
Deep Latent Graph Matching

user1

RSS1

movie1
shopping1 trip1

tech1

user2

RSS2

movie2
shopping2 trip2

tech2

Pattern	1 Pattern	2

Figure 4. Schematic example showing necessity of latent topology.
Solid lines correspond to “following” in real world. Dashed lines
refer to latent connection. Green curved lines indicate matching.

A. Appendix
A.1. Necessity of latent topology

In some cases, graph topology/edge can have hard and ex-
plicit interpretation. However, in the context of learning,
we anticipate our model can accommodate higher learning
capacity and more generic scenarios. As such, we have em-
phasized our scenario in the 2nd footnote in page 1, where
topology construction is necessary for matching. Even for
some cases where hard and meaningful connection exists
(e.g. social networks referred to R2), latent topology can
still help to match. See Fig. 4 for an schematic example
in social networks. We see the topology for both patterns
are not identical (e.g. a direct “following” from user2 to
movie2 exists in Pattern 2, but user1 reads movie1 via in-
termediate node RSS1), which brings about misleading to
match movies and users across graphs. However, if we
are able to infer the latent link (dashed lines), we can make
the two patterns topologically isomorphic and thus reduce
the difficulty/ambiguity for matching. In general, latent
topology may not correspond to any exact meaning in real
world, but its existence can potentially enhance matching.

A.2. Holistic pipeline

We show the holistic pipeline of our framework in Fig. 5 con-
sisting of two “singleton pipelines” (see introduction part
of Sec. 3 for more details). In general, the holistic pipeline
follows the convention in a series of deep graph match-
ing methods by utilizing an identical singleton pipeline to
extract features, then exploits the produced features to per-
form matching (Yu et al., 2020; Wang et al., 2019; Fey et al.,
2020; Rolı́nek et al., 2020). Except for the topology module
NG, all others parts of our network are the same as those in
Rolı́nek et al. (2020).

A.3. SplineCNN

SplineCNN is a method to perform graph-based represen-
tation learning via convolution operators defined based on

Fo
rm

in
g

af
fin

ity

Singleton pipeline

Singleton pipeline

concatenation

global feature

global feature

So
ur

ce
Ta

rg
et

updated
X(s),	E(s)

updated
X(t),	E(t)

G
M

 so
lv

er

M
at

ch
in

g
lo

ss

Figure 5. Holistic pipeline of DLGM consisting of two singleton
pipelines.

B-splines (Fey et al., 2018). The initial input to SplineCNN
is G = {X,E,A}, where X ∈ Gn×d1 and A ∈ {0, 1}n×n
indicate node features and topology, respectively (same as in
Sec. 3.1). E ∈ [0, 1]n×n×d2 is so-called pseudo-coordinates
and can be viewed as n2 × d2-dimensional edge features
for a fully connected graph (in case m = n2, see Sec. 3.1).
Let normalized edge feature e(i, j) = Ei,j,: ∈ [0, 1]d2 if
a directed edge (i, j) exists (Ai,j = 1), and 0 otherwise
(Ai,j = 0). Note topology A fully carries the information
of N (i) which defines the neighborhood of node i. During
the learning, X and E will be updated while topology A will
not. Therefore SplineCNN is a geometric graph embedding
method without adjusting the latent graph topology.

B-spline is employed as basic kernel in SplineCNN,
where a basis function has only support on a spe-
cific real-valued interval (Piegl & Tiller, 2012). Let
((Nq

1,i)1≤i≤k1 , ..., (N
q
d,i)1≤i≤kd2) be d2 B-spline bases

with degree q. The kernel size is defined in k = (k1, ..., kd2).
In SplineCNN, the continuous kernel function gl : [a1, b1]×
...× [ad2 , bd2]→ G is defined as:

gl(e) =
∑
p∈P

wp,l ·Bp(e) (21)

where P = (Nq
1,i)i × ... × (Nq

d,i)i is the B-spline bases
(Piegl & Tiller, 2012) and wp,l is the trainable parameter
corresponding to the lth node feature in X, with Bp being
the product of the basis functions in P:

Bp =

d∏
i=1

Nq
i,pi

(ei) (22)

where e is the pseudo-coordinate in E. Then, given the
kernel function g = (g1, ..., gd1) and the node feature X ∈
Gn×d1 , one layer of the convolution at node i in SplineCNN
reads (same as Eq. (3)):

(x ∗ g)(i) = 1

|N (i)|

d1∑
l=1

∑
j∈N (i)

xl(j) · gl(e(i, j)) (23)

Deep Latent Graph Matching

where xl(j) indicates the convolved node feature value of
node j at lth dimension. This formulation can be tensorized
into Eq. (4) with explicit topology matrix A. In this sense,
we can back-propagate the gradient of A. Reader are re-
ferred to Fey et al. (2018) for more comprehensive under-
standing of this method.

A.4. Derivation of DLGM-D

We give more details of the optimization on DLGM-D in
this section. This part also interprets some basic formulation
conversion (e.g. from Eq. (2) to its Bayesian form). First,
we assume there is no latent topology A(s) and A(s) at the
current stage. In this case, the objective of GM is simply:

max
∏
k

Pθ

(
Zk|G(s)k ,G(t)k

)
(24)

where Pθ measures the probability of a matching Zk given
graph pair G(s)k and G(t)k . If we impose the latent topology
A(s) and A(t), as well as some distribution over them, then
Eq. (24) can be equivalently expressed as:

max
∏
k

Pθ

(
Zk|G(s)k ,G(t)k

)
=max

∏
k

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
(25)

where Pθ
(
Zk|G(s)k ,G(t)k

)
is the marginal distribution of

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
with respect to Zk, since

A
(s)
k and A

(t)
k are integrated over some distribution.

Herein we can impose another distribution of the topol-
ogy Qφ(A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k) characterized by parameter

φ, then we have:

log

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
= log

∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

) Qφ(A(s)
k ,A

(t)
k |G

(s)
k ,G(t)k)

Qφ(A
(s)
k ,A

(t)
k |G

(s)
k ,G(t)k)

= log

E
Qφ(A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)

k)

Pθ
(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
Qφ(A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k)

≥E

Qφ(A
(s)
k ,A

(t)
k |G

(s)
k ,G(t)

k)

[
logPθ(Z,A

(s),A(t)|G(s),G(t))−

logQφ(A
(s),A(t)|G(s),G(t))

]
(26)

where the final step is derived from Jensen’s inequal-
ity. Since optimizating Eq. 25 is difficult, we can al-
ter to maximize the right hand side of inequality of
Eq. (26) instead, which is the Evidence Lower Bound
(ELBO) (Bishop, 2006). Since two input graphs are
handled separately by two identical subroutines (see
Fig. 2(a)), we can then impose the independence of
topology A

(s)
k and A

(t)
k : Qφ(A

(s),A(t)|G(s),G(t)) =

Qφ(A
(s)|G(s))Qφ(A(t)|G(t)). In this sense, we can utilize

the same parameter φ to characterize two identical neural
networks (generators) for modeling Qφ.

Assuming θ is fixed, ELBO is determined byQφ. According
to Jensen’s inequality, equality of Eq. (26) holds when:

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

) = c (27)

where c 6= 0 is a constant. We then have:∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
=c

∫
A

(s)
k ,A

(t)
k

Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

) (28)

As Qφ is a distribution, we have:∫
A

(s)
k ,A

(t)
k

Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
= 1 (29)

Therefore, we have:∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
= c (30)

We now have:

Qφ

(
A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
=
Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
c

=
Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
∫
A

(s)
k ,A

(t)
k

Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
=
Pθ

(
Zk,A

(s)
k ,A

(t)
k |G

(s)
k ,G(t)k

)
Pθ

(
Zk|G(s)k ,G(t)k

)
=Pθ

(
A

(s)
k ,A

(t)
k |Zk,G

(s)
k ,G(t)k

)

(31)

