
2 − α

)
≥ 0, provided that α ≤ 1

2 . This implies

E4 = 2(1− α)Ak + α2(k + 2) (k + 1− (k + 2)α) > 0.

Now we can rewrite (42) through (46) as

s11 =
E2E4

2E1

s12 = −α(1− α)(k + 2)E2E7

2E1

s22 =
(1− α2)(k + 2)2E3

2E1

s23 = − (k + 2)2E6

2E1

s33 =
(k + 2)2E4E6

4(1− α)E1E5
.

This immediately shows that the diagonal entries sii are nonnegative for i = 1, 2, 3. By brute-force calculation, it is not
difficult to verify the identity

(1 + α)E3E4 = α2(1− α)E2E
2
7 + 2E5E6.

Using this, we see that v :=
[
α(k+2)E7

2E5

E4

2(1−α)E5
1
]ᵀ

satisfies Skv = 0, and this implies detSk = 0. The cofactor-
expansion of detSk along the first row gives

0 = detSk = s11

∣∣∣∣s22 s23

s23 s33

∣∣∣∣− s12

∣∣∣∣s12 s23

0 s33

∣∣∣∣ ⇐⇒ ∣∣∣∣s22 s23

s23 s33

∣∣∣∣ =
s2

12s33

s11
> 0
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when s11 > 0, and via continuity argument we can argue that
∣∣∣∣s22 s23

s23 s33

∣∣∣∣ ≥ 0 even in the boundary case s11 = 0. Similarly

one can show that
∣∣∣∣s11 s12

s12 s22

∣∣∣∣ ≥ 0. Therefore, we have shown that all diagonal submatrices of Sk (including the trivial case∣∣∣∣s11 0
0 s33

∣∣∣∣ = s11s33 ≥ 0) have nonnegative determinants, that is, Sk � O.

Finally, (41) shows that Ak+1 is increasing with respect to Ak. We see that

Ak+1

∣∣∣
Ak=

α(k+1)(k+2)
2

=
α(k + 2)((k + 1)(k + 3)− α2(k + 2)2)

2(1− α2)(k + 1)
<
α(k + 2)(k + 3)

2
(47)

and

Ak+1|Ak=`k − `k+1 =
α2
(
(1− 3α− α2 − α3)k + 1− 8α+ α2 − 2α3

)
2(1− α2) ((1 + α)2k + 1 + α+ 2α2)

,

and the last expression is nonnegative because of the assumption (4), which we restate here for the case R = 1 for
convenience: 1− 3α− α2 − α3 ≥ 0 and 1− 8α+ α2 − 2α3 ≥ 0. This proves that Ak+1 ∈ I−k+1 ⊂ Ik+1, as desired.

Case 2. Suppose that Ak ∈ I+
k . The proof would be similar to Case 1, but choices of τk and Ak+1 are different. We let

τk =
(k + 2)2 (2(1 + α)Ak − α(k + 1)(k + 1 + α(k + 2)))

4(1 + α)Ak − 2α(k + 2)(k + 1 + kα)
. (48)

Since Ak > `k >
α(k+1)(k+1+α(k+2))

2(1+α) , the denominator and numerator of (48) are both positive and thus τk > 0. Next, let

Ak+1 =
α(k + 2)2

(
4(1 + α)Ak − α(k + 1 + α(k + 2))2

)
4(1 + α) ((1 + α)Ak − α2(k + 1)(k + 2))

=
α(k + 2)2

1 + α

(
1− α(k + 1− α(k + 2))2

4((1 + α)Ak − α2(k + 1)(k + 2))

)
. (49)

Then we can check that

s11 =
(2Ak − α(k + 1)(k + 2))(2(1 + α)Ak − α2(k + 1)(k + 2)− α3(k + 2)2)

4(1 + α)Ak − 2α(k + 2)(k + 1 + kα)

s33 =
(k + 2)2

(
2(1 + α)Ak − α2(k + 1)(k + 2)− α3(k + 2)2

) (
2(1− α2)Ak − α(k + 1)2 + α3k(k + 2)

)
4(1 + α) (2(1 + α)Ak − α(k + 2)(k + 1 + kα)) (2(1 + α)Ak − α2(k + 1)(k + 2))

,

and so on. (Note that 2Ak − α(k + 1)(k + 2) ≥ 0 because now we are assuming that Ak ∈ I+
k .) We omit further details

of calculations, but with the above choices of τk and Ak+1 it can be shown that detSk = 0 and s11, s33 ≥ 0, using (36)
through (39). As in Case 1, this implies Sk � O.

The identity (49) shows that Ak+1 is increasing with respect to Ak. Interestingly, although (41) and (49) have distinct
forms, for the boundary value Ak = α(k+1)(k+2)

2 , they evaluate to the same expression (47) and thus arguments from Case 1
readily show that Ak+1 > `k+1. On the other hand, we have

uk+1 −Ak+1|Ak=uk =
α2
((

1 + 3α− α2 + α3
)
k + 1 + 8α+ α2 + 2α3

)
2(1− α2) ((1− α)2k + 1− α+ 2α2)

and the last term is positive for any α ∈ (0, 1), i.e., Ak+1 < uk+1. This completes Case 2.

Proof of the theorem statement. Given that Ak ∈ I−k implies Ak+1 ∈ I−k+1 (which has been proved in Case 1), the rest is
easy. If we take A0 = `0 = α

1+α , then because Sk � O for all k ≥ 0, we see that Vk is nonincreasing:

α

1 + α
‖z0 − z?‖2 ≥ α

1 + α

∥∥G(z0)
∥∥2

= V0 ≥ · · · ≥ Vk = Ak
∥∥G(zk)

∥∥2
+ (k + 1)

〈
zk − z0,G(zk)

〉
,
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where the first inequality follows from Lipschitzness of G (recall that we are assuming that R = 1). Also by (35) and (36),

Ak ≥ `k >
α(k + 1)(k + 1 + α(k + 2))

2(1 + α)
=
α(k + 1)

2

(1 + α)(k + 1) + α

1 + α
>
α(k + 1)2

2
. (50)

Hence, we obtain

α

1 + α
‖z0 − z?‖2 ≥ Vk ≥ `k

∥∥G(zk)
∥∥2

+ (k + 1)
〈
zk − z0,G(zk)

〉
(a)
≥ α(k + 1)2

2

∥∥G(zk)
∥∥2

+ (k + 1)
〈
z? − z0,G(zk)

〉
(b)
≥ α(k + 1)2

2

∥∥G(zk)
∥∥2 − (k + 1)

(
1

α(k + 1)
‖z? − z0‖2 +

α(k + 1)

4

∥∥G(zk)
∥∥2
)
,

where (a) follows from (50) and the monotonicity inequality 〈zk− z?,G(zk)〉 ≥ 0, and (b) follows from Young’s inequality.
Rearranging terms, we conclude that

∥∥G(zk)
∥∥2 ≤ 4

α(k + 1)2

(
α

1 + α
+

1

α

)
‖z0 − z?‖2 =

C‖z0 − z?‖2

(k + 1)2
,

where C = 4(1+α+α2)
α2(1+α) .

