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A. Related Concepts
In this section, we briefly review a few related mathematical
concepts in the paper, which can be found in (Bang-Jensen
and Gutin, 2008; Jiang et al., 2011). We use the same
notation from the main paper.

A.1. Concepts in Linear Algebra

Definition A.1 (Symmetric and Skew-Symmetric). A real
matrix Y ∈ Rd×d is called symmetric if and only if
[Y ]ij = [Y ]ji for all i, j ∈ {1, · · · , n}. Similarly, Y is
called skew-symmetric if and only if [Y ]ij = −[Y ]ji for all
i, j ∈ {1, · · · , n}.

A.2. Concepts in Calculus and Graph Calculus

Definition A.2 (Hilbert Space). A Hilbert space is a com-
plete vector space with an inner product defined on the
space.
Definition A.3 (Complete Graph). A complete graph is
a simple undirected graph in which every pair of distinct
vertices is connected by a unique edge.
Definition A.4 (Cliques). For an undirected graph Ĝ =
(V,E), the set of k−th cliques Kk(Ĝ) is defined by

{i1, · · · , ik} ∈ Kk(Ĝ)

if and only if all pairs of vertices in {i1, · · · , ik} are in E.
Therefore, when Ĝ is a complete graph, the k−th cliques of
Ĝ is equivalent to

{(
V
k

)}
.

Definition A.5 (Alternating Function). For an undirected
graph Ĝ = (V,E), an alternating function on k−th cliques
is: f : V × · · · × V → R satisfying

f(iσ(1), · · · , iσ(k)) = sgn(σ)f(i1, · · · , ik)

for all {i1, · · · , ik} ∈ Kk and σ is any permutation on
{1, · · · , k}. Here sgn(σ) denotes the sign of σ which
is 1 when the parity of the number of inversions in
(iσ(1), · · · , iσ(k)) is even, and sgn(σ) = −1 if the par-
ity of the number of inversions is odd.
Definition A.6 (L2 Functions). For an undirected graph
Ĝ = (V,E), the Hilbert space of all potential functions
f : V → R is denoted as L2(V ), with the inner product
taken to be the standard inner product: for f, g ∈ L2(V ),

〈f, g〉 :=

d∑
i=1

f(i)g(i).

For the k−th cliques, we denote the Hilbert space of all
alternating functions on Kk as L2

∧(Kk), with the inner
product defined as: for Θ,Φ ∈ L2

∧(Kk),

〈Θ,Φ〉 :=
∑

{i1,··· ,ik}∈Kk

Θ(i1, · · · , ik)Φ(i1, · · · , ik).

Definition A.7 (Curl-Free, Divergence-Free). An edge func-
tion f ∈ L2

∧(E) is called curl-free if and only if

curl(f)(i, j, k) = 0, ∀{i, j, k} ∈ T,

or, equivalently, f ∈ ker(curl). Similarly, f ∈ L2
∧(E) is

called divergence-free if and only if

div(f)(i) = − grad∗(f)(i) = 0, ∀i ∈ V,

or, equivalently, f ∈ ker(div) = ker(grad∗).

Definition A.8 (Harmonic). An edge function f ∈ L2
∧(E)

is called harmonic if and only if

41(f)(i, j) = 0, ∀{i, j} ∈ E,

or, equivalently, f ∈ ker(41).

A.3. Concepts in Directed Graphs

Definition A.9 (Connectivity Matrix). For a directed graph
G = (V,E) with d vertices, its connectivity matrix C(G)
is a d × d matrix such that [C(G)]ij = 1 if there exists a
directed path from vertex i to vertex j, and [C(G)]ij = 0
otherwise.

B. Proof of Lemmas and Theorems
Here we provide the detailed proof of some critical lemmas
and theorems in the main paper.

B.1. Proof of Lemma 3.4

Lemma 3.4 Consider a complete undirected graph Ĝ(V,E)
and a curl-free function Y ∈ L2

∧(E), then ReLU(Y ) ∈
Rd×d is the weighted adjacency matrix of a DAG. More-
over, given any skew-symmetric matrix W ∈ Rd×d,
W ◦ ReLU(Y ) is also a DAG, where ◦ is the Hadamard
product.

Proof. We prove the lemma by contradiction. Assuming
that there is a cycle in GReLU(Y ) (the graph with weighted
adjacency matrix ReLU(Y )) on an (ordered) set of nodes
(c1, c2, · · · , ck, c1) and denoting ck+1 := c1 just for nota-
tion simplicity, the curl-free property of Y yields

k∑
i=1

Y (ci, ci+1) =

k−1∑
i=2

curl(Y )(c1, ci, ci+1) = 0.

There exists at least 1 pair of (ci, ci+1) such that
Y (ci, ci+1) ≤ 0 and hence (ci, ci+1) /∈ EReLU(Y ), which
contradicts with the assumption that (c1, c2, · · · , ck, c1)
forms a cycle.
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B.2. Proof of Theorem 3.7

Theorem 3.7 Let A ∈ Rd×d be the weighted adjacency
matrix of a DAG with d nodes, denote Ĝ(V,E) as the com-
plete undirected graph on these d nodes, then there exists
a skew-symmetric matrix W ∈ Rd×d and a potential func-
tion p ∈ L2(V ) such that A = W ◦ ReLU(grad(p)), i.e.,
D ⊂ {GW◦ReLU(grad(p))}. Here p is associated with the
topological order of the DAG, such that p(j) > p(i) if there
is a directed path from vertex i to j.

Proof. We first show that there exists a p ∈ L2(V ) such
that

(grad(p))(i, j) > 0, when A(i, j) 6= 0. (12)

Since GA is a DAG, there exists at least one topological
(partial) order for its vertices (Bang-Jensen and Gutin, 2008).
Taking an topological (partial) order ≺ = (c1, c2, · · · , cd)
of all the vertices in GA, p defined as p(ci) = i satisfies
condition (12). We now construct the weight matrix W .
Since A represents a DAG, for any two vertices i and j, at
least one or both of A(i, j) = 0 and A(j, i) = 0 must hold
true. We define an skew-symmetric matrix W as:

[W ]ij =


0, if p(i) = p(j) or A(i, j) = A(j, i) = 0;
A(i,j)

p(j)−p(i) , if A(i, j) 6= 0 and A(j, i) = 0;
A(j,i)

p(j)−p(i) , if A(i, j) = 0 and A(j, i) 6= 0.

(13)
Then A = W ◦ ReLU(grad(p)), and we have proved

the conclusion. Moreover, combining Theorem 3.5 and
Theorem 3.7, we note that

D = {GW◦ReLU(grad(p))},

which is our main theoretical result.

B.3. Proof of Theorem 4.3

Theorem 4.3 Let A ∈ Rd×d be the weighted adjacency
matrix of a DAG with d nodes, then

p = −4†0 div

(
1

2
(C(A)− C(A)T )

)
, (14)

preserves the topological order in A such that p(j) > p(i)
if there is a directed path from vertex i to j. Moreover, we
have A = W ◦ ReLU(grad(p)) with the skew-symmetric
matrix W defined as in (13).

Proof. Taking any two vertices i, j with a directed path
from i to j, we show that p(j) > p(i). We assume that
i, j 6= d without loss of generality, since the proof can be
trivially extended to the cases of i = d or j = d. Since
C(A) is the connectivity matrix of A and A is the weighted

adjacency matrix of a DAG, we have the following facts
hold:

[C(A)]ii = [C(A)]jj = [C(A)]ji = 0, [C(A)]ij = 1.
(15)

Moreover, for any other vertex k, if there exists a di-
rected path from j to k, there is also a directed path from
i to k. Therefore, [C(A)]jk = 1 ⇒ [C(A)]ik = 1, i.e.,
[C(A)]ik ≥ [C(A)]jk. On the other hand, if there exists
a directed path from k to i, there is also a directed path
from k to j. Therefore [C(A)]ki = 1⇒ [C(A)]kj = 1 and
[C(A)]kj ≥ [C(A)]ki.

From the definition of p we note that

−40p = div

(
1

2
(C(A)− C(A)T )

)
.

The i-th and j-th rows of the above system write:

−dp(i) +

d∑
k=1

p(k) =
1

2

(
d∑
k=1

[C(A)]ik −
d∑
k=1

[C(A)]ki

)
,

−dp(j) +

d∑
k=1

p(k) =
1

2

(
d∑
k=1

[C(A)]jk −
d∑
k=1

[C(A)]kj

)
.

Subtracting the above two equations from each other and
applying the facts in (15) yield

d(p(j)− p(i)) =
1

2

∑
k 6=i,j

([C(A)]ik + [C(A)]kj − [C(A)]jk

− [C(A)]ki) + [C(A)]ij − [C(A)]ji ≥ 1.

Therefore p(j) > p(i), and A = W ◦ReLU(grad(p)) can
be similarly proved as in Theorem 3.7.

C. Complexities
The computational and space complexities depend on the
optimization method used. Let K be the time complexity
to solve one objective. For example, for L-BFGS K =
O(mn), where n is the number of variables and m is the
number of steps stored in memory. Our method takes O(K)
time, compared to O(LK) of NOTEARS where L is the
number of iteration in the augmented Lagrangian method.
We share the same space complexity as NOTEARS.

D. Examples of Graph Projection
In this section we provide the detailed procedure of graph
projection described in Theorems 4.2 and 4.3, for four rep-
resentative graphs as shown in Figure 2. In all examples
we consider graphs with 4 vertices which are denoted as
A, B, C and D in Figure 2. In the following calculations
we assume A as the first vertex and D as the last vertex. In
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Figure 2. Representative graphs as examples to demonstrate the
graph projection procedure.

each example, for a given graph GApre , we first calculate its
approximated gradient flow component via

p̃ = −4†0 div

(
1

2
(C(Apre)− C(Apre)T )

)
,

then the weights W̃ are computed from (10). We note that
the matrix for graph Laplacian40 given by (8) writes:

[40] =


3 −1 −1 0
−1 −3 −1 0
−1 −1 −3 0
0 0 0 0

 .
Since p̃(4) = 0 is fixed, we only need to invert the submatrix
of [40] formed by ignoring its 4-th row and 4-th column,
and this submatrix is invertible. Hence the calculation de-
scribed in Theorem 4.2 is well-posed.

Example 1, projection for a connected acyclic graph (a
tree): We first consider a fully connected acyclic graph
as shown in the first plot of Figure 2, with the weighted
adjacency matrix:

Apre =


0 −1 0 0
0 0 2 0
0 0 0 5
0 0 0 0

 .
The connectivity matrix of Apre writes

C(Apre) =


0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

 .

Therefore, the projection result p̃ from (9) and the weights
W̃ from (10) are obtained:

p̃ =


−0.75
−0.5
−0.25

0

 , W̃ =


0 −4 0 0
4 0 8 0
0 −8 0 20
0 0 −20 0

 .
We then have the acyclic approximation of Apre as

Ã = W̃ ◦ReLU(grad(p̃)) =


0 −1 0 0
0 0 2 0
0 0 0 5
0 0 0 0

 = Apre.

Therefore, the projected potential function p̃ fully preserves
the vertices ordering in this acyclic graph, which is consis-
tent with Theorem 4.3.

Example 2, projection for a disconnected acyclic graph
(a forest): Consider an acyclic graph consisting of two trees
as shown in the second plot of Figure 2, with the weighted
adjacency matrix:

Apre =


0 −1 0 0
0 0 0 0
0 0 0 5
0 0 0 0

 .
The connectivity matrix of Apre writes

C(Apre) =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .
Therefore, the projection result p̃ from (9) and the weight
W̃ from (10) are

p̃ =


−0.25

0
−0.25

0

 , W̃ =


0 −4 0 0
4 0 0 0
0 0 0 20
0 0 −20 0

 .
We then have the acyclic approximation of Apre as

Ã = W̃ ◦ReLU(grad(p̃)) =


0 −1 0 0
0 0 0 0
0 0 0 5
0 0 0 0

 = Apre.

The results indicate that the projected potential function p̃
fully preserves the (partial) ordering in each tree, and the
projection procedure in Theorem 4.3 maps the acyclic graph
to itself.