Proof of Lemma 5. Direct calculation gives

uk −
α(k + 1)(k + 2)

2
=
α2(k + 2)

2(1− α)
> 0

α(k + 1)(k + 2)

2
− `k =

α2(k + 2)

2(1 + α)
> 0,

showing (35). Next,

`k −
α(k + 1)(k + 1 + α(k + 2))

2(1 + α)
=
α(k + 1− α(k + 2))

2(1 + α)
≥ 0

because k + 1− α(k + 2) = (k + 2)(k+1
k+2 − α) ≥ (k + 2)( 1

2 − α) ≥ 0, which shows (36). Similarly, we observe that

α(k + 1)(k + 1 + α(k + 2))

2(1 + α)
− α(k + 1)2 − α3k(k + 2)

2(1− α2)
=
α2(k + 1− α(k + 2))

2(1− α2)
≥ 0

α(k + 1)2 − α3k(k + 2)

2(1− α2)
− α(k + 1)(k + 1− α(k + 2))

2(1− α)
=
α2(k + 1 + α(k + 2))

2(1− α2)
> 0

α(k + 1)2 − α3k(k + 2)

2(1− α2)
− α2(k + 1)(k + 2)

1 + α
=
α(k + 1− α(k + 2))2

2(1− α2)
≥ 0

α2(k + 1)(k + 2)

1 + α
− α2(k + 1)(k + 2) + α3(k + 2)2

2(1 + α)
=
α2(k + 2)(k + 1− α(k + 2))

2(1 + α)
≥ 0,

and each line corresponds to an inequality within (37), (38) and (39).

C. Omitted proofs of Section 3
In this section, we provide a self-contained discussion on the complexity lower bound results for linear operator equations
from Nemirovsky (1991; 1992).

C.1. Proof of Theorem 3

The proof of Theorem 3 was essentially completed in the main body of the paper, except the argument regarding translation,
(13), and the proof of Lemma 3.
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We first provide the precise meaning of the translation invariance that we are to prove. Given a saddle function L and
z ∈ Rn × Rn, let z?L(z) be the saddle point of L nearest to z. For any z0 ∈ Rn × Rn, k ≥ 0 and D > 0, define

T
(
z0; k,D

)
:=

{
zk

∣∣∣∣∣ L(x,y) = 〈Ax− b,y − c〉, A ∈ Rn×n, b, c ∈ Rn,
∥∥z?L (z0

)
− z0

∥∥ ≤ D,
zj = A(z0, . . . , zj−1;L), j = 1, . . . , k, A ∈ Asep

}
.

We will show that

T
(
z0; k,D

)
= z0 + T (0; k,D)

holds for any z0 ∈ Rn × Rn.

Let z0 = (x0,y0) and L(x,y) = 〈Ax − b,y − c〉 be given, and assume that ‖z?L(z0) − z0‖ ≤ D. Let b0 = b −Ax0

and c0 = c− y0. Then

∇xL0(x0,y0) = Aᵀ(y0 − c) = −Aᵀc0

∇yL0(x0,y0) = Ax0 − b = −b0.

Hence, (11) with k = 1 reads as

x1 − x0 ∈ span{Aᵀc0}
∆
= X1(A;b0, c0)

y1 − y0 ∈ span{b0}
∆
= Y1(A;b0, c0).

This further shows that

∇xL0(x1,y1) = Aᵀ(y1 − c) = Aᵀ(y1 − y0)−Aᵀc0 ∈ span{Aᵀb0,A
ᵀc0}

∇yL0(x1,y1) = Ax1 − b = A(x1 − x0)− b0 ∈ span{A(Aᵀc0),b0},

and (11) with k = 2 becomes

x2 − x0 ∈ span{Aᵀc0,A
ᵀb0}

∆
= X2(A;b0, c0)

y2 − y0 ∈ span{b0,AAᵀc0}
∆
= Y2(A;b0, c0).

As one can see, we have xk − x0 ∈ Xk(A;b0, c0) and yk − y0 ∈ Yk(A;b0, c0), where we inductively define

Xk+1(A;b0, c0) = span{Aᵀc0}+ AᵀYk(A;b0, c0)

Yk+1(A;b0, c0) = span{b0}+ AXk(A;b0, c0).

Then it is not difficult to see that for k ≥ 2,

Xk(A;b0, c0) = span
{
Aᵀc0,A

ᵀ(AAᵀ)c0, . . . ,A
ᵀ(AAᵀ)b

k−1
2 cc0

}
+ span

{
Aᵀb0,A

ᵀ(AAᵀ)b0, . . . ,A
ᵀ(AAᵀ)b

k
2 c−1b0

}
Yk(A;b0, c0) = span

{
b0, (AAᵀ)b0, . . . , (AAᵀ)b

k−1
2 cb0

}
+ span

{
AAᵀc0, . . . , (AAᵀ)b

k
2 cc0

}
.

Now consider L0(x,y) := 〈Ax− b0,y − c0〉 =
〈
A(x + x0)− b,y + y0 − c

〉
. Because z?L0

is a saddle point of L0 if
and only if z?L0

+ z0 is a saddle point of L, we have z?L0
(0) = z?L(z0)− z0, and thus ‖z?L0

(0)‖ ≤ D. Therefore, if we let

S(A;D)
∆
=

{
(b̃, c̃) ∈ Rn × Rn

∣∣∣∣ ∥∥z?L̃(0)
∥∥ ≤ D, where L̃(x,y) = 〈Ax− b̃,y − c̃〉

}
,

then

T
(
z0; k,D

)
=

⋃
A∈Rn×n

(b0,c0)∈S(A;D)

z0 + (Xk(A;b0, c0)× Yk(A;b0, c0)) .