Example 3, projection for a cyclic graph with cycle
length 2: We now consider a cyclic graph with a cycle
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between the first and the second vertex, as shown in the
third plot of Figure 2, with the weighted adjacency matrix:

Apre =


0 −1 0 0
2 0 0 0
0 0 0 5
−2 0 0 0

 .
The connectivity matrix of Apre writes

C(Apre) =


1 1 0 0
1 1 0 0
1 1 0 1
1 1 0 0

 .
Therefore, the projection result p̃ and the weight W̃ are

p̃ =


0.375
0.375
−0.25

0

 , W̃ =


0 0 0 16

3
0 0 0 0
0 0 0 20
− 16

3 0 −20 0

 .
We then have the acyclic approximation of Apre as

Ã = W̃ ◦ReLU(grad(p̃)) =


0 0 0 0
0 0 0 0
0 0 0 5
−2 0 0 0

 6= Apre.

It can be seen that when there is a local cycle (between
nodes A and B in this example), the projection procedure in
Theorem 4.3 simply removes all edges involved in this cycle
and keeps the ordering of vertices from all other edges.

Example 4, projection for a cyclic graph with cycle
length 4: We now consider a cyclic graph as shown in
the last plot of Figure 2, with the weighted adjacency ma-
trix:

Apre =


0 −1 0 0
0 0 2 0
0 0 0 5
−2 0 0 0

 .
The connectivity matrix of Apre writes

C(Apre) =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .
Therefore, C(Apre)− C(Apre)T ) = 0, and the projection
results p̃ = (0, 0, 0, 0)T . We then have the acyclic approxi-
mation of Apre as

W̃ ◦ ReLU(grad(p̃)) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


This example illustrates that when there is a cycle with
length greater than 2, the projection procedure in Theorem
4.3 removes all edges between any two nodes in this cycle.

E. Detailed Algorithm and Experiment
Settings

E.1. Settings on Synthetic Dataset

In the following we briefly describe the empirical process
of generating synthetic datasets. The code will be publicly
released at https://github.com/fishmoon1234/
DAG-NoCurl.

Linear synthetic datasets: In the linear SEM tests, for
each d ∈ {10, 30, 50, 100} and each graph type-noise type
combination, 100 trials were performed with 1000 samples
in each dataset. For each trial, a ground truth DAG GA0 is
randomly sampled following either the Erdős–Rényi (ER)
or the scale-free (SF) scheme. When (i, j) is a directed
edge of the ground truth DAG GA0 , the weight of this edge
A0
ij is sampled from U([−2,−0.5] ∪ [0.5, 2]). Each sample

Xi ∈ Rd, i = 1, · · · , 1000, is generated following:

Xi
j = (a0

j )
Tπ0(Xi

j) + Zij

where Xi
j is the ith sample of jth variable Xj , a0

j ∈ Rd
is the jth column of the ground truth weighted adjacency
matrix A0 = [a0

1| · · · |a0
d], π

0(Xi
j) is a random vector of

size d containing the variable values corresponding to the
parents of jth variable Xj per A0 in the ith sample, i.e., its
k-th component [π0(Xi

j)]k = Xi
k if Xk is a parent of Xj in

A0 otherwise [π0(Xi
j)]k = 0, Zij is either a Gaussian noise

Zij ∼ N (0, 1) or a Gumbel noise Zij ∼ Gumbel(0, 1).

Nonlinear synthetic datasets: In the nonlinear SEM tests,
5 trials were performed for each case with 5000 samples in
each dataset. For each trial the ground truth DAG GA0 and
the weighted adjacency matrix A0 are generated following
the same way as in the linear SEM tests. Three types of
datasets were considered:

• Nonlinear Case 1: For each d ∈ {10, 20, 50, 100},
each sample Xi ∈ Rd, i = 1, · · · , 5000, is generated
following

Xi
j = cos((a0

j )
Tπ0(Xi

j) + 1) + Zij

where A0 is the weighted adjacency matrix of a graph
sampled following the Erdős–Rényi (ER) scheme with
3d expected edges (denoted as ER3), and the noise
Zij ∼ N (0, 1).

• Nonlinear Case 2: For each d ∈ {10, 20, 50, 100},
each sample Xi ∈ Rd, i = 1, · · · , 5000, is generated
following

Xi
j =2 sin((a0

j )
Tπ0(Xi

j) + 0.5)

+ ((a0
j )
Tπ0(Xi

j) + 0.5) + Zij

https://github.com/fishmoon1234/DAG-NoCurl
https://github.com/fishmoon1234/DAG-NoCurl
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where A0 is the weighted adjacency matrix of a graph
sampled following the Erdős–Rényi (ER) scheme with
3d expected edges (denoted as ER3), and the noise
Zij ∼ N (0, 1).

• Nonlinear Case 3: For each d ∈ {10, 20, 50, 100},
each sample Xi ∈ Rd, i = 1, · · · , 5000, is generated
following

Xi
j = (a0

j )
T cos(π0(Xi

j) + 1) + Zij

where A0 is the weighted adjacency matrix of a graph
sampled following the Scale-free (SF) scheme with
3d expected edges (denoted as SF3), and the noise
Zij ∼ N (0, 1).

Here we note that Nonlinear Case 1 and 2 were adopted
from (Yu et al., 2019). In Nonlinear Case 3, each sample
were generated following almost the same scheme as in
Nonlinear Case 1, but the ground truth graph was generated
with the SF model. Comparing with the ER graphs which
have a degree distribution following a Poisson distribution,
SF graphs have a degree distribution following a power law
and therefore few nodes have a high degree (Lachapelle
et al., 2019).

E.2. Settings for Each Algorithm

In this section we describe the settings and parameters em-
ployed in each algorithm.

E.2.1. LINEAR SEM

DAG-NoCurl: In linear SEM we use the least-squares loss

FSEM (A,X) =
1

2n
||X−ATX||2F (16)

regardless of the noise type, with the polynomial acyclicity
penalty from (Yu et al., 2019)

h(A) = tr[(I +A ◦A/d)d]− d. (17)

We consider the penalty parameter λ in DAG-NoCurl
as a tunable hyperparameter, with the range of
{1, 10, 102, 103, 104}. We use the runtime and the score
difference from the ground truth ∆F = FSEM (A,X) −
FSEM (A0,X) as the measure to choose the best hyperpa-
rameters. For the detailed analysis and discussion, please
refer to the Section F on hyperparameter study of this sup-
plemental material. To solve for the unconstrained smooth
minimization problems, although a number of efficient nu-
merical algorithms are available, we employ the L-BFGS
(Liu and Nocedal, 1989) algorithm with the stopping toler-
ance “ftol” (the relative score difference between the last
two iterations) set as 10−8. The implementation is in Python
based on the original NOTEARS package from (Zheng et al.,

2018). Unless otherwise stated, we use the threshold 0.3 on
Apre and Ã, as suggested in (Zheng et al., 2018).

NOTEARS: For baseline method NOTEARS, we use the
NOTEARS package in Python from (Zheng et al., 2018)
with the least-squares loss (16) and the polynomial acyclic-
ity penalty (17). For the augmented Lagrangian method in
NOTEARS, we use default parameters from the package,
and the default stopping criteria h(A) ≤ 10−8.

GOBNILP: For the exact minimizer of the original opti-
mization problem, we use the publicly available package
Globally Optimal Bayesian Network learning using Integer
Linear Programming (GOBNILP) (Cussens et al., 2016)1.
It uses integer linear programming written in C program
and SCIP optimization solvers to learn BN from complete
discrete data or from local scores. We use GaussianL0 score
with k = 0.0 and did not set a maximal parental set size
(“palim = None”). We did not change any other parameter
setting.

FGS: For baseline method fast greedy equivalent search
(FGS), we use py-causal package from Carnegie Mellon
University (Ramsey et al., 2017)2. This method is written
in highly optimized Java code with a Python interface. We
use the default parameter settings and did not tune any pa-
rameter. Instead of returning a DAG, a CPDAG is returned
by FGS which contains undirected edges. Therefore, in our
evaluations for FGS, we favorably treat undirected edges
from FGS as true positives, as long as the ground truth graph
has a directed edge in place of the undirected edge.

CAM: For baseline method causal additive models (CAM)
(Bühlmann et al., 2014), we use Causal Discovery toolbox
in Python3. Only two input parameters, “variablesel” and
“pruning”, were tuned, which enables preliminary neigh-
borhood selection and pruning, respectively. We found that
with the preliminary neighborhood selection applied the
time consumption of CAM is reduced significantly, and the
pruning step helps reducing the resultant SHD and therefore
improves the accuracy. These observations are consistent
with the experiments reported in (Bühlmann et al., 2014).
Therefore, all results reported here are with these two pa-
rameters turned on.

MMPC: For baseline method Max-Min Parents and Chil-
dren (MMPC) (Tsamardinos et al., 2006a), we also use
Causal Discovery toolbox in Python4, with the default pa-
rameter settings.

1https://www.cs.york.ac.uk/aig/sw/
gobnilp/

2https://github.com/bd2kccd/py-causal
3https://github.com/FenTechSolutions/

CausalDiscoveryToolbox
4https://github.com/FenTechSolutions/

CausalDiscoveryToolbox

https://www.cs.york.ac.uk/aig/sw/gobnilp/
https://www.cs.york.ac.uk/aig/sw/gobnilp/
https://github.com/ bd2kccd/py-causal
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
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Algorithm 2 NoCurl algorithm combining with DAG-GNN
1. Step 1: Solve for an initial prediction (Apre, θpre)
with

(Apre, θpre) =argmin
A,θ

{−LELBO(A,X)

+ λ(tr[(I +A ◦A/d)d]− d)}

and threshold Apre.
2. Step 2: Based on Apre, obtain an approximate solution
of p∗ as p̃ with

p̃ = −4†0 div

(
1

2
(C(Apre)− C(Apre)T )

)
,

then solve for W̃ with fixed p̃ via

(W̃ , θ̃) = argmin
W,θ

− LELBO(W ◦ ReLU(grad(p̃)),X)

In this step, the initial prediction for parameters θpre from
Step 1 is used as the initial guess of θ.
3. Obtain the final approximation solution Ã = W̃ ◦
ReLU(grad(p̃)) and threshold Ã.

Eq-TD & Eq-BU: we use the available code form github5

and the same named functions as listed. We did not tune
any hyperparameters.

E.2.2. NONLINEAR SEM

DAG-GNN with NoCurl: In nonlinear SEM we combine
NoCurl with DAG-GNN (Yu et al., 2019). In DAG-GNN,
a deep generative model is employed to learn the DAG by
maximizing the evidence lower bound (ELBO):

LELBO(A,X) =
1

n

n∑
k=1

LkELBO(A,Xk)

where LkELBO(A,Xk) = −DKL

(
q(Y |Xk;A) || p(Y )

)
+ Eq(Y |Xk;A)

[
log p(Xk|Y ;A)

]
.

Following the settings in (Yu et al., 2019), Y ∈ Rd is a
latent variable and p(Y ) is the prior modeled with the stan-
dard multivariate normal p(Y ) = N (0, I). q(Y |X;A) is
the variational posterior to approximate the actual poste-
rior p(Y |X), and DKL denotes the KL-divergence between
the variational posterior and the actual one. q(Y |X;A) is
modeled with a factored Gaussian with mean MY ∈ Rd
and standard deviation SY ∈ Rd, based on a multilayer

5https://github.com/WY-Chen/EqVarDAG

perception (MLP):

[MY | logSY ] = (I −AT )MLP(X,M1,M2)

where M1 ∈ R1×nhid and M2 ∈ Rnhid×1 are parameters
and nhid is the number of neurons in the hidden layer. Sim-
ilarly, p(X|Y ;A) is also modeled with a factored Gaussian
with mean MX ∈ Rd and standard deviation SX ∈ Rd,
based on a multilayer perception (MLP):

[MX | logSX ] = MLP((I −AT )−1Y,M3,M4)

where M3 ∈ R1×nhid and M4 ∈ Rnhid×1 are pa-
rameters. In DAG-GNN, the weighted adjacency ma-
trix A is optimized together with all the parameters θ =
(M1,M2,M3,M4) with the following learning problem:

(A∗, θ∗) = argmin
A,θ

− LELBO(A,X),

subject to h(A) = tr[(I +A ◦A/d)d]− d = 0.
(18)

With the goal of boosting the efficiency of DAG-GNN with-
out losing accuracy, in NoCurl we use the same score func-
tion from DAG-GNN:

FELBO(A,X) = −LELBO(A,X)

and their implementation based on PyTorch (Paszke et al.,
2017). The detailed steps are described in Algorithm 2.
Specifically, we use DAG-GNN’s default number of neu-
rons in the hidden layer nhid = 64. Each unconstrained
optimization problem is solved using the Adam (Kingma
and Ba, 2015), with the default learning rate= 3e− 3 from
DAG-GNN. To guarantee sufficient updates for the parame-
ters θ, we use epoch number= 400 in Step 1 and epoch
number= 600 while solving for W̃ in Step 2. Due to
the computation load of neural models, we use one fixed
λ = 10 as the hyperparameter in NoCurl since it is the
fastest method while being reasonably accurate per our hy-
perparameter study on linear SEM datasets (see the hyperpa-
rameter study in Section F of this supplementary material).