This proves that the translation invariance holds with T(0; k,D) =
⋃

A∈Rn×n
(b0,c0)∈S(A;D)

(Xk(A;b0, c0)× Yk(A;b0, c0)) and

in particular, shows (13).
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C.2. Complexity of solving linear operator equations and minimax polynomials

We first make some general observations. Suppose that we are given a symmetric matrix A ∈ Rn×n, b ∈ Rn, and an integer
k ≥ 1. Then any x ∈ Kk−1(A;b) = span{b,Ab, . . . ,Ak−1b} can be expressed in the form

x = q(A)b, where q(t) = q0 + q1t+ · · ·+ qk−1t
k−1,

for some q0, . . . , qk−1 ∈ R. Then we can write

b−Ax = b−Aq(A)b = (I−Aq(A))b = p(A)b, (51)

where p(t) = 1− tq(t) is a polynomial of degree at most k satisfying p(0) = 1. Note that conversely, given any polynomial
p̃(t) with degree ≤ k and constant term 1, one can decompose it as p̃(t) = 1− tq̃(t) and recover a polynomial q̃ of degree
≤ k − 1 corresponding to x.

Now suppose further there exists x? ∈ Rn such that b = Ax? and ‖x?‖ ≤ D. The symmetric matrix A has an orthonormal
eigenbasis v1, . . . ,vn, corresponding to eigenvalues λ1, . . . , λn, so we can write x? = c1v1 + · · · + cnvn for some
c1, . . . , cn ∈ R. Using (51), we obtain

‖Ax− b‖2 = ‖p(A)Ax?‖2 =

∥∥∥∥∥∥
n∑
j=1

cjAp(A)vj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
j=1

cjλjp(λj)vj

∥∥∥∥∥∥
2

=

n∑
j=1

c2jλ
2
jp(λj)

2 ≤ D2

(
max

j=1,...,n
λ2
jp(λj)

2

)
.

(52)

We define the problem class by ‖A‖ ≤ R, which is equivalent to λj ∈ [−R,R] for all j = 1, . . . , n. Therefore, we consider
a method corresponding to a polynomial q(t) such that p(t) = 1− tq(t) minimizes

max
λ∈[−R,R]

λ2p(λ)2 =

(
max

λ∈[−R,R]
|λp(λ)|

)2

.

More precisely, if p?k(t) = 1− tq?k(t) minimizes the last quantity among all p(t) such that deg p ≤ k and p(0) = 1, and if
we put xk = q?k(A)b, then (52) implies

∥∥Axk − b
∥∥2

=

n∑
j=1

c2jλ
2
j (p?k(λj))

2 ≤ D2M?(k,R)2

M?(k,R)
∆
= min

deg p≤k
p(0)=1

max
λ∈[−R,R]

|λp(λ)|, (53)

for all A whose spectrum belongs to [−R,R] and b = Ax? with ‖x?‖ ≤ D. As p?k solves (53), it is called a minimax
polynomial.

In order to establish Lemma 3, we present a two-fold analysis in the following. First, we compute the quantity (53) by
explicitly naming p?k for each k ≥ 1. (This was given by Nemirovsky (1992), but without a proof.) Then, following the
exposition from (Nemirovsky, 1991), we show that there exists an instance of (A,b) such that

‖Aq(A)b− b‖2 ≥ D2M?(k,R)2

holds for any polynomial q of degree ≤ k − 1.

C.3. Proof of Lemma 3

The solutions to (53) are characterized using the Chebyshev polynomials of first kind, defined by

TN (cos θ) = cos(Nθ), N ≥ 1,
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or equivalently by TN (t) = cos(N arccos t). If N = 2d for some nonnegative integer d, then TN is an even polynomial
satisfying TN (0) = cos(dπ) = (−1)d. On the other hand, if N = 2d+ 1, then TN is an odd polynomial of the form

T2d+1(t) = (−1)d(2d+ 1)t+ · · · , (54)

which can be shown via induction using the recurrence relation TN+1(t) = 2tTN (t)− TN−1(t), which follows from the
trigonometric identity

cos((N + 1)θ) + cos((N − 1)θ) = 2 cos(Nθ) cos θ.

Based on arguments from (Nemirovsky, 1992; Mason & Handscomb, 2002), we will show that given k ≥ 1 and m := bk2 c,

p?k(t) :=
(−1)m

2m+ 1

(
R

t

)
T2m+1

(
t

R

)
solves (53).

The Chebyshev polynomials satisfy the equioscillation property which makes them so special: the extrema of TN within
[−1, 1] occur at tj = cos (N−j)π

N for j = 0, . . . , N , and the signs of the extremal values alternate. Indeed, we have
|TN (t) = cos(N arccos t)| ≤ 1 for all t ∈ [−1, 1], and for each j = 0, . . . , N ,

TN (tj) = cos

(
N

(N − j)π
N

)
= cos(N − j)π = (−1)N−j .

Also, we have TN (tj) = −TN (tj−1) for each j = 1, . . . , n.

Given k ≥ 1, we denote by Pk the collection of all polynomials p of degree ≤ k with p(0) = 1. Recall that we are to
minimize

M(p,R) := max
λ∈[−R,R]

|λ p(λ)| (55)

over p ∈ Pk. If p ∈ Pk minimizes (55), then so does pev(t) := p(t)+p(−t)
2 , since for all λ ∈ [−R,R]

|λpev(λ)| = |λ| ·
∣∣∣∣p(λ) + p(−λ)

2

∣∣∣∣ ≤ |λp(λ)|
2

+
|(−λ)p(−λ)|

2
≤ M(p,R)

2
+
M(p,R)

2
= M(p,R) (56)

holds, which implies that M(pev, R) ≤M(p,R).

Observe that p?k ∈ Pk due to (54). Next, note that λp?k(λ) = (−1)mR
2m+1 T2m+1( λR ) has extrema of alternating signs and same

magnitude within [−R,R], which occur precisely at λj := R cos (2m+1−j)π
2m+1 , where j = 0, . . . , 2m+ 1. Suppose that p?k is

not a minimizer of M(p,R) over Pk, so that there exists p ∈ Pk such that

|λjp(λj)| ≤M(p,R) < M(p?k, R) = |λjp?k(λj)| (j = 0, . . . , 2m+ 1). (57)

Due to (56), by replacing p with pev if necessary, we may assume that p is even and has degree ≤ 2m. Since λj 6= 0 for all
j = 0, . . . , 2m+ 1, the condition (57) reduces to |p(λj)| < |p?k(λj)|.