DAG-GNN: We use the available code from github 6 to run
DAG-GNN. We use the default hidden size 64 for all layers
and did not tune any other hyperparameters (all default
values).

GraN-DAG: We use the available code from github 7. Fol-
lowing the suggestion in (Lachapelle et al., 2019), we turned
on both the preliminary neighborhood selection (pns) and
the pruning option (cam-pruning), for which we have
observed a big improvement in SHD. For the rest of hyper-
parameters, we use default values with options pns and
cam-pruning.

6https://github.com/fishmoon1234/DAG-GNN
7https://github.com/kurowasan/GraN-DAG

https://github.com/WY-Chen/EqVarDAG
https://github.com/fishmoon1234/DAG-GNN
https://github.com/kurowasan/GraN-DAG
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NOTEARS-MLP: We use the available code from github
8 to run NOTEARS-MLP. We tune the hidden size to 32
for all layers (increased from default size 10, for which
we observe a big improvement in SHD) to improve the
accuracy. All other hyperparameters are kept as their default
values: the augmented Lagrangian method terminates when
h(A) = tr[(I +A ◦A/d)d]− d ≤ 10−8 and λ1 and λ2 are
set as 0.01.

For CAM and MMPC, we use the same settings as dis-
cussed in the previous subsection.

GSGES: We use the available code from github 9. We use
the default settings for evaluations.

E.3. Other Experiment Details

A clear definition of the specific measure or statistics
used to report results: To evaluate the accuracy of results
from each algorithm, we mainly use the structure hamming
distance (SHD) as a metric, which is the sum of extra, miss-
ing, and reverse edges in learned graphs. We report the
computational time (in seconds) of each algorithm, as a
main metric of their computational efficiency. When it
is available, we also report the score difference from the
ground truth (denoted as ∆F ), the number of extra edges
(denoted as #Extra E), the number of missing edges (denoted
as #Missing E) and the number of reverse edges (denoted as
#Reverse E). All metrics are the lower the better.

A description of results with central tendency (e.g.
mean) & variation (e.g. error bars): We report mean and
standard error of the mean for each metric, with a format as
“mean ± standard error”.

The average runtime for each result, or estimated en-
ergy cost: We use CPU and report the run time (in seconds)
for each algorithm. We run all the algorithms up to 72 hours
for each trial.

A description of the computing infrastructure used: We
use a local Linux-based computing cluster, and all the codes
are written in Python and/or PyTorch.

F. Hyperparameter Study
In this section we continue the discussion on hyperparameter
study results in Section 5.1 of the main text and conduct
a hyperparameter study for linear SEMs, with one fixed λ
or two fixed λ’s in Step 1 of the proposed algorithm. In
particular, in the one fixed λ cases (denoted as the λ = ·
cases), we obtain the estimate Apre in Step 1 by solving for

8https://github.com/xunzheng/notears
9https://github.com/Biwei-Huang/

Generalized-Score-Functions-for-Causal-Discovery

only one unconstrained optimization problem:

Apre = argmin
A

F (A,X) + λh(A),

where A ∈ Rd×d is initialized as Aij = 0, ∀i, j ∈
{1, · · · , d}. In the two fixed λ’s cases (denoted as the
λ = (λ1, λ2) cases), we obtain the estimate Apre in Step 1
by solving for two optimization problems sequentially. We
firstly solve:

Apre,0 = argmin
A

F (A,X) + λ1h(A),

with initial guess Aij = 0, ∀i, j ∈ {1, · · · , d}, then use
Apre,0 as the initial guess to solve

Apre = argmin
A

F (A,X) + λ2h(A)

for the estimate matrix Apre. Here we explore the hyper-
parameter λ on ER3-Gaussian and ER6-Gaussian cases, to
investigate the performances of NoCurl on both relatively
sparse graphs (ER3) and relatively dense graphs (ER6). The
results for ER3-Gaussian are provided in Table 4 and the
results for ER6-Gaussian is in Table 5. For all cases we
report the structure hamming distance (SHD), the score dif-
ference from the ground truth (denoted as ∆F ), the run time
(in seconds), the number of extra edges (denoted as #Extra
E), the number of missing edges (denoted as #Missing E)
and the number of reverse edges (denoted as #Reverse E),
while we choose the hyperparameter mainly based on the
considerations of both a low run time and a good resultant
score from the predicted graph (low ∆F ).

For cases with one fixed λ, we investigate the hyperparame-
ter λ ∈ [100, 104]. From Tables 4 and 5 it can be observed
that in both ER3-Gaussian and ER6-Gaussian cases, com-
paring with the other values of λ’s, tests with λ = 10 and
λ = 102 generally require short run time and their predicted
graphs have relatively good scores according to their resul-
tant loss values ∆F . λ = 10 is faster and more accurate
in SHD in ER3 than λ = 102 for all d, but λ = 102 has
better (i.e., lower) ∆F loss values. In denser graphs (ER6),
λ = 102 becomes significantly better in both ∆F and SHD.
As a result, we use λ = 102 as the default hyperparameter
value for one fixed λ, which becomes NoCurl-1, experi-
ments in the following.

For cases with with two fixed λ’s, we test the cases with
λ1, λ2 ∈ [100, 104], and list some combinations with results
in Tables 4 and 5. Specifically, in most cases λ = (10, 103)
and λ = (10, 104) are the two combinations with the best
score values ∆F . Among these two combinations, we found
that λ = (10, 104) results in slightly lower ∆F loss and
SHD, but λ = (10, 103) requires a lower run time, espe-
cially when d is large. Here we choose λ = (10, 103) as
the default parameters in two fixed λ’s experiments, which
becomes NoCurl-2.

https://github.com/xunzheng/notears
https://github.com/Biwei-Huang/Generalized-Score-Functions-for-Causal-Discovery
https://github.com/Biwei-Huang/Generalized-Score-Functions-for-Causal-Discovery
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From Tables 4 and 5, we also observe that, to achieve the op-
timal loss and accuracy, larger and denser graphs generally
require a larger value of penalty parameter λ. As a future
direction, we are investigating the strategy of choosing λ
automatically.

G. Ablation Study
In this section we continue the discussion on ablation study
results in Section 5.2 of the main text and perform an ab-
lation study, to investigate the effects of each step in our
proposed algorithm. In particular, results from the following
five settings are listed in Tables 4 and 5:

• rand init cases: We solve for (W̃ , p̃) from the opti-
mization problem

(W̃ , p̃) = argmin
W∈S,p∈Rd

F (W ◦ ReLU(grad(p)),X)

(19)
directly, with random initialization of (W,p). The
results are the average from 7 different random ini-
tializations Wij ∼ U([0, 1]), pi ∼ U([0, 1]) for each
set of data. With this test we aim to investigate the
importance of both Step 1 and Step 2.

• rand p cases: We omit Step 1 and initialize pinit with
random initializations, then solve for an estimate of W
from

W pre = argmin
W∈S

F (W ◦ ReLU(grad(pinit)),X)

and finally jointly optimize (W̃ , p̃) from the optimiza-
tion problem in (19). The results are also the average
from 7 different random initializations of p following
pi ∼ U([0, 1]) for each set of data. With this test we
aim to investigate the importance of Step 1.

• λ = 102s and λ = (10, 103)s cases, which are
NoCurl-1s and Nocurl-2s with “s”: We test if Step
2 of the algorithm is important. In particular, we
solve Step 1 and then use an incremental threshold-
ing method to obtain a DAG from the potential cyclic
graph Apre of Step 1. In these cases, we repeatedly
increase the threshold of the structure until a DAG is
obtained. We use the thresholds starting from 0.3 (any-
thing below produces much worse results) and with
increments of 0.05 until h(A) < 10−8.

• λ = 102− and λ = (10, 103)− cases, which are
NoCurl-1- and Nocurl-2- with “-”: Instead of solv-
ing for W̃ from the optimization problem

W̃ = argmin
W∈S

F (W ◦ ReLU(grad(p̃)),X), (20)

we estimateW directly fromApre with the formulation
(13) above. When Apre is a DAG, the formulation (13)
will fully recover Apre. Otherwise, when there is a
cycle in GApre , this formulation will remove all edges
between any two nodes in this cycle. With this study
we aim to check the importance of the second part of
Step 2, i.e., solving for W̃ from (20).

• λ = 102+ and λ = (10, 103)+ cases, which are
NoCurl-1+ and Nocurl-2+ with “+”: After Step 1
and Step 2 of our algorithm, We add one additional
post-processing step to jointly optimize (W̃ , p̃) from
the optimization problem in (19), so as to guarantee
that the solution is a stationary point of the optimization
problem (19). This study aims to investigate how far
our approximated solution is from a stationary point.

As one can see from Tables 4 and 5, NoCurl with random
initializations (“rand init”) performs subpar, indicating the
importance of Step 1 of our algorithm. Among the two
random initialization cases, the “rand p” cases have a even
worse accuracy, especially on the number of reserved edges,
which indicates that a good estimate of the topological or-
dering in p plays a critical role in the algorithm. Results
from threshold s cases show that they are not as good as the
full algorithm, indicating that Step 2 is also critical to the
performance of our method. Moreover, we list all thresh-
old s cases from other empirical settings in Table 4 to 5 in
Section I of the supplemental material, to show that poor
results are consistent across different settings. In addition,
by comparing the λ = 102 case with λ = 102− case and
the λ = (10, 103) case with λ = (10, 103)− case, we found
that although the λ = 102− and λ = (10, 103)− cases
are less likely to predict a wrong extra edge, but their pre-
dicted graphs tend to miss a relatively large number of edges
and therefore have a large SHD. When there is a cycle in
GApre , the formulation (13) will remove all edges between
any two nodes in this cycle. On the other hand, the num-
bers of missing edges from the λ = 102 and λ = (10, 103)
cases are much lower, which indicates that the algorithm
has successfully recovered some of the lost edges when
solving for W̃ from (20). Lastly, by comparing the λ = 102

cases with λ = 102+ cases and the λ = (10, 103) cases
with λ = (10, 103)+ cases, we observe that adding extra
optimization steps after Step 2 does not result much im-
provements on accuracy or ∆F . This result indicates that
the estimated solution (W̃ , p̃) from our algorithm is often
very close to a stationary point of (19).

H. Optimization Objective Results
In this section we continue the discussion on optimization
objective results in Section 5.3 of the main text, by dis-
playing the additional results for optimization objective
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results ∆F = F (Ã,X) − F (A0,X) for different graph-
type and noise-type combinations in Table 3. As one may
see, the two fixed λ case can achieve close objective val-
ues to NOTEARS, while in the denser graph case (ER6)
the λ = (10, 103) case even outperforms NOTEARS when
d = 30 and d = 50. This result is encouraging but also
surprising since the problem is often more difficult as the
graph becomes larger and denser, and our algorithm only
provides an approximated solution. We suspect one major
reason could be the optimization difficulty in larger and
dense graphs, which could easily be stuck at one of many
more stationary points. We leave it to future work to investi-
gate these problems further.

I. Detailed Results for Structure Recovery
In this section we provide the detailed numerical results of
linear synthetic datasets for different algorithms, as a con-
tinuation of the discussion in Section 5.4 of the main text
and as the supplementary results of the structure discovery
in terms of SHD and the run time plotted in Figure 1 of the
main text. The full results for ER3-Gaussian, ER4-Gaussian,
ER6-Gaussian and SF4-Gumbel cases are provided in Ta-
bles 6, 7, 8 and 9, respectively. Besides SHD, we further
list ∆F , the number of extra edges, missing edges and re-
verse edges as additional algorithm evaluation metric. From
these tables we can see that the most accurate structure dis-
covery results in terms of SHD are either from NOTEARS
or NoCurl, while the other three algorithms (FGS, CAM
and MMPC) rapidly deteriorates as the number of edges
increase. Among the total 16 cases with different com-
binations of d ∈ {10, 30, 50, 100} and graph/noise-types,
NoCurl-2 outperforms NOTEARS (as well as all other al-
gorithms) with a lower SHD in most (12 out of 16) cases.
We further observe that the low SHD from NoCurl comes
from the fact that this algorithm tends to miss much fewer
numbers of edges comparing with other algorithms espe-
cially in large and dense graphs, possibly because Step 2 in
NoCurl has successfully recovered some lost edges, as we
have observed and discussed in the Ablation Study section
G above. When comparing the computational time, NoCurl
is faster than NOTEARS by one or two orders of magnitude.