As p and p?k are both polynomials of degree ≤ 2m and constant terms 1, we can write

p?k(λ)− p(λ) = λq(λ)

for some polynomial q of degree ≤ 2m− 1. But then |p(λj)| = |p?k(λj)− λjq(λj)| < |p?k(λj)|, which implies that p?k(λj)
and λjq(λj) have same signs for j = 0, . . . , 2m+ 1. Now, because p?k(λj) have alternating signs and

λ0 < · · · < λm < 0 < λm+1 < · · · < λ2m+1,

we see that the signs of q(λj) alternate over j = 0, . . . ,m and over j = m+ 1, . . . , 2m+ 1, respectively. Therefore, q must
have at least one zero in each open interval (λj , λj+1) for j = 0, . . . ,m− 1,m+ 1, . . . , 2m. This implies that q(t) ≡ 0
since deg q ≤ 2m− 1, while q has at least 2m zeros. Therefore, we arrive at p?k = p, which is a contradiction.
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We have established that

M?(k,R) = M(p?k, R) = |λjp?k(λj)| =
R

2m+ 1
=

R

2bk/2c+ 1
(j = 0, . . . , 2m+ 1). (58)

Furthermore, the above arguments show that the minimization of (55) over p ∈ Pk is in fact the same as the minimization of

max
j=0,...,2m+1

|λjp(λj)| = max
λ∈Λ
|λp(λ)|, Λ := {λ0, λ1, . . . , λ2m+1}. (59)

Note that the trick of replacing p by pev is still applicable to (59), but only because the set Λ is symmetric with respect to
the origin. Now we can write

M?(k,R)2 =

(
min
p∈Pk

max
λ∈[−R,R]

|λp(λ)|
)2

=

(
min
p∈Pk

max
λ∈Λ
|λp(λ)|

)2

= min
p∈Pk

max
λ∈Λ

λ2p(λ)2, (60)

and the final problem from the line (60) is equivalent to

minimize
ν∈R, p∈Pk

ν

subject to λ2
jp(λj)

2 ≤ ν, j = 0, . . . , 2m+ 1.
(61)

We can identify any p(t) = 1 + p1t+ · · ·+ pkt
k ∈ Pk as the vector (p1, . . . , pk) ∈ Rk. Under this identification, (61) is a

second order cone program (as the constraints are convex quadratic in p1, . . . , pk), and Slater’s constraint qualification is
clearly satisfied. Hence M?(k,R)2 equals the optimal value of the dual problem

maximize
µ∈R2m+2

minimize
p∈Pk

∑2m+1
j=0 µjλ

2
jp(λj)

2

subject to
∑2m+1
j=0 µj = 1,

µ ≥ 0.

(62)

Let µ? = (µ?0, . . . , µ
?
2m+1) be the dual optimal solution to (62). Provided that n ≥ k + 2 ≥ 2m+ 2, we can take standard

basis vectors (with 0-indexing) e0, . . . , e2m+1 ∈ Rn. Define A by

Aej = λjej (j = 0, . . . , 2m+ 1), Av = 0 (v ⊥ span{e0, . . . , e2m+1})

and let

b = Ax?, x? = D

2m+1∑
j=0

(
µ?j
)1/2

ej

so that ‖x?‖ = D. For any given x = q(A)b with deg q ≤ k − 1, we use (52) to rewrite ‖Ax− b‖2 as

‖Ax− b‖2 = D2
2m+1∑
j=0

µ?jλ
2
j (1− λjq(λj))2

= D2
2m+1∑
j=0

µ?jλ
2
jp(λj)

2,

where p(t) = 1−tq(t) ∈ Pk. But since (p?k,µ
?) is the primal-dual solution pair to the problems (61) and (62), p?k minimizes∑2m+1

j=0 µ?jλ
2
jp(λj)

2 within Pk. Therefore,

‖Ax− b‖2 = D2
2m+1∑
j=0

µ?jλ
2
jp(λj)

2 ≥ D2
2m+1∑
j=0

µ?jλ
2
jp
?
k(λj)

2 = D2M?(k,R)2 =
R2D2

2(bk/2c+ 1)2
,

which establishes (14).
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C.4. Proof of Lemma 4

Let k ≥ 0 be a given (fixed) integer. Consider the polynomial p?k we defined in the previous section. It is an even polynomial
of degree 2bk2 c, and thus p?k

(√
t
)

is a polynomial in t of degree bk2 c, whose constant term is p?k(0) = 1. Therefore, we can
write p?k

(√
t
)

= 1− tqk(t) for some polynomial qk. We will show that

zk = qk (BᵀB)Bᵀv (63)

satisfies ‖Bzk − v‖2 ≤ R2D2

2(bk/2c+1)2 for any (possibly non-symmetric) B ∈ Rm×m and v = Bz? satisfying ‖B‖ ≤ R and
‖z?‖ ≤ D. The equation (63) defines an algorithm within the class Alin, as qk is of degree bk2 c − 1, so that zk is determined
by 2bk2 c − 1 ≤ k − 1 queries to the matrix multiplication oracle.

We proceed via arguments similar to derivations in C.2. First, observe that∥∥Bzk − v
∥∥2

=
∥∥Bzk −Bz?

∥∥2
= (zk − z?)ᵀBᵀB(zk − z?) = (zk − z?)ᵀ|B|2(zk − z?) =

∥∥|B|zk − |B|z?∥∥2
, (64)

where |B| is the matrix square root of the positive semidefinite matrix BᵀB. Rewriting (63) in terms of |B|, we obtain

zk = qk (BᵀB)BᵀBz? = qk
(
|B|2

)
|B|2z?.

Plugging the last equation into (64) gives∥∥|B|z? − |B|zk∥∥2
=
∥∥(I− |B|2qk (|B|2)) |B|z?∥∥2

= ‖p?k (|B|) |B|z?‖2 .