J. Detailed Results for Nonlinear Synthetic
Datasets

In this section we provide additional results and discussions
for the experiments on nonlinear SEM datasets in Section
5.5 of the main text, with the details of dataset genera-
tion and algorithm settings provided in Section E.2.2 above.
Table 10 shows the full results of the various methods in
nonlinear synthetic datasets. We note that some d = 100
results for NOTEARS-MLP, GraN-DAG, and GSGES are
missing since these algorithms could not finish within 72

hours on at least one trial.10 Moreover, we also observe
that the run time for MMPC vary drastically, potentially due
to the conditioned variable set size. When its size is large,
exhaustive search becomes prohibitively expensive. GSGES
is the most accurate non-neural-network methods, and even
outperforms one neural method, Gran-DAG, in Nonlinear 3
cases. However, its running time get prohibitive with large
dimensions.

As one can see, in the Nonlinear Case 1 datasets, GraN-
DAG and CAM perform the best among all the methods but
become the worst in Nonlinear Case 2 and 3 datasets among
finished methods. NOTEARS-MLP performs the best in
Nonlinear Case 3 but does not do as well in Nonlinear Case
1 and 2 and have trouble handling larger graphs. DAG-
GNN and NoCurl does the best in Nonlinear Case 2 cases
in comparison and are able to beat NOTEARS-MLP in
Nonlinear Case 1 when d is larger. It shows there is no
universal best nonlinear DAG learner. Moreover, NoCurl
with DAG-GNN as the base model performs as well as DAG-
GNN and takes about 3 to 4 times faster, which indicate
that NoCurl has successfully boost the efficiency of DAG-
GNN without deteriorate its accuracy. NoCurl is also more
than one order of magnitude of faster than Gran-DAG and
NOTEARS-MLP in many testing cases.

As discussed in the main text, it should be interesting to ex-
tend NoCurl to use NOTEARS-MLP and Gran-DAG as base
models by considering gradient-based adjacency matrix.

K. Learnt Protein Network

Figure 3. Learned protein signaling network.

We now consider a real-world bioinformatics dataset (Sachs
10Although GraN-DAG without the pruning phase finishes

within 72 hours in Nonlinear Case 1 and Nonlinear Case 3, the
results are with a very large SHD (762± 345 in Nonlinear Case
1 and 1606 ± 421 in Nonlinear Case 3), since the pruning step
generally has the effect of greatly reducing the SHD, as reported
in (Lachapelle et al., 2019).
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Table 3. Comparison of different algorithms on score differences from the ground truth,4F = F (Ã,X)−F (A0,X). For each algorithm
we show results as mean ± standard error over 100 trials.

λ = 102 λ = (10, 103) NOTEARS GOBNILP
ER3-Gaussian, d = 10 0.09± 0.20 0.06± 0.20 0.03± 0.12 −0.03± 0.00
ER4-Gaussian, d = 10 0.14± 0.03 0.13± 0.34 0.08± 0.21 −0.03± 0.01
ER6-Gaussian, d = 10 0.54± 0.22 0.36± 0.75 0.22± 0.40 −0.03± 0.01
SF4-Gumbel, d = 10 −0.59± 0.01 −0.59± 0.14 −0.71± 0.08 −1.73± 0.07

ER3-Gaussian, d = 30 0.33± 0.19 0.07± 0.04 −0.06± 0.02 N/A
ER4-Gaussian, d = 30 0.31± 0.05 0.40± 0.19 0.25± 0.11 N/A
ER6-Gaussian, d = 30 1.78± 0.38 0.97± 0.16 1.02± 0.18 N/A
SF4-Gumbel, d = 30 −3.30± 0.04 −3.31± 0.02 −3.55± 0.02 N/A

ER3-Gaussian, d = 50 0.05± 0.05 −0.10± 0.05 −0.25± 0.04 N/A
ER4-Gaussian, d = 50 0.40± 0.13 0.42± 0.21 0.19± 0.09 N/A
ER6-Gaussian, d = 50 2.31± 0.41 1.77± 0.38 1.97± 0.26 N/A
SF4-Gumbel, d = 50 −6.74± 0.03 −6.74± 0.03 −7.08± 0.02 N/A

ER3-Gaussian, d = 100 −0.82± 0.16 −1.44± 0.95 −1.65± 0.78 N/A
ER4-Gaussian, d = 100 −0.28± 0.26 −0.32± 2.76 −0.64± 1.35 N/A
ER6-Gaussian, d = 100 4.30± 0.99 2.61± 9.32 2.49± 3.67 N/A
SF4-Gumbel, d = 100 −17.29± 0.05 −17.19± 0.58 −17.53± 0.49 N/A

et al., 2005) for the discovery of a protein signaling network
based on expression levels of proteins and phospholipids.
This is a widely used dataset for research on graphical mod-
els, with experimental annotations accepted by the biologi-
cal research community. In Table 11, we compare our results
and 6 baseline methods against the ground truth offered in
(Sachs et al., 2005). On this dataset, DAG-NoCurl success-
fully learns the existence of 14 out of 20 ground-truth edges,
and predicts the directions of 8 edges correctly (the learnt
graph is plotted in Appendix Figure 3).
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Table 4. Hyperparameter and Ablation Study: results (mean ± standard error over 100 trials) for ER3-Gaussian Cases from DAG-NoCurl,
where bold numbers highlight the best method for each case.

d Method Time ∆F SHD #Extra E #Missing E #Reverse E
10 λ = 1 0.08± 0.00 0.98± 0.23 4.12± 0.30 1.89± 0.17 1.50± 0.14 0.73± 0.09
10 λ = 10 0.07± 0.00 0.22± 0.07 1.50± 0.22 0.72± 0.13 0.31± 0.08 0.47± 0.06
10 λ = 102 0.11± 0.00 0.09± 0.02 2.18± 0.28 1.24± 0.18 0.26± 0.06 0.68± 0.08
10 λ = 103 0.38± 0.01 0.16± 0.03 3.14± 0.37 1.90± 0.25 0.39± 0.08 0.85± 0.09
10 λ = 104 0.85± 0.02 0.28± 0.04 4.11± 0.42 2.43± 0.28 0.54± 0.09 1.14± 0.10
10 λ = (10, 102) 0.23± 0.01 0.08± 0.02 1.24± 0.20 0.65± 0.13 0.19± 0.05 0.40± 0.06
10 λ = (10, 103) 0.47± 0.01 0.06± 0.02 1.08± 0.18 0.54± 0.12 0.09± 0.03 0.45± 0.06
10 λ = (10, 104) 0.85± 0.02 0.08± 0.02 1.43± 0.23 0.83± 0.17 0.08± 0.03 0.52± 0.07
10 λ = (102, 103) 0.44± 0.01 0.07± 0.02 2.09± 0.27 1.20± 0.18 0.25± 0.06 0.64± 0.08
10 rand init 0.19± 0.01 5.97± 1.63 9.73± 0.54 4.59± 0.31 2.78± 0.26 2.35± 0.12
10 rand p 0.32± 0.03 11.59± 2.46 14.88± 0.57 6.48± 0.33 5.06± 0.30 3.34± 0.15
10 λ = 102s 0.09± 0.00 1.45± 0.02 3.11± 0.31 1.60± 0.18 0.95± 0.11 0.56± 0.08
10 λ = (10, 103)s 0.43± 0.01 0.53± 0.02 1.27± 0.20 0.66± 0.14 0.20± 0.05 0.41± 0.06
10 λ = 102- 0.11± 0.00 19.95± 0.43 3.62± 0.27 0.64± 0.11 2.93± 0.19 0.05± 0.03
10 λ = (10, 103)- 0.32± 0.01 18.30± 0.42 2.09± 0.17 0.30± 0.08 1.79± 0.13 0.00± 0.00
10 λ = 102+ 0.29± 0.01 0.10± 0.02 2.15± 0.27 1.22± 0.18 0.25± 0.06 0.68± 0.08
10 λ = (10, 103)+ 0.71± 0.01 0.06± 0.02 1.08± 0.18 0.54± 0.12 0.09± 0.03 0.45± 0.06
30 λ = 1 0.54± 0.03 2.55± 0.37 13.64± 0.77 8.34± 0.55 2.83± 0.19 2.47± 0.15
30 λ = 10 0.59± 0.03 0.50± 0.18 6.46± 0.50 4.14± 0.38 0.62± 0.09 1.70± 0.12
30 λ = 102 1.19± 0.04 0.33± 0.19 7.18± 0.61 5.05± 0.49 0.40± 0.07 1.73± 0.12
30 λ = 103 1.29± 0.03 0.23± 0.05 10.13± 0.72 7.33± 0.57 0.41± 0.07 2.39± 0.15
30 λ = 104 4.88± 0.19 0.23± 0.04 11.67± 0.78 8.36± 0.60 0.49± 0.09 2.82± 0.16
30 λ = (10, 102) 0.64± 0.02 0.15± 0.05 5.41± 0.49 3.56± 0.37 0.42± 0.08 1.43± 0.12
30 λ = (10, 103) 2.38± 0.06 0.07± 0.04 5.20± 0.49 3.63± 0.39 0.27± 0.05 1.30± 0.10
30 λ = (10, 104) 4.56± 0.10 0.00± 0.02 4.92± 0.45 3.38± 0.38 0.14± 0.04 1.40± 0.09
30 λ = (102, 103) 2.50± 0.06 0.05± 0.03 6.61± 0.63 4.77± 0.51 0.24± 0.05 1.60± 0.12
30 rand init 2.39± 0.14 8.83± 3.09 30.96± 1.37 20.35± 1.01 6.05± 0.43 4.56± 0.20
30 rand p 3.40± 0.23 48.63± 8.46 59.57± 1.51 34.03± 1.04 16.71± 0.59 8.83± 0.23
30 λ = 102s 0.29± 0.01 17.27± 0.20 13.39± 0.66 8.50± 0.53 3.89± 0.20 1.00± 0.10
30 λ = (10, 103)s 1.54± 0.04 10.98± 0.19 8.18± 0.61 5.26± 0.47 2.12± 0.16 0.80± 0.08
30 λ = 102- 0.34± 0.01 104.65± 1.09 12.09± 0.47 1.94± 0.22 10.00± 0.32 0.15± 0.04
30 λ = (10, 103)- 1.22± 0.03 95.39± 1.04 8.01± 0.38 1.34± 0.17 6.60± 0.28 0.07± 0.03
30 λ = 102+ 1.77± 0.02 0.32± 0.19 7.10± 0.61 5.00± 0.49 0.38± 0.07 1.72± 0.12
30 λ = (10, 103)+ 3.25± 0.04 0.07± 0.04 5.21± 0.49 3.64± 0.39 0.28± 0.05 1.29± 0.10
50 λ = 1 2.73± 0.14 4.56± 0.93 25.16± 1.23 16.19± 0.97 4.33± 0.25 4.64± 0.21
50 λ = 10 2.00± 0.10 0.38± 0.09 13.14± 0.98 9.16± 0.79 0.85± 0.10 3.13± 0.19
50 λ = 102 2.32± 0.09 0.05± 0.05 13.51± 1.00 9.78± 0.82 0.65± 0.10 3.08± 0.18
50 λ = 103 4.16± 0.14 0.03± 0.05 16.01± 1.18 11.60± 0.96 0.83± 0.12 3.58± 0.18
50 λ = 104 8.40± 0.26 0.03± 0.05 18.95± 1.08 13.83± 0.88 0.67± 0.10 4.45± 0.19
50 λ = (10, 102) 4.36± 0.19 -0.01± 0.05 9.95± 0.79 7.11± 0.66 0.60± 0.07 2.24± 0.14
50 λ = (10, 103) 6.48± 0.16 -0.10± 0.05 8.92± 0.70 6.35± 0.57 0.41± 0.08 2.16± 0.14
50 λ = (10, 104) 8.73± 0.20 -0.16± 0.06 9.21± 0.69 6.65± 0.60 0.21± 0.05 2.35± 0.14
50 λ = (102, 103) 5.20± 0.16 -0.01± 0.06 11.98± 0.96 8.69± 0.78 0.49± 0.09 2.80± 0.17
50 rand init 8.48± 0.56 12.03± 0.65 72.31± 2.55 52.15± 2.08 14.26± 0.71 5.91± 0.27
50 rand p 11.77± 0.60 78.54± 9.59 112.86± 2.38 68.74± 1.72 29.64± 0.85 14.48± 0.30
50 λ = 102s 1.37± 0.06 48.15± 1.02 25.53± 1.08 16.85± 0.81 7.02± 0.32 1.66± 0.12
50 λ = (10, 103)s 4.30± 0.10 24.66± 0.40 15.77± 0.71 10.77± 0.57 3.80± 0.19 1.20± 0.10
50 λ = 102- 2.04± 0.08 272.99± 4.79 20.45± 0.69 2.97± 0.28 17.31± 0.48 0.17± 0.04
50 λ = (10, 103)- 4.65± 0.11 252.60± 4.65 13.53± 0.47 2.19± 0.19 11.25± 0.37 0.09± 0.03
50 λ = 102+ 3.13± 0.06 0.05± 0.05 13.63± 1.01 9.87± 0.82 0.66± 0.10 3.10± 0.18
50 λ = (10, 103)+ 9.36± 0.10 -0.11± 0.05 8.88± 0.70 6.33± 0.57 0.39± 0.08 2.16± 0.15
100 λ = 1 8.05± 0.40 6.36± 0.62 54.27± 1.87 36.22± 1.49 8.69± 0.31 9.36± 0.28
100 λ = 10 16.02± 0.75 0.50± 0.27 29.14± 1.44 20.79± 1.17 1.91± 0.16 6.44± 0.26
100 λ = 102 18.20± 0.81 -0.82± 0.16 31.99± 1.66 24.09± 1.32 1.30± 0.16 6.60± 0.30
100 λ = 103 32.59± 0.90 -1.05± 0.12 37.99± 1.74 28.91± 1.46 1.25± 0.15 7.83± 0.29
100 λ = 104 56.89± 1.48 -1.04± 0.16 43.16± 1.72 32.92± 1.44 0.98± 0.12 9.26± 0.29
100 λ = (10, 102) 12.48± 0.54 -0.92± 0.12 23.48± 1.37 17.36± 1.14 0.99± 0.10 5.13± 0.23
100 λ = (10, 103) 26.02± 0.76 -1.44± 0.09 19.16± 1.10 14.30± 0.89 0.62± 0.09 4.24± 0.23
100 λ = (10, 104) 62.12± 1.69 -1.52± 0.10 19.66± 1.24 14.70± 1.03 0.38± 0.09 4.58± 0.23
100 λ = (102, 103) 26.69± 0.76 -1.20± 0.15 27.81± 1.49 21.08± 1.21 0.98± 0.14 5.75± 0.27
100 rand init 35.48± 1.67 25.53± 1.82 171.88± 4.79 129.30± 3.80 32.63± 1.45 9.94± 0.41
100 rand p 49.62± 1.77 151.17± 19.44 247.30± 4.09 159.63± 3.25 59.22± 1.16 28.45± 0.41
100 λ = 102s 6.55± 0.30 100.83± 0.84 57.03± 1.49 38.63± 1.20 14.85± 0.38 3.55± 0.20
100 λ = (10, 103)s 21.11± 0.56 66.03± 0.66 35.75± 1.17 25.47± 0.95 7.96± 0.29 2.32± 0.15
100 λ = 102- 7.65± 0.36 480.18± 4.61 45.27± 1.00 7.37± 0.41 37.48± 0.68 0.42± 0.06
100 λ = (10, 103)- 19.40± 0.51 440.55± 4.42 29.21± 0.74 4.52± 0.29 24.53± 0.57 0.16± 0.04
100 λ = 102+ 44.8± 0.44 -0.84± 0.16 31.88± 1.66 24.00± 1.32 1.29± 0.16 6.59± 0.30
100 λ = (10, 103)+ 57.9± 0.50 -1.43± 0.10 19.30± 1.14 14.42± 0.92 0.60± 0.09 4.28± 0.23



DAGs with No Curl

Table 5. Hyperparameter and Ablation Study: results (mean ± standard error over 100 trials) for ER6-Gaussian Cases from DAG-NoCurl,
where bold numbers highlight the best method for each case.

d Method Time ∆F SHD #Extra E #Missing E #Reverse E
10 λ = 1 0.33± 0.02 2.49± 0.27 7.08± 0.43 2.57± 0.23 3.27± 0.22 1.24± 0.09
10 λ = 10 0.37± 0.02 0.83± 0.14 3.46± 0.33 1.18± 0.14 1.36± 0.16 0.92± 0.09
10 λ = 102 0.34± 0.02 0.54± 0.22 3.54± 0.37 1.37± 0.18 1.30± 0.17 0.87± 0.08
10 λ = 103 0.56± 0.02 0.48± 0.05 5.74± 0.46 2.58± 0.26 1.64± 0.18 1.52± 0.11
10 λ = 104 1.16± 0.03 0.75± 0.08 6.98± 0.51 3.15± 0.28 2.07± 0.20 1.76± 0.12
10 λ = (10, 102) 0.62± 0.03 0.76± 0.21 3.10± 0.32 0.99± 0.13 1.24± 0.16 0.87± 0.09
10 λ = (10, 103) 0.75± 0.03 0.36± 0.07 3.07± 0.30 0.97± 0.13 1.02± 0.14 1.08± 0.09
10 λ = (10, 104) 1.25± 0.04 0.49± 0.09 2.97± 0.32 0.99± 0.13 0.88± 0.14 1.10± 0.10
10 λ = (102, 103) 0.72± 0.03 0.37± 0.17 3.29± 0.35 1.31± 0.18 1.01± 0.15 0.97± 0.09
10 rand init 0.37± 0.03 78.00± 40.34 17.09± 0.62 5.63± 0.26 8.20± 0.53 3.25± 0.15
10 rand p 0.66± 0.06 128.79± 47.97 24.82± 0.47 6.10± 0.22 13.84± 0.41 4.88± 0.20
10 λ = 102s 0.37± 0.03 8.23± 0.15 4.79± 0.37 1.78± 0.18 2.32± 0.23 0.69± 0.08
10 λ = (10, 103)s 0.92± 0.03 5.55± 0.32 3.27± 0.35 1.10± 0.16 1.19± 0.17 0.98± 0.09
10 λ = 102- 0.21± 0.01 339.60± 10.48 7.28± 0.42 0.75± 0.11 6.52± 0.35 0.01± 0.01
10 λ = (10, 103)- 0.69± 0.03 332.83± 10.62 5.19± 0.39 0.53± 0.09 4.64± 0.33 0.02± 0.01
10 λ = 102+ 0.53± 0.02 0.54± 0.22 3.54± 0.37 1.37± 0.18 1.30± 0.17 0.87± 0.08
10 λ = (10, 103)+ 1.45± 0.04 0.36± 0.07 3.07± 0.30 0.97± 0.13 1.02± 0.14 1.08± 0.09
30 λ = 1 2.63± 0.17 16.64± 3.57 46.90± 1.76 32.35± 1.34 8.46± 0.46 6.09± 0.22
30 λ = 10 3.26± 0.19 4.22± 0.68 27.34± 1.91 19.59± 1.49 3.53± 0.36 4.22± 0.20
30 λ = 102 3.34± 0.21 1.78± 0.38 21.44± 1.56 15.98± 1.16 2.41± 0.33 3.05± 0.19
30 λ = 103 2.71± 0.13 1.42± 0.32 24.23± 1.81 18.38± 1.38 2.61± 0.34 3.24± 0.18
30 λ = 104 6.56± 0.20 1.25± 0.31 30.03± 1.73 23.19± 1.35 2.78± 0.28 4.06± 0.20
30 λ = (10, 102) 5.03± 0.29 2.09± 0.57 19.99± 1.50 14.77± 1.18 2.21± 0.27 3.01± 0.19
30 λ = (10, 103) 7.68± 0.39 0.97± 0.16 17.37± 1.18 12.93± 0.92 1.71± 0.19 2.73± 0.16
30 λ = (10, 104) 8.73± 0.29 0.98± 0.20 17.39± 1.44 12.79± 1.11 1.71± 0.26 2.89± 0.18
30 λ = (102, 103) 3.96± 0.21 1.23± 0.34 20.19± 1.71 15.29± 1.32 2.08± 0.30 2.82± 0.19
30 rand init 6.04± 0.26 41.38± 21.75 84.88± 2.65 59.53± 1.94 18.03± 0.85 7.32± 0.21
30 rand p 7.74± 0.38 871.38± 198.66 130.37± 1.66 70.36± 1.26 49.65± 1.00 10.36± 0.28
30 λ = 102s 1.58± 0.10 824.91± 15.39 37.36± 1.34 24.83± 0.94 11.04± 0.47 1.49± 0.14
30 λ = (10, 103)s 4.69± 0.23 667.06± 17.54 29.88± 1.55 20.25± 1.12 8.01± 0.46 1.62± 0.13
30 λ = 102- 1.69± 0.11 4908.93± 96.30 32.82± 1.07 5.11± 0.40 27.51± 0.77 0.20± 0.05
30 λ = (10, 103)- 4.67± 0.23 4610.52± 95.17 26.08± 1.07 5.42± 0.47 20.51± 0.70 0.15± 0.04
30 λ = 102+ 5.32± 0.35 1.78± 0.38 21.44± 1.56 15.98± 1.16 2.41± 0.33 3.05± 0.19
30 λ = (10, 103)+ 10.38± 0.23 1.02± 0.22 17.81± 1.29 13.37± 1.04 1.74± 0.18 2.70± 0.16
50 λ = 1 14.74± 0.85 54.63± 16.95 95.58± 3.36 70.11± 2.52 15.54± 0.91 9.93± 0.28
50 λ = 10 15.22± 0.90 6.71± 0.81 55.14± 2.88 42.10± 2.40 5.57± 0.43 7.47± 0.23
50 λ = 102 12.05± 0.77 2.31± 0.41 40.32± 2.40 32.10± 2.00 2.83± 0.24 5.39± 0.26
50 λ = 103 10.13± 0.56 1.98± 0.73 40.61± 2.96 32.65± 2.34 2.93± 0.49 5.03± 0.27
50 λ = 104 19.66± 0.62 1.01± 0.38 43.44± 2.79 34.93± 2.26 2.95± 0.44 5.56± 0.22
50 λ = (10, 102) 29.23± 1.75 3.10± 0.50 35.92± 2.16 28.07± 1.88 2.75± 0.23 5.10± 0.19
50 λ = (10, 103) 31.74± 1.71 1.77± 0.38 33.67± 2.53 26.69± 2.08 2.45± 0.35 4.53± 0.22
50 λ = (10, 104) 24.14± 0.85 1.15± 0.27 32.27± 2.44 25.43± 2.02 2.06± 0.34 4.78± 0.22
50 λ = (102, 103) 15.50± 0.84 2.16± 0.63 34.87± 2.56 28.06± 2.05 2.50± 0.38 4.31± 0.26
50 rand init 17.37± 0.34 47.87± 27.87 156.03± 5.19 118.60± 4.16 26.79± 1.15 10.64± 0.26
50 rand p 24.40± 1.03 1497.50± 407.17 255.90± 3.06 155.04± 2.35 85.71± 1.51 15.14± 0.33
50 λ = 102s 8.45± 0.55 2957.04± 69.41 69.24± 2.00 48.31± 1.57 19.01± 0.54 1.92± 0.15
50 λ = (10, 103)s 12.51± 0.68 2114.01± 51.61 56.68± 1.95 40.93± 1.55 13.62± 0.52 2.13± 0.14
50 λ = 102- 5.39± 0.34 16135.01± 389.36 56.18± 1.46 8.10± 0.58 47.85± 1.05 0.23± 0.05
50 λ = (10, 103)- 13.94± 0.76 15500.46± 378.96 44.66± 1.37 8.97± 0.57 35.54± 0.95 0.15± 0.04
50 λ = 102+ 18.03± 0.78 2.31± 0.41 40.31± 2.39 32.10± 2.00 2.82± 0.24 5.39± 0.26
50 λ = (10, 103)+ 44.13± 0.81 1.78± 0.46 33.41± 2.63 26.40± 2.15 2.56± 0.41 4.45± 0.21