Finally, because |B| is a symmetric matrix whose eigenvalues are within [0, R], we can apply (52) with |B|, z? in places of
A,x?, and use (58) to conclude that

∥∥|B|z? − |B|zk∥∥2 ≤ D2

(
max
λ∈[0,R]

λ2p?k(λ)2

)
≤ D2

(
max

λ∈[−R,R]
λ2p?k(λ)2

)
=

R2D2

(2bk/2c+ 1)2
.

C.5. Proof of Theorem 4

We first describe the general class A of algorithms without the linear span assumption. An algorithm A within A is a
sequence of deterministic functions A1,A2, . . . , each of which having the form

(zi, zi) = Ai
(
z0,O(z0;L), . . . ,O(zi−1;L);L

)
for i ≥ 1, where z0 = (x0,y0) ∈ Rn × Rm is an initial point and O : (Rn × Rm)× LR(Rn × Rm) → Rn × Rm is the
gradient oracle defined as

O((x,y);L) = (∇xL(x,y),∇yL(x,y)) .

The sequence {zi}i≥0 are the inquiry points, and {zi}i≥0 are the approximate solutions produced by A. When k ≥ 1 is
the predefined maximum number of iterations, then we assume zk = zk without loss of generality. Similar definitions for
deterministic algorithms have been considered in (Nemirovsky, 1991; Ouyang & Xu, 2021).

To clarify, given L ∈ LR(Rn × Rm), an algorithm A uses only the previous oracle information to choose the next
inquiry point and approximate solution. Therefore, if O(zi;L1) = O(zi;L2) for all i = 0, . . . , k − 1, then the algorithm
output (zk, zk) for the two functions will coincide, even if L1 6= L2. In that sense, A is deterministic, black-box, and
gradient-based.

Now we precisely restate Theorem 4.

Theorem 4. Let k ≥ 1 and n ≥ 3k + 2. Let A ∈ A be a deterministic black-box gradient-based algorithm for solving
convex-concave minimax problems on Rn ×Rn. Then for any initial point z0 ∈ Rn ×Rn, there exists L ∈ Lbiaff

R (Rn ×Rn)
with a saddle point z?, for which zk, the k-th iterate produced by A, satisfies

‖∇L(zk)‖ ≥ ‖z0 − z?‖2

(2bk/2c+ 1)2
.
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Proof. Let z0 = (x0,y0) ∈ Rn × Rn be given. Take A and b as in Lemma 3. Denote by xmin the minimum norm solution
to Ax = b. Recall the construction of A and b, whereR(A) = span{e0, . . . , e2m+1} ⊥ ker(A). Define

L0(x0,y0) = −bᵀ(x− x0) + (x− x0)ᵀA(y − y0)− bᵀ(y − y0).

Then (∇xL0(x,y),∇yL0(x,y)) =
(
A(y − y0)− b,A(x− x0)− b

)
, and z0 +

(
xmin,xmin

)
is a saddle point of L0.

We follow the oracle-resisting proof strategy of Nemirovsky (1991), described as follows. For each i = 1, . . . , k, we
inductively define a rotated biaffine function

Li(x
0,y0) = −bᵀ(x− x0) + (x− x0)ᵀAi(y − y0)− bᵀ(y − y0),

where Ai = UiAUᵀ
i for an orthogonal matrix Ui ∈ Rn×n. We will show that Ui can be chosen to satisfy Uib = b,

O(zj ;Li) = O(zj ;Li−1) (65)

for j = 0, . . . , i− 1, and

xj − x0,yj − y0 ∈ Kj−1(Ai;b)⊕UiNi = UiKj−1(A;b)⊕UiNi (66)

for j = 0, . . . , i, where Ni is a subspace of ker(A) such that dim(Ni) ≤ 2i. Note that (65) implies that the algorithm
iterates (zj , zj) for j = 1, . . . , i do not change when Li−1 is replaced by Li. Hence, this process sequentially adjusts the
objective function L upon observing an iterate zi to resist the algorithm from optimizing it efficiently. Indeed, if (66) holds
with i = j = k, then

xk − x0 = Ukqx(A)b + Ukv
k
x

yk − y0 = Ukqy(A)b + Ukv
k
y

for some polynomials qx, qy of degree ≤ k − 1 and vkx,v
k
y ∈ Ni ⊆ ker(A). Thus

∇xLk(xk,yk) = Ak(yk − y0)− b = UkAUᵀ
k

(
Ukqy(A)b + Ukv

k
y

)
− b = Uk (Aqy(A)− I)b

and similarly
∇yLk(xk,yk) = Uk (Aqx(A)− I)b,

showing that

‖∇Lk(zk)‖2 = ‖Uk (Aqy(A)− I)b‖2 + ‖Uk (Aqx(A)− I)b‖2 ≥ 2‖xmin‖2

(2bk/2c+ 1)2
.

Then the theorem statement follows from the fact that z? = z0 + (Ukx
min,Ukx

min) is a saddle point of Lk.

It remains to provide an inductive scheme for choosing Ui. We set U0 = I (so that A0 = A), N0 = {0}, and define
K−1(A;b) = {0} for convenience. Let 1 ≤ i ≤ k, and suppose that we already have an orthogonal matrix Ui−1 and
Ni−1 ⊆ ker(A) for which Ui−1b = b, dim(Ni−1) ≤ 2i − 2, and (66) holds with i − 1 (which is vacuously true when
i = 1). Let

(zi, zi) = Ai
(
z0,O(z0;Li−1), . . . ,O(zi−1;Li−1)

)
.

We want Ui (to be defined) to satisfy six, s
i
y ∈ Ui ker(A) while Ki−1(Ai−1;b) = Ki−1(Ai;b). The latter condition is

satisfied if Ui = QiUi−1 for some orthogonal matrix Qi which preserves every element within

Ji−1 = Ki−1(Ai−1;b)⊕Ui−1Ni−1,

because then it follows that Uib = QiUi−1b = Qib = b and

Ki−1(Ai;b) = UiKi−1(A;b) = QiUi−1Ki−1(A;b) = QiKi−1(Ai−1;b) = Ki−1(Ai−1;b).

Consider the decomposition

xi − x0 = ΠKi−1(Ai−1;b)(x
i − x0) + Ui−1r

i
x + six

yi − y0 = ΠKi−1(Ai−1;b)(y
i − y0) + Ui−1r

i
y + siy
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where Π denotes the orthogonal projection, rix, r
i
y ∈ Ni−1 and six, s

i
y ∈ J⊥i−1. Since dim ker(A) = n−2m−2 ≥ n−k−2

and dim (Ni−1)
⊥ ≥ n− (2i− 2) ≥ n− 2k + 2, we have

dim
(

ker(A) ∩ (Ni−1)
⊥
)
≥ n− 3k ≥ 2,

so there exist s̃ix, s̃
i
y ∈ ker(A) ∩ (Ni−1)

⊥ such that ‖s̃ix‖ = ‖six‖, ‖s̃iy‖ = ‖siy‖, and 〈s̃ix, s̃iy〉 = 〈six, siy〉. Also, because
ker(A) ⊥ Ki−1(A;b),

Ji−1 = Ui−1 (Ki−1(A;b) +Ni−1) ⊥ Ui−1

(
ker(A) ∩ (Ni−1)

⊥
)
.

This implies that there exists an orthogonal Qi ∈ Rn×n satisfying

Qi

∣∣
Ji−1

= IdJi−1

Qi

(
Ui−1s̃

i
x

)
= six

Qi

(
Ui−1s̃

i
y

)
= siy.

Now let vix = rix + s̃ix ∈ ker(A),viy = riy + s̃iy ∈ ker(A), and

Ui
∆
= QiUi−1

Ni
∆
= Ni−1 + span{vix,viy}.

Then clearly Uib = b, Ni ⊆ ker(A), and dimNi ≤ 2i. Next, for each j = 0, . . . , i− 1, we have

xj − x0,yj − y0 ∈ Kj−1(Ai−1;b)⊕Ui−1Ni−1 ⊆ Kj−1(Ai;b)⊕UiNi

since Qi preserves Ji−1 and Ni−1 ⊆ Ni. Moreover, because Ui−1r
i
x = QiUi−1r

i
x = Uir

i
x and six = QiUi−1s̃

i
x =

Uis̃
i
x,

xi − x0 = ΠKi−1(Ai−1;b)(x
i − x0) + Ui(r

i
x + s̃ix) ∈ Ki−1(Ai−1;b)⊕UiNi = Ki−1(Ai;b)⊕UiNi

and similarly yi − y0 ∈ Ki−1(Ai;b)⊕UiNi. This proves (66).

Finally, for j = 0, . . . , i− 1,

∇xLi(x
j ,yj) = Ai(y

j − y0)− b = QiAi−1Q
ᵀ
i (yj − y0)− b.

But Qᵀ
i (yj − y0) = yj − y0 because yj − y0 ∈ Kj−1(Ai−1;b)⊕Ui−1Ni−1 ⊆ Ji−1, and

Ai−1(yj − y0) ∈ Ai−1Kj−1(Ai−1;b)⊕Ai−1Ui−1Ni−1 = Kj(Ai−1;b) ⊆ Ji−1,

which shows that ∇xLi(x
j ,yj) = QiAi−1Q

ᵀ
i (yj − y0) − b = Ai−1(yj − y0) − b = ∇xLi−1(xj ,yj). Arguing

analogously for the y-variable gives ∇yLi(x
j ,yj) = ∇yLi−1(xj ,yj), proving (65). This completes the induction step,

and hence the proof.

D. Experimental details
D.1. Exact forms of the construction from Ouyang & Xu (2021)

Following Ouyang & Xu (2021), we use

A =
1

4


−1 1

. .
.

. .
.

−1 1
−1 1
1

 ∈ Rn×n, b =
1

4


1
1
...
1
1

 ∈ Rn, h =
1

4


0
0
...
0
1

 ∈ Rn,

and H = 2AᵀA. Ouyang & Xu (2021) shows that ‖A‖ ≤ 1
2 , which implies ‖H‖ ≤ 1

2 . Therefore (25) is a 1-smooth saddle
function.
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D.2. Best-iterate gradient norm bound for EG

In Figure 1, we indicated theoretical upper bounds for EG. To clarify, there is no known last-iterate convergence result
for EG with respect to ‖G(·)‖2. However, it is straightforward to derive O(R2/k) best-iterate convergence via standard
summability arguments in weak convergence proofs for EG. Although there is no theoretical guarantee that ‖G(zk)‖2 will
monotonically decrease with EG, in our experiments on both examples, they did monotonically decrease (see Figures 1(a),
1(b)). Therefore, we safely used the best-iterate bounds to visualize the upper bound for EG in Figure 1. For the sake of
completeness, we derive the best-iterate bound below.

Lemma 6. Let L : Rn×Rm → R be anR-smooth convex-concave saddle function with a saddle point z?. Let z ∈ Rn×Rm
and α ∈

(
0, 1

R

)
. Then w = z− αG(z) and z+ = z− αG(w) satisfy

‖z− z?‖2 − ‖z+ − z?‖2 ≥ (1− α2R2)‖z−w‖2.

Proof.

‖z− z?‖2 − ‖z+ − z?‖2 =
(
‖z−w‖2 + 2〈z−w,w − z?〉+ ‖w − z?‖2

)
−
(
‖z+ −w‖2 + 2〈z+ −w,w − z?〉+ ‖w − z?‖2

)
= ‖z−w‖2 − ‖z+ −w‖2 + 2〈z− z+,w − z?〉
≥ ‖z−w‖2 − ‖z+ −w‖2.

The last inequality is just monotonicity: 〈z− z+,w − z?〉 = α〈G(w),w − z?〉 ≥ 0. Now the conclusion follows from

‖z+ −w‖2 = ‖(z− αG(w))− (z− αG(z))‖2 = α2‖G(z)−G(w)‖2 ≤ α2R2‖z−w‖2,

where the last inequality follows from R-Lipschitzness of G.

Now fix an integer k ≥ 0, and consider the EG iterations

zi+1/2 = zi − αG(zi)

zi+1 = zi − αG(zi+1/2)

for i = 0, . . . , k. Applying Lemma 6 with z = zi, w = zi+1/2 and z+ = zi+1, we have

‖zi − z?‖2 − ‖zi+1 − z?‖2 ≥ (1− α2R2)‖zi − zi+1/2‖2 = (1− α2R2)α2‖G(zi)‖2 (67)

for i = 0, . . . , k. Summing up the inequalities (67) for all i = 0, . . . , k, we obtain

‖z0 − z?‖2 − ‖zk+1 − z?‖2 ≥ (1− α2R2)α2
k∑
i=0

‖G(zi)‖2.