100 λ = 1 52.40± 1.68 67.18± 6.59 215.70± 6.90 165.76± 5.56 30.96± 1.38 18.98± 0.40
100 λ = 10 62.17± 2.19 20.28± 4.99 122.05± 4.26 96.67± 3.62 10.23± 0.56 15.15± 0.35
100 λ = 102 41.29± 1.56 4.30± 0.99 89.93± 3.49 74.34± 3.04 4.64± 0.34 10.95± 0.33
100 λ = 103 60.88± 2.30 1.98± 0.86 92.12± 4.32 77.68± 3.69 4.21± 0.48 10.23± 0.32
100 λ = 104 94.68± 1.99 -0.03± 0.22 92.36± 3.36 78.60± 2.97 3.28± 0.30 10.48± 0.27
100 λ = (10, 102) 152.84± 6.00 4.68± 0.77 84.02± 3.58 68.57± 3.10 4.91± 0.39 10.54± 0.33
100 λ = (10, 103) 84.24± 3.26 2.61± 0.93 72.30± 3.80 60.12± 3.49 3.58± 0.30 8.60± 0.27
100 λ = (10, 104) 135.50± 3.39 0.88± 0.32 66.13± 2.85 54.66± 2.53 2.92± 0.27 8.55± 0.26
100 λ = (102, 103) 146.64± 5.87 2.64± 1.08 85.73± 5.71 72.07± 4.72 4.66± 0.83 9.00± 0.33
100 rand init 51.32± 0.31 49.17± 6.88 445.43± 16.00 367.63± 14.03 61.00± 2.32 16.80± 0.37
100 rand p 67.64± 2.14 3895.88± 1085.90 608.89± 6.27 409.29± 5.61 173.17± 2.24 26.43± 0.47
100 λ = 102s 43.98± 2.11 6319.57± 103.73 138.70± 2.61 97.83± 2.14 37.22± 0.69 3.65± 0.16
100 λ = (10, 103)s 106.88± 4.64 5285.84± 124.45 108.05± 2.74 78.33± 2.27 26.03± 0.60 3.69± 0.19
100 λ = 102- 32.56± 1.53 31457.27± 604.87 110.61± 1.75 14.13± 0.66 96.12± 1.36 0.36± 0.07
100 λ = (10, 103)- 121.89± 5.33 30154.20± 608.15 83.21± 1.61 13.67± 0.75 69.26± 1.12 0.28± 0.06
100 λ = 102+ 84.24± 3.38 4.04± 0.93 89.64± 3.47 74.27± 3.04 4.41± 0.34 10.96± 0.31
100 λ = (10, 103)+ 107.87± 3.07 2.60± 0.93 72.35± 3.81 60.17± 3.49 3.58± 0.30 8.60± 0.27



DAGs with No Curl

Table 6. Comparison of Different Algorithms on Linear Synthetic Datasets: results (mean ± standard error over 100 trials) for ER3-
Gaussian Cases, where bold numbers highlight the best method for each case.

d Method Time ∆F SHD #Extra E #Missing E #Reverse E
10 NOTEARS 1.71 ± 0.07 0.03 ± 0.01 1.11 ± 0.21 0.55 ± 0.14 0.15 ± 0.05 0.41 ± 0.06
10 FGS 0.65 ± 0.07 – 6.34 ± 0.55 2.85 ± 0.37 0.98 ± 0.13 2.51 ± 0.18
10 CAM 8.46 ± 0.16 – 12.34 ± 0.61 5.05 ± 0.34 1.77 ± 0.17 5.52 ± 0.23
10 MMPC 0.89 ± 0.03 – 15.36 ± 0.36 0.68 ± 0.09 3.78 ± 0.30 10.90 ± 0.15
10 Eq+BU 0.57 ± 0.01 – 2.92 ± 0.21 2.91 ± 0.21 0.01 ± 0.01 0.00 ± 0.00
10 Eq+TD 0.58 ± 0.02 – 3.21 ± 0.23 3.20 ± 0.23 0.01 ± 0.01 0.00 ± 0.00
10 NoCurl-1s 0.09 ± 0.00 1.45 ± 0.02 3.11 ± 0.31 1.60 ± 0.18 0.95 ± 0.11 0.56 ± 0.08
10 NoCurl-2s 0.43 ± 0.01 0.53 ± 0.02 1.27 ± 0.20 0.66 ± 0.14 0.20 ± 0.05 0.41 ± 0.06
10 NoCurl-1 0.11 ± 0.00 0.09 ± 0.02 2.18 ± 0.28 1.24 ± 0.18 0.26 ± 0.06 0.68 ± 0.08
10 NoCurl-2 0.47 ± 0.01 0.06 ± 0.02 1.08 ± 0.18 0.54 ± 0.12 0.09 ± 0.03 0.45 ± 0.06
30 NOTEARS 37.25 ± 1.67 -0.06 ± 0.02 4.42 ± 0.48 2.85 ± 0.36 0.47 ± 0.11 1.10 ± 0.10
30 FGS 0.96 ± 0.04 – 15.16 ± 1.33 8.53 ± 1.05 1.98 ± 0.23 4.65 ± 0.24
30 CAM 45.87 ± 0.94 – 36.27 ± 1.17 18.23 ± 0.70 4.34 ± 0.31 13.70 ± 0.37
30 MMPC 1.74 ± 0.05 – 46.67 ± 0.68 2.62 ± 0.18 11.72 ± 0.60 32.33 ± 0.34
30 Eq+BU 2.12 ± 0.01 – 14.14 ± 0.75 14.12 ± 0.75 0.02 ± 0.01 0.00 ± 0.00
30 Eq+TD 2.07 ± 0.01 – 15.45 ± 0.82 15.43 ± 0.81 0.02 ± 0.01 0.00 ± 0.00
30 NoCurl-1s 0.29 ± 0.01 17.27 ± 0.20 13.39 ± 0.66 8.50 ± 0.53 3.89 ± 0.20 1.00 ± 0.10
30 NoCurl-2s 1.54 ± 0.04 10.98 ± 0.19 8.18 ± 0.61 5.26 ± 0.47 2.12 ± 0.16 0.80 ± 0.08
30 NoCurl-1 1.19 ± 0.04 0.33 ± 0.19 7.18 ± 0.61 5.05 ± 0.49 0.40 ± 0.07 1.73 ± 0.12
30 NoCurl-2 2.38 ± 0.06 0.07 ± 0.04 5.20 ± 0.49 3.63 ± 0.39 0.27 ± 0.05 1.30 ± 0.10
50 NOTEARS 253.96 ± 9.49 -0.25 ± 0.04 8.39 ± 0.70 5.56 ± 0.53 1.24 ± 0.18 1.59 ± 0.13
50 FGS 1.42 ± 0.06 – 26.90 ± 2.14 16.21 ± 1.85 3.48 ± 0.30 7.21 ± 0.26
50 CAM 75.11 ± 0.73 – 59.03 ± 1.58 29.31 ± 0.97 7.71 ± 0.39 22.01 ± 0.47
50 MMPC 3.88 ± 0.11 – 78.82 ± 0.86 4.32 ± 0.23 19.39 ± 0.68 55.11 ± 0.50
50 Eq+BU 4.59 ± 0.05 – 27.06 ± 1.12 26.99 ± 1.12 0.07 ± 0.04 0.00 ± 0.00
50 Eq+TD 4.29 ± 0.05 – 29.39 ± 1.24 29.33 ± 1.23 0.06 ± 0.04 0.00 ± 0.00
50 NoCurl-1s 1.37 ± 0.06 48.15 ± 1.02 25.53 ± 1.08 16.85 ± 0.81 7.02 ± 0.32 1.66 ± 0.12
50 NoCurl-2s 4.30 ± 0.10 24.66 ± 0.40 15.77 ± 0.71 10.77 ± 0.57 3.80 ± 0.19 1.20 ± 0.10
50 NoCurl-1 2.32 ± 0.09 0.05 ± 0.05 13.51 ± 1.00 9.78 ± 0.82 0.65 ± 0.10 3.08 ± 0.18
50 NoCurl-2 6.48 ± 0.16 -0.10 ± 0.05 8.92 ± 0.70 6.35 ± 0.57 0.41 ± 0.08 2.16 ± 0.14

100 NOTEARS 659.35 ± 10.91 -1.65 ± 0.08 22.26 ± 1.58 16.28 ± 1.22 3.77 ± 0.35 2.21 ± 0.14
100 FGS 2.36 ± 0.09 – 34.12 ± 2.04 16.16 ± 1.69 5.54 ± 0.38 12.42 ± 0.37
100 CAM 197.76 ± 1.89 – 104.99 ± 2.00 51.07 ± 1.24 12.21 ± 0.55 41.71 ± 0.68
100 MMPC 6.38 ± 0.16 – 159.40 ± 1.19 10.00 ± 0.38 32.39 ± 1.19 117.01 ± 0.84
100 Eq+BU 15.31 ± 0.14 – 52.94 ± 2.28 52.84 ± 2.27 0.10 ± 0.05 0.00 ± 0.00
100 Eq+TD 13.02 ± 0.10 – 58.34 ± 2.51 58.24 ± 2.50 0.10 ± 0.05 0.00 ± 0.00
100 NoCurl-1s 6.55 ± 0.30 100.83 ± 0.84 57.03 ± 1.49 38.63 ± 1.20 14.85 ± 0.38 3.55 ± 0.20
100 NoCurl-2s 21.11 ± 0.56 66.03 ± 0.66 35.75 ± 1.17 25.47 ± 0.95 7.96 ± 0.29 2.32 ± 0.15
100 NoCurl-1 18.20 ± 0.81 -0.82 ± 0.16 31.99 ± 1.66 24.09 ± 1.32 1.30 ± 0.16 6.60 ± 0.30
100 NoCurl-2 26.02 ± 0.76 -1.44 ± 0.09 19.16 ± 1.10 14.30 ± 0.89 0.62 ± 0.09 4.24 ± 0.23
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Table 7. Comparison of Different Algorithms on Linear Synthetic Datasets: results (mean ± standard error over 100 trials) for ER4-
Gaussian Cases, where bold numbers highlight the best method for each case.