The left hand side is at most ‖z0 − z?‖2, while the right hand side is lower bounded by

(1− α2R2)α2 (k + 1) min
i=0,...,k

‖G(zi)‖2.

Therefore we conclude that

min
i=0,...,k

‖G(zi)‖2 ≤ C‖z0 − z?‖2

k + 1

where C = 1
α2(1−α2R2) .
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D.3. ODE flows for L(x, y) = xy

Interestingly, the continuous-time flows with L(x, y) = xy have exact closed-form solutions.

Note that G(x, y) =

[
0 1
−1 0

] [
x
y

]
. Therefore,

Gλ(x, y) =
1

λ

([
1 0
0 1

]
−
[

1 λ
−λ 1

]−1
)[

x
y

]
=

[ λ
1+λ2

1
1+λ2

− 1
1+λ2

λ
1+λ2

] [
x
y

]
.

The solution to the Moreau–Yosida regularized flow[
ẋ
ẏ

]
=

[
− λ

1+λ2 − 1
1+λ2

1
1+λ2 − λ

1+λ2

] [
x
y

]
can be obtained with the matrix exponent. The results are

x(t) = exp

(
− λ

1 + λ2
t

)(
x0 cos

t

1 + λ2
− y0 sin

t

1 + λ2

)
y(t) = exp

(
− λ

1 + λ2
t

)(
y0 cos

t

1 + λ2
+ x0 sin

t

1 + λ2

)
.

The anchored flow ODE for L(x, y) = xy is given by

ẋ(t) = −y(t) +
1

t

(
x0 − x(t)

)
ẏ(t) = x(t) +

1

t

(
y0 − y(t)

)
.

From the first equation, we have d
dt (tx(t)) = tẋ(t) + x(t) = −ty(t) + x0, while similar manipulation of the second

equation gives d
dt (ty(t)) = tx(t) + y0. Therefore,

d2

dt2
(tx(t)) = − d

dt
(ty(t)) = −tx(t)− y0

d2

dt2
(ty(t)) =

d

dt
(tx(t)) = −ty(t) + x0,

which gives

tx(t) = c1 cos t− c2 sin t− y0

ty(t) = c1 sin t+ c2 cos t+ x0.

Using the initial conditions to determine the coefficients c1, c2, we obtain

x(t) =
y0 cos t+ x0 sin t− y0

t

y(t) =
y0 sin t− x0 cos t+ x0

t
.

E. Connection to CLI lower bounds
In this section, we discuss how EAG relates to the prior work on complexity lower bounds on the class of CLI and SCLI
algorithms, introduced and studied in (Arjevani et al., 2016; Arjevani & Shamir, 2016; Azizian et al., 2020; Golowich et al.,
2020). Specifically, we show that EAG is not SCLI, so it can break the Ω(R2/k) lower bound on squared gradient norm for
the 1-SCLI class derived by Golowich et al. (2020). On the other hand, we show that EAG is 2-CLI in the sense of Golowich
et al. (2020), and that EAG belongs to an extended class of 1-CLI algorithms.
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E.1. Lower bounds for 1-SCLI and non-stationarity of EAG

We start with the notion of 1-SCLI algorithms by Golowich et al. (2020). Consider an algorithm A for finding saddle points
of biaffine functions of the form

L(x,y) = bᵀx + xᵀAy − cᵀy,

where (x,y) ∈ Rn × Rn. We say A is 1-stationary canonical linear iterative (1-SCLI) if there exist some fixed matrix
mappings C,N : R2n×2n → R2n×2n such that

zk+1 = C

([
O A
−Aᵀ O

])
zk + N

([
O A
−Aᵀ O

])[
b
c

]
= C(B)zk + N(B)v (68)

for k ≥ 0, where

B =

[
O A
−Aᵀ O

]
∈ R2n×2n, v =

[
b
c

]
∈ R2n.

Following the convention of Azizian et al. (2020) and Golowich et al. (2020), we also require that C,N are matrix
polynomials. The classical extragradient method (EG) is an 1-SCLI algorithm: with G(z) = Bz+ v, we can express EG as

zk+1 = zk − αG
(
zk − αG(zk)

)
= zk − α

(
B
(
zk − αBzk − αv

)
+ v

)
=
(
I− αB + α2B2

)
zk − α(I− αB)v,

which is of the 1-SCLI form.

A 1-SCLI algorithm A is consistent with respect to an invertible matrix B if for any v ∈ R2n, iterates {zk}k≥0 produced by
A satisfy

zk → z? = −B−1v.

If A is consistent with respect to B, then for any w = B−1v ∈ R2n, we have

−w = −B−1v = lim
k→∞

zk+1

= lim
k→∞

C(B)zk + N(B)v

= C(B)(−B−1v) + N(B)v

= (−C(B) + N(B)B)w.

As this holds for all w ∈ R2n, we have the following result.
Lemma 7 (Arjevani et al. (2016)). If a 1-SCLI algorithm A described by (68) is consistent with respect to B, then

I + N(B)B = C(B). (69)

Indeed, the 1-SCLI formulation of EG satisfies (69).

For the class of consistent 1-SCLI algorithms, Golowich et al. (2020) established Ω(1/k) a complexity lower bound on
squared gradient norm.
Theorem 5 (Golowich et al. (2020)). Let k ≥ 0 and n ≥ 1. Then for any consistent 1-SCLI algorithm of the form (68) with
degN = dN, there exist a biaffine function L(x,y) = bᵀx + xᵀAy − cᵀy on Rn × Rn with invertible A, for which

‖∇L(zk)‖2 ≥ R2‖z0 − z?‖2

20(dN + 1)2k
= Ω

(
R2‖z0 − z?‖2

k

)
,

where z? is the unique saddle point of L.

To clarify, degN refers to the degree of the matrix polynomial defining N. 1-SCLI algorithms with dC = degC = 1
forms a subclass of Asim and Asep. (Even if dC > 1, one can still view 1-SCLI algorithms as instances of Asim or Asep by
introducing dC − 1 dummy iterates for each 1-SCLI iteration.) However, EAG is an algorithm that belongs to Asim but is
not 1-SCLI; if it was, a contradiction would occur, as ‖∇L(zk)‖2 ≤ O(1/k2) for EAG. In fact, it is intuitively clear that
EAG is not 1-SCLI; the S in 1-SCLI stands for stationary, but EAG has anchoring coefficients 1

k+2 that vary over iterations.
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E.2. Understanding EAG as a CLI algorithm

In this section, we show that EAG algorithms are (non-stationary) 2-CLI, and that we can expand the definition of 1-CLI
algorithms to accommodate EAG.