d Method Time ∆F SHD #Extra E #Missing E #Reverse E
10 NOTEARS 3.35 ± 0.13 0.08 ± 0.02 1.88 ± 0.26 0.89 ± 0.15 0.35 ± 0.07 0.64 ± 0.08
10 FGS 0.80 ± 0.08 – 13.14 ± 0.69 6.88 ± 0.43 2.56 ± 0.20 3.70 ± 0.24
10 CAM 12.10 ± 0.17 – 19.06 ± 0.64 7.51 ± 0.31 4.35 ± 0.27 7.20 ± 0.28
10 MMPC 1.14 ± 0.04 – 21.13 ± 0.39 1.45 ± 0.12 9.16 ± 0.41 10.52 ± 0.19
10 Eq+BU 0.55 ± 0.01 – 4.73 ± 0.24 4.58 ± 0.23 0.15 ± 0.06 0.00 ± 0.00
10 Eq+TD 0.55 ± 0.01 – 4.81 ± 0.25 4.67 ± 0.23 0.14 ± 0.05 0.00 ± 0.00
10 NoCurl-1s 0.10 ± 0.00 4.44 ± 0.09 4.01 ± 0.36 2.02 ± 0.21 1.50 ± 0.16 0.49 ± 0.07
10 NoCurl-2s 0.56 ± 0.02 2.03 ± 0.07 2.39 ± 0.29 1.11 ± 0.16 0.57 ± 0.14 0.71 ± 0.08
10 NoCurl-1 0.25 ± 0.01 0.14 ± 0.03 2.51 ± 0.32 1.39 ± 0.19 0.45 ± 0.09 0.67 ± 0.08
10 NoCurl-2 0.43 ± 0.01 0.13 ± 0.03 2.22 ± 0.27 1.12 ± 0.17 0.33 ± 0.06 0.77 ± 0.08
30 NOTEARS 94.21 ± 5.25 0.25 ± 0.11 8.81 ± 1.08 6.11 ± 0.78 1.50 ± 0.28 1.20 ± 0.11
30 FGS 1.71 ± 0.10 – 50.37 ± 3.27 37.87 ± 2.75 5.50 ± 0.42 7.00 ± 0.31
30 CAM 61.92 ± 0.78 – 56.80 ± 1.69 29.98 ± 0.95 11.96 ± 0.61 14.86 ± 0.39
30 MMPC 1.58 ± 0.05 – 63.70 ± 0.80 4.19 ± 0.21 27.61 ± 1.00 31.90 ± 0.47
30 Eq+BU 2.42 ± 0.04 – 31.06 ± 1.33 30.79 ± 1.31 0.27 ± 0.08 0.00 ± 0.00
30 Eq+TD 2.36 ± 0.04 – 33.48 ± 1.46 33.16 ± 1.43 0.32 ± 0.08 0.00 ± 0.00
30 NoCurl-1s 0.59 ± 0.03 58.05 ± 1.08 20.27 ± 0.81 13.17 ± 0.61 6.09 ± 0.27 1.01 ± 0.09
30 NoCurl-2s 1.92 ± 0.06 37.25 ± 0.68 13.16 ± 0.87 8.67 ± 0.65 3.75 ± 0.25 0.74 ± 0.08
30 NoCurl-1 1.18 ± 0.06 0.31 ± 0.05 10.84 ± 0.72 7.97 ± 0.56 0.75 ± 0.09 2.12 ± 0.13
30 NoCurl-2 3.39 ± 0.11 0.40 ± 0.19 7.91 ± 0.83 5.69 ± 0.68 0.71 ± 0.12 1.51 ± 0.12
50 NOTEARS 209.49 ± 6.13 0.19 ± 0.09 19.98 ± 1.46 14.73 ± 1.12 3.45 ± 0.37 1.80 ± 0.14
50 FGS 3.41 ± 0.20 – 71.11 ± 4.15 54.36 ± 3.63 7.81 ± 0.44 8.94 ± 0.38
50 CAM 117.45 ± 1.92 – 91.13 ± 2.01 47.89 ± 1.23 18.91 ± 0.73 24.33 ± 0.49
50 MMPC 3.84 ± 0.15 – 106.73 ± 1.07 6.07 ± 0.28 44.99 ± 1.20 55.67 ± 0.58
50 Eq+BU 4.25 ± 0.03 – 64.18 ± 2.29 63.68 ± 2.26 0.50 ± 0.12 0.00 ± 0.00
50 Eq+TD 3.98 ± 0.03 – 69.71 ± 2.40 69.21 ± 2.37 0.50 ± 0.12 0.00 ± 0.00
50 NoCurl-1s 3.33 ± 0.17 164.65 ± 2.42 37.82 ± 1.19 25.68 ± 0.94 10.38 ± 0.36 1.76 ± 0.14
50 NoCurl-2s 5.80 ± 0.19 110.84 ± 1.86 26.26 ± 1.13 18.35 ± 0.89 6.55 ± 0.29 1.36 ± 0.12
50 NoCurl-1 4.13 ± 0.20 0.40 ± 0.13 19.76 ± 1.22 15.01 ± 1.01 1.02 ± 0.12 3.73 ± 0.19
50 NoCurl-2 7.55 ± 0.25 0.42 ± 0.21 15.24 ± 1.27 11.66 ± 1.04 0.81 ± 0.13 2.77 ± 0.20

100 NOTEARS 1265.47 ± 15.70 -0.64 ± 0.14 49.07 ± 2.55 37.86 ± 2.07 8.27 ± 0.49 2.94 ± 0.18
100 FGS 10.17 ± 0.65 – 93.24 ± 5.63 66.74 ± 4.67 12.98 ± 0.83 13.52 ± 0.46
100 CAM 258.39 ± 1.83 – 159.91 ± 3.10 81.10 ± 1.83 34.55 ± 1.23 44.26 ± 0.72
100 MMPC 14.10 ± 0.56 – 213.12 ± 1.49 12.00 ± 0.39 83.00 ± 1.84 118.12 ± 1.14
100 Eq+BU 15.21 ± 0.19 – 138.38 ± 5.52 137.61 ± 5.47 0.77 ± 0.14 0.00 ± 0.00
100 Eq+TD 12.69 ± 0.15 – 150.08 ± 6.03 149.31 ± 5.97 0.77 ± 0.13 0.00 ± 0.00
100 NoCurl-1s 12.90 ± 0.69 492.97 ± 7.35 82.46 ± 1.45 58.14 ± 1.25 21.13 ± 0.43 3.19 ± 0.17
100 NoCurl-2s 30.94 ± 1.13 348.21 ± 5.30 60.64 ± 1.79 43.99 ± 1.51 13.80 ± 0.42 2.85 ± 0.18
100 NoCurl-1 26.43 ± 1.46 -0.28 ± 0.26 44.43 ± 1.80 34.83 ± 1.50 1.74 ± 0.17 7.86 ± 0.28
100 NoCurl-2 43.99 ± 1.77 -0.32 ± 0.28 37.11 ± 1.71 29.28 ± 1.48 1.57 ± 0.16 6.26 ± 0.23
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Table 8. Comparison of Different Algorithms on Linear Synthetic Datasets: results (mean ± standard error over 100 trials) for ER6-
Gaussian Cases, where bold numbers highlight the best method for each case.

d Method Time ∆F SHD #Extra E #Missing E #Reverse E
10 NOTEARS 3.20 ± 0.20 0.22 ± 0.04 3.21 ± 0.31 1.11 ± 0.14 1.00 ± 0.14 1.10 ± 0.09
10 FGS 0.58 ± 0.02 – 19.77 ± 0.58 8.19 ± 0.28 5.42 ± 0.21 6.16 ± 0.35
10 CAM 10.46 ± 0.17 – 26.41 ± 0.46 6.07 ± 0.24 11.17 ± 0.30 9.17 ± 0.31
10 MMPC 1.14 ± 0.04 – 21.13 ± 0.39 1.45 ± 0.12 9.16 ± 0.41 10.52 ± 0.19
10 Eq+BU 0.56 ± 0.01 – 6.18 ± 0.31 4.79 ± 0.21 1.39 ± 0.22 0.00 ± 0.00
10 Eq+TD 0.57 ± 0.01 – 6.22 ± 0.30 4.85 ± 0.20 1.37 ± 0.23 0.00 ± 0.00
10 NoCurl-1s 0.37 ± 0.03 8.23 ± 0.15 4.79 ± 0.37 1.78 ± 0.18 2.32 ± 0.23 0.69 ± 0.08
10 NoCurl-2s 0.92 ± 0.03 5.55 ± 0.32 3.27 ± 0.35 1.10 ± 0.16 1.19 ± 0.17 0.98 ± 0.09
10 NoCurl-1 0.34 ± 0.02 0.54 ± 0.22 3.54 ± 0.37 1.37 ± 0.18 1.30 ± 0.17 0.87 ± 0.08
10 NoCurl-2 0.75 ± 0.03 0.36 ± 0.07 3.07 ± 0.30 0.97 ± 0.13 1.02 ± 0.14 1.08 ± 0.09
30 NOTEARS 102.46 ± 4.68 1.02 ± 0.18 20.85 ± 2.09 15.15 ± 1.58 3.75 ± 0.49 1.95 ± 0.14
30 FGS 5.44 ± 0.21 – 132.42 ± 3.71 105.01 ± 3.06 14.64 ± 0.52 12.77 ± 0.53
30 CAM 64.53 ± 0.75 – 105.49 ± 1.86 50.80 ± 1.08 35.69 ± 0.90 19.00 ± 0.45
30 MMPC 1.58 ± 0.05 – 63.70 ± 0.80 4.19 ± 0.21 27.61 ± 1.00 31.90 ± 0.47
30 Eq+BU 2.12 ± 0.03 – 68.38 ± 1.66 63.70 ± 1.40 4.68 ± 0.57 0.00 ± 0.00
30 Eq+TD 2.08 ± 0.02 – 70.82 ± 1.67 66.04 ± 1.40 4.78 ± 0.57 0.00 ± 0.00
30 NoCurl-1s 1.58 ± 0.10 824.91 ± 15.39 37.36 ± 1.34 24.83 ± 0.94 11.04 ± 0.47 1.49 ± 0.14
30 NoCurl-2s 4.69 ± 0.23 667.06 ± 17.54 29.88 ± 1.55 20.25 ± 1.12 8.01 ± 0.46 1.62 ± 0.13
30 NoCurl-1 3.34 ± 0.21 1.78 ± 0.38 21.44 ± 1.56 15.98 ± 1.16 2.41 ± 0.33 3.05 ± 0.19
30 NoCurl-2 7.68 ± 0.39 0.97 ± 0.16 17.37 ± 1.18 12.93 ± 0.92 1.71 ± 0.19 2.73 ± 0.16
50 NOTEARS 340.03 ± 6.99 1.97 ± 0.26 52.40 ± 3.24 40.53 ± 2.62 9.25 ± 0.67 2.62 ± 0.16
50 FGS 20.31 ± 1.00 – 235.85 ± 7.94 195.75 ± 6.77 23.79 ± 1.00 16.31 ± 0.56
50 CAM 129.50 ± 1.18 – 176.25 ± 2.94 89.77 ± 1.73 59.87 ± 1.27 26.61 ± 0.53
50 MMPC 3.84 ± 0.15 – 106.73 ± 1.07 6.07 ± 0.28 44.99 ± 1.20 55.67 ± 0.58
50 Eq+BU 3.97 ± 0.03 – 153.43 ± 3.76 145.16 ± 3.27 8.27 ± 0.93 0.00 ± 0.00
50 Eq+TD 3.84 ± 0.02 – 161.11 ± 4.00 152.68 ± 3.52 8.43 ± 0.97 0.00 ± 0.00
50 NoCurl-1s 8.45 ± 0.55 2957.04 ± 69.41 69.24 ± 2.00 48.31 ± 1.57 19.01 ± 0.54 1.92 ± 0.15
50 NoCurl-2s 12.51 ± 0.68 2114.01 ± 51.61 56.68 ± 1.95 40.93 ± 1.55 13.62 ± 0.52 2.13 ± 0.14
50 NoCurl-1 12.05 ± 0.77 2.31 ± 0.41 40.32 ± 2.40 32.10 ± 2.00 2.83 ± 0.24 5.39 ± 0.26
50 NoCurl-2 31.74 ± 1.71 1.77 ± 0.38 33.67 ± 2.53 26.69 ± 2.08 2.45 ± 0.35 4.53 ± 0.22
100 NOTEARS 2146.90 ± 31.22 2.49 ± 0.37 116.52 ± 4.39 92.10 ± 3.66 20.54 ± 0.84 3.88 ± 0.21
100 FGS 105.57 ± 5.35 – 421.53 ± 15.01 356.15 ± 13.33 43.64 ± 1.59 21.74 ± 0.62
100 CAM 290.21 ± 3.76 – 310.54 ± 4.54 156.83 ± 2.66 110.55 ± 2.03 43.16 ± 0.69
100 MMPC 14.10 ± 0.56 – 213.12 ± 1.49 12.00 ± 0.39 83.00 ± 1.84 118.12 ± 1.14
100 Eq+BU 13.15 ± 0.15 – 378.33 ± 8.50 365.13 ± 7.81 13.20 ± 1.20 0.00 ± 0.00
100 Eq+TD 11.37 ± 0.11 – 397.65 ± 8.66 383.96 ± 7.92 13.69 ± 1.20 0.00 ± 0.00
100 NoCurl-1s 43.98 ± 2.11 6319.57 ± 103.73 138.70 ± 2.61 97.83 ± 2.14 37.22 ± 0.69 3.65 ± 0.16
100 NoCurl-2s 106.88 ± 4.64 5285.84 ± 124.45 108.05 ± 2.74 78.33 ± 2.27 26.03 ± 0.60 3.69 ± 0.19
100 NoCurl-1 41.29 ± 1.56 4.30 ± 0.99 89.93 ± 3.49 74.34 ± 3.04 4.64 ± 0.34 10.95 ± 0.33
100 NoCurl-2 84.24 ± 3.26 2.61 ± 0.93 72.30 ± 3.80 60.12 ± 3.49 3.58 ± 0.30 8.60 ± 0.27



DAGs with No Curl

Table 9. Comparison of Different Algorithms on Linear Synthetic Datasets: results (mean± standard error over 100 trials) for SF4-Gumbel
Cases, where bold numbers highlight the best method for each case.