First, we state the definition of m-CLI algorithms introduced by Arjevani & Shamir (2016) adapted to the case of biaffine
saddle functions. For m ≥ 1, an m-CLI algorithm A takes m initial points z0

1, . . . , z
0
m and at each iteration k ≥ 0, outputs

zk+1
i =

m∑
j=1

C
(k)
ij (B) zkj + N

(k)
i (B)v (70)

for i = 1, . . . ,m, where C
(k)
ij ,N

(k)
i : R2n×2n → R2n×2n for i, j = 1, . . . ,m are matrix polynomials that depend on k but

not on {zk1 , . . . , zkm}k≥0. In the case where C
(k)
ij ≡ Cij and N

(k)
i ≡ Ni for all i, j = 1, . . . ,m and k ≥ 0, we say A is

stationary. Indeed, when m = 1, this definition of stationary 1-CLI coincides with that of 1-SCLI given in Section E.1. Also
note that the definition (70) includes algorithms that obtain zk+1 with m previous iterates zk, zk−1, . . . , zk−m+1, by letting
zki = zk+1−i for i = 1, . . . ,m.

Performance measure Algorithm class Lower bound Best known rate Order-optimality

1-SCLI Ω
(
R√
k

)
(Golowich et al., 2020)

O
(
R√
k

)
(Golowich et al., 2020)*

Established*

Duality gap
(Last iterate) 1-CLI

Ω
(
R
k

)
(Nemirovsky (1992),
Nemirovski (2004))

O
(
R√
k

)
(Golowich et al., 2020)*

Unknown

m-CLI
(m ≥ 2)

Ω
(
R
k

)
(Nemirovsky (1992),
Nemirovski (2004))

O
(
R
k

)
(Nemirovski (2004),

Golowich et al. (2020))
Established

1-SCLI Ω
(
R2

k

)
(Golowich et al., 2020)

O
(
R2

k

)
(Golowich et al., 2020)*

Established*

Squared gradient norm
(Last iterate)

1-CLI Ω
(
R2

k2

)
(Nemirovsky, 1992)

O
(
R2

k

)
(Golowich et al., 2020)*

Unknown

Translated
1-CLI

Ω
(
R2

k2

)
(Nemirovsky, 1992)

O
(
R2

k2

)
(This paper)

Established

m-CLI
(m ≥ 2)

Ω
(
R2

k2

)
(Nemirovsky, 1992)

O
(
R2

k2

)
(This paper)

Established

Table 1. Lower bounds and best known rates for CLI algorithm classes (* means that the result holds with the additional assumption that
the derivative of G is Lipschitz continuous).

Golowich et al. (2020) showed that the averaged EG iterates, which have rate O(1/k) on duality gap, can be written in
2-CLI form; hence, the Ω(1/

√
k) 1-SCLI lower bound on duality gap therein cannot be generalized to m-CLI algorithms for

m ≥ 2. They then posed the open problem of whether the Ω(1/
√
k) 1-SCLI lower bound on duality gap can be generalized

to 1-CLI algorithms. Below, we provide a similar discussion on rates on squared gradient norm.

It is straightforward to see that EAG is 2-CLI; define zk+1
2 = zk2 = · · · = z0

2 = z0 = z0
1 for all k ≥ 0, and

zk+1
1 = zk1 − αkG

(
zk1 − αkG(zk1) +

1

k + 2
(z0 − zk1)

)
+

1

k + 2
(z0 − zk1)

=

(
k + 1

k + 2
I− k + 1

k + 2
αkB + α2

kB
2

)
zk1 +

1

k + 2
(I− αkB)zk2 − αk(I− αkB)v. (71)
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For EAG-C, one can alternatively eliminate the dependency on z0 to define zk+1 in terms of zk, zk−1, and v; respectively
multiply (k + 2) and (k + 1) to the following identities

zk+1 =

(
k + 1

k + 2
I− k + 1

k + 2
αB + α2B2

)
zk +

1

k + 2
(I− αB)z0 − α(I− αB)v

zk =

(
k

k + 1
I− k

k + 1
αB + α2B2

)
zk−1 +

1

k + 1
(I− αB)z0 − α(I− αB)v

and subtract to eliminate z0. Since EAG has O(1/k2) rate, this reformulation shows that the Θ(1/k) 1-SCLI lower bound
on the squared gradient norm cannot be generalized to 2-CLI algorithms.

Furthermore, EAG also provides a partial resolution, in the negative, of the open problem of whether the Θ(1/k) 1-SCLI
lower bound on the squared gradient norm can be generalized to 1-CLI algorithms. Observe that if we translate the given
problem to set z0 = 0, keeping the sequence zk2 is no longer necessary, and (71) reduces to 1-CLI form. Such translation
is not allowed in the definition (70), but it is reasonable to consider an expanded class of algorithms that are 1-CLI up to
translation. Precisely, define an algorithm A to be translated 1-CLI if it takes the form

zk+1 = C(k)(B)(zk) + N(k)(B)(v)

when z0 = 0, and is translation invariant in the sense that

zk = A(z0, z1, . . . , zk−1;L) = z0 +A(0, z1 − z0, . . . , zk−1 − z0;Lz0)

when z0 6= 0, where Lz0(x,y) = L(x + x0,y + y0). That is, the iterates of A are generated equivalently by starting with
z0 = 0 and applying A to the translated objective Lz0 . The concept of translated 1-CLI can be viewed as a generalization of
consistent 1-SCLI algorithms; observe that we can rewrite (68) as

zk+1 − z0 = C(B)(zk − z0) + N(B)(Bz0 + v)− (I + N(B)B−C(B))z0,

which shows that a 1-SCLI algorithm is translation invariant if and only if it satisfies the consistency formula (69). Since
EAG has O(1/k2) rate and is a translated 1-CLI algorithm, our results prove that the Θ(1/k) 1-SCLI lower bound on the
squared gradient norm can be generalized to translated 1-CLI algorithms.