d Method Time ∆F SHD #Extra E #Missing E #Reverse E
10 NOTEAR 5.26 ± 0.17 -0.71 ± 0.01 1.10 ± 0.22 0.80 ± 0.15 0.12 ± 0.05 0.18 ± 0.04
10 FGS 0.47 ± 0.02 – 5.30 ± 0.57 3.13 ± 0.44 0.99 ± 0.12 1.18 ± 0.11
10 CAM 11.76 ± 0.20 – 17.70 ± 0.73 9.22 ± 0.49 1.67 ± 0.13 6.81 ± 0.27
10 MMPC 0.52 ± 0.02 – 14.93 ± 0.18 0.88 ± 0.11 3.06 ± 0.17 10.99 ± 0.13
10 Eq+BU 0.67 ± 0.01 – 1.24 ± 0.13 1.24 ± 0.13 0.00 ± 0.00 0.00 ± 0.00
10 Eq+TD 0.55 ± 0.02 – 1.28 ± 0.13 1.27 ± 0.13 0.01 ± 0.01 0.00 ± 0.00
10 NoCurl-1s 0.06 ± 0.00 0.09 ± 0.01 0.94 ± 0.17 0.67 ± 0.13 0.16 ± 0.04 0.11 ± 0.03
10 NoCurl-2s 0.18 ± 0.00 -0.11 ± 0.00 0.97 ± 0.17 0.73 ± 0.13 0.03 ± 0.02 0.21 ± 0.05
10 NoCurl-1 0.14 ± 0.00 -0.58 ± 0.01 0.93 ± 0.20 0.69 ± 0.15 0.08 ± 0.04 0.16 ± 0.04
10 NoCurl-2 0.35 ± 0.01 -0.59 ± 0.01 1.08 ± 0.22 0.86 ± 0.19 0.04 ± 0.02 0.18 ± 0.04
30 NOTEARS 82.37 ± 1.57 -3.55 ± 0.02 2.68 ± 0.51 2.13 ± 0.43 0.11 ± 0.05 0.44 ± 0.07
30 FGS 1.01 ± 0.03 – 22.81 ± 1.70 12.18 ± 1.38 7.68 ± 0.46 2.95 ± 0.19
30 CAM 62.27 ± 0.91 – 62.80 ± 1.29 28.46 ± 0.96 13.71 ± 0.32 20.63 ± 0.42
30 MMPC 13.58 ± 3.40 – 54.24 ± 0.39 4.14 ± 0.23 18.61 ± 0.42 31.49 ± 0.34
30 Eq+BU 2.74 ± 0.05 – 9.46 ± 0.49 9.42 ± 0.49 0.04 ± 0.02 0.00 ± 0.00
30 Eq+TD 3.00 ± 0.03 – 9.91 ± 0.52 9.86 ± 0.52 0.05 ± 0.02 0.00 ± 0.00
30 NoCurl-1s 0.29 ± 0.01 5.57 ± 0.08 5.76 ± 0.59 4.85 ± 0.52 0.67 ± 0.10 0.24 ± 0.05
30 NoCurl-2s 1.13 ± 0.02 2.28 ± 0.07 5.26 ± 0.75 4.35 ± 0.65 0.37 ± 0.10 0.54 ± 0.07
30 NoCurl-1 0.76 ± 0.02 -3.30 ± 0.04 2.57 ± 0.43 2.04 ± 0.37 0.12 ± 0.04 0.41 ± 0.05
30 NoCurl-2 1.84 ± 0.05 -3.31 ± 0.02 4.42 ± 0.70 3.60 ± 0.62 0.09 ± 0.03 0.73 ± 0.09
50 NOTEARS 150.33 ± 1.98 -7.08 ± 0.02 3.94 ± 0.77 3.22 ± 0.70 0.18 ± 0.07 0.54 ± 0.07
50 FGS 2.35 ± 0.10 – 43.47 ± 2.77 19.25 ± 2.12 19.00 ± 0.95 5.22 ± 0.29
50 CAM 110.65 ± 1.42 – 103.32 ± 1.55 39.74 ± 1.10 30.54 ± 0.69 33.04 ± 0.52
50 MMPC 417.94 ± 349.20 – 96.70 ± 0.56 8.91 ± 0.38 38.39 ± 0.83 49.40 ± 0.69
50 Eq+BU 5.49 ± 0.05 – 23.64 ± 1.03 23.30 ± 1.02 0.33 ± 0.12 0.01 ± 0.01
50 Eq+TD 5.75 ± 0.04 – 24.52 ± 1.08 24.18 ± 1.07 0.34 ± 0.12 0.00 ± 0.00
50 NoCurl-1s 0.99 ± 0.05 24.11 ± 0.37 14.98 ± 1.13 12.82 ± 1.01 1.72 ± 0.15 0.44 ± 0.08
50 NoCurl-2s 5.94 ± 0.15 10.42 ± 0.21 13.73 ± 1.36 11.78 ± 1.24 0.56 ± 0.08 1.39 ± 0.12
50 NoCurl-1 3.45 ± 0.13 -6.74 ± 0.03 4.06 ± 0.64 3.16 ± 0.56 0.14 ± 0.03 0.76 ± 0.09
50 NoCurl-2 5.64 ± 0.14 -6.74 ± 0.03 8.38 ± 1.17 7.05 ± 1.08 0.18 ± 0.05 1.15 ± 0.10

100 NOTEARS 1113.10 ± 9.71 -17.53 ± 0.05 11.98 ± 2.18 10.40 ± 2.04 0.43 ± 0.11 1.15 ± 0.12
100 FGS 8.04 ± 0.54 – 91.32 ± 3.48 30.09 ± 2.59 52.39 ± 1.54 8.84 ± 0.34
100 CAM 240.04 ± 2.91 – 211.33 ± 2.25 74.66 ± 1.60 76.12 ± 0.90 60.55 ± 0.82
100 MMPC 40.22 ± 14.80 – 217.00 ± 0.82 32.41 ± 0.73 88.73 ± 1.12 95.86 ± 1.04
100 Eq+BU 21.50 ± 0.29 – 62.96 ± 2.20 61.33 ± 2.27 1.62 ± 0.30 0.01 ± 0.01
100 Eq+TD 17.46 ± 0.10 – 65.60 ± 2.27 63.98 ± 2.34 1.62 ± 0.30 0.00 ± 0.00
100 NoCurl-1s 6.87 ± 0.33 97.63 ± 1.31 38.66 ± 2.28 35.02 ± 2.09 3.03 ± 0.25 0.61 ± 0.09
100 NoCurl-2s 23.98 ± 0.87 55.31 ± 1.21 30.14 ± 2.42 26.66 ± 2.23 1.78 ± 0.20 1.70 ± 0.15
100 NoCurl-1 27.64 ± 0.82 -17.29 ± 0.05 8.68 ± 1.09 7.06 ± 1.01 0.19 ± 0.04 1.43 ± 0.13
100 NoCurl-2 49.83 ± 1.20 -17.19 ± 0.06 16.84 ± 1.66 14.78 ± 1.58 0.17 ± 0.05 1.89 ± 0.14
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Table 10. Comparison of Different Algorithms on Nonlinear Synthetic datasets: results (mean ± standard error over 5 trails) on SHD and
Run Time (in seconds), where bold numbers highlight the best method for each case.

Nonlinear Case 1: SHD
d NOTEARS-MLP GraN-DAG CAM MMPC GSGES DAG-GNN DAG-GNN + NoCurl
10 3.0± 1.2 3.2± 1.7 4.6± 0.6 21.4± 0.4 9.0± 3.9 7.4± 2.8 7.4± 3.2
20 3.8± 2.3 5.0± 1.8 12.6± 1.5 46.4± 0.7 12.6± 3.8 8.8± 3.1 8.6± 3.5
50 29.0± 6.5 9.6± 1.6 12.0± 1.4 110.6± 2.7 28.0± 3.7 26.4± 10.5 23.2± 9.8
100 > 72h > 72h 34.2± 4.0 251.2± 6.1 > 72h 58.6± 15.9 54.0± 13.8

Nonlinear Case 2: SHD
d NOTEARS-MLP GraN-DAG CAM MMPC GSGES DAG-GNN DAG-GNN + NoCurl
10 0.4± 0.4 4.2± 2.4 7.0± 0.5 15.8± 0.3 7.8± 4.7 2.0± 1.5 5.6± 3.1
20 2.2± 1.0 8.0± 3.1 24.6± 1.0 37.0± 0.3 21.2± 11.8 5.0± 2.3 2.0± 0.8
50 20.8± 4.7 17.6± 5.8 41.4± 1.2 83.6± 0.4 54.6± 10.2 12.4± 4.6 9.0± 3.4
100 > 72h 26.0± 6.7 78.0± 2.4 179.0± 1.5 > 72h 21.4± 2.3 18.6± 3.0

Nonlinear Case 3: SHD
d NOTEARS-MLP GraN-DAG CAM MMPC GSGES DAG-GNN DAG-GNN + NoCurl
10 2.6± 1.2 8.8± 2.9 0.2± 0.0 15.8± 0.1 4.2± 0.8 2.4± 0.8 3.0± 0.6
20 6.0± 2.5 36.0± 11.1 13.6± 1.0 37.2± 0.3 18.8± 4.7 9.0± 1.4 10.4± 1.6
50 14.8± 0.4 60.8± 8.0 55.2± 2.1 > 72h 57.4± 5.2 27.6± 3.7 26.6± 1.8
100 45.4± 2.7 > 72h 73.0± 0.5 > 72h > 72h 62.6± 6.6 60.8± 3.8

Nonlinear Case 1: Run Time
d NOTEARS-MLP GraN-DAG CAM MMPC GSGES DAG-GNN DAG-GNN + NoCurl
10 2.3e3± 4.5e2 7.2e2± 5.2e1 3.9e1± 0.8 1.5± 0.1 6.3e2± 6.5e1 6.3e1± 1.4e2 3.8e2± 3.3e1
20 9.1e3± 15.3e4 1.5e3± 7.6e1 8.9e1± 1.2 2.1± 0.1 1.9e3± 3.2e2 1.1e3± 2.0e2 4.9e2± 2.9e1
50 6.0e4± 3.0e4 5.3e3± 4.2e2 2.5e2± 1.9 1.3e1± 1.4 1.7e4± 1.1e3 2.2e3± 2.1e2 9.1e2± 8.5e1
100 > 72h > 72h 6.1e2± 4.7 1.0e2± 7.6 > 72h 4.7e3± 4.9e2 1.6e3± 7.4e1

Nonlinear Case 2: Run Time
d NOTEARS-MLP GraN-DAG CAM MMPC GSGES DAG-GNN DAG-GNN + NoCurl
10 3.2e3± 9.4e2 5.9e2± 7.8e1 3.5e1± 1.2 0.7± 0.0 6.7e2± 3.8e1 9.5e2± 5.4e1 3.1e2± 1.3e1
20 2.0e4± 1.5e3 1.3e3± 5.3e2 1.0e2± 2.3 1.1± 0.0 1.9e3± 1.9e2 1.2e3± 7.2e1 3.9e2± 1.3e1
50 1.8e5± 5.4e4 5.3e3± 1.5e3 2.9e2± 4.6 4.8± 0.2 1.2e4± 1.4e3 2.9e3± 2.6e2 8.5e2± 4.1e1
100 > 72h 1.6e4± 7.2e2 6.1e2± 2.7 1.1e1± 0.4 > 72h 5.7e3± 5.3e2 1.3e3± 6.6e1

Nonlinear Case 3: Run Time
d NOTEARS-MLP GraN-DAG CAM MMPC GSGES DAG-GNN DAG-GNN + NoCurl
10 1.1e3± 6.3e2 1.3e3± 2.1e2 5.1e1± 0.7 0.7± 0.0 3.3e2± 1.4e1 1.5e2± 1.9e1 3.6e2± 3.2e1
20 1.2e4± 1.0e4 2.2e3± 4.4e2 1.4e2± 3.4 4.5e1± 6.7 1.6e3± 1.7e2 1.3e3± 1.3e2 4.2e2± 4.1e1
50 7.8e3± 1.1e3 2.0e4± 2.2e3 3.8e2± 7.3 > 72h 1.1e4± 7.3e2 2.7e3± 3.2e2 9.9e2± 5.2e1
100 3.2e4± 6.2e3 > 72h 7.9e2± 5.5 > 72h > 72h 4.7e3± 3.5e2 1.3e3± 3.1e1

Table 11. Accuracy Results on Protein Signaling Network, where bold number highlights the best method.
Method FGS NOTEARS NOTEARS-MLP DAG-GNN GraN-DAG CAM DAG-GNN+NoCurl
# Edges 17 16 13 18 - - 18

SHD 22 22 16 19 13∗ 12∗ 16
CAM and GraN-DAG results adopted from (Lachapelle et al., 2019), without the number of edges reported.