Eq. (31) shows that, once θ is fixed, maximizing ELBO
amounts to finding a distribution Qφ approximating the

posterior probability Pθ
(
A

(s)
k ,A

(t)
k |Zk,G

(s)
k ,G(t)k

)
. This

can be done by training the generator Qφ to produce latent
topology A given graph pair and the matching Z. This
corresponds to the Inference part in Sec. 3.4.2. Ablation
study In this part, we evaluate the performance of DLGM-
D and DLGM-G by selectively deactivating different loss
functions (refer Sec. 3.3 for more details of the functions).
We also conduct the test on DLGM-G using different sample
size of the generator. This ablation test is conducted on

Deep Latent Graph Matching

Pascal VOC dataset and average accuracy is reported in
Tab. 5 and 6.

We first test the performance of both settings of DLGM by
selectively activate the designated loss functions. Experi-
mental results are summarized in Tab. 5. As matching loss
LM is essential for GM task, we constantly activate this loss
for all settings. We see that the proposed novel losses LC
and LL can consistently enhance the matching performance.
Besides, DLGM-G indeed delivers better performance than
DLGM-D under fair comparison.

We then test the impact of sample size from the generator
Qφ under DLGM-G. Experimental results are summarized
in Tab. 6. We see that along with the increasing sample size,
the average accuracy ascends. The performance becomes
stable when the sample size reaches over 16.

A.5. More visual examples and analysis

We show more visual examples of matchings and generated
topology using DLGM-G on Pascal VOC in Tab. 8 and
Tab. 9, respectively. Each table follows distinct coloring
regulation which will be detailed as follows:

• Tab. 8. For each class, the left and right images cor-
responds to Delaunay triangulation. The image in the
middle refers to the predicted matching and generated
graph topology. Cyan solid and dashed lines corre-
spond to correct and wrong matchings, respectively.
Green dashed lines are the ground-truth matchings that
are missed by our model.

• Tab. 9. In this table, the leftmost and the rightmost
columns correspond to original topology constructed
using Delaunay triangulation. The two columns in the
middle are the generated topology using our method
given Delaunay triangulation as prior. Blue edges are
the edges that Delaunay and generated ones have in
common. Green edges corresponds to the ones that
are in Delaunay but not in generated topology, while
red edges are the ones that are generated but not in
Delaunay.

We give some analysis for the following questions.

In what case a different graph is generated?

Since there are some generated graphs are identical to De-
launay, this question may naturally arise. We observe that,
DLGM tends to produce an identical graph to Delaunay
when objects are rarely with distortion and graphs are sim-
ple (e.g. tv, bottle and plant in Tab. 8 and last two rows in
Tab. 9). However, when Delaunay is not sufficient to reveal
the complex geometric relation or objects are with large
distortion and feature diversity (e.g. cow and cat in Tab. 8
and person in Tab. 9), DLGM will resort to generating new

topology with richer and stronger hint for graph matching.
In other words, DLGM somewhat finds a way to identify if
current instance pair is difficult or easy to match, and learns
an adaptive strategy to handle these two cases.

Why DLGM-G delivers better performance than
DLGM-D?

In general, DLGM-D is a deterministic gradient-based
method. That is, the solution trajectory of DLGM-D al-
most follows the gradient direction at each iteration (with
some variance from mini-batch). Though it is assured to
reach a local optima, only following gradient is too greedy
since generated graph is coupled with predicted matching.
Besides, as the topology is discrete, the optimal continuous
solution will have a large objective score gap to its nearest
discrete sampled solution once the landspace of the neural
network is too sharp. On the other hand, DLGM-G performs
discrete sampling under feasible graph distribution at each
iteration, which generally but not fully follows the gradient
direction. This procedure can thus find better discrete direc-
tion with probability, hence better exploring the searching
space. This behavior is similar to Reinforcement Learn-
ing, but with much higher efficiency. Additionally, EM
framework can guarantee the convergence (Bishop, 2006).

Deep Latent Graph Matching

Table 8. Matching examples of DLGM-G on 20 classes of Pascal VOC. The coloring of graphs and matchings follows the principle of
Fig. 1 in the manuscript. Zoom in for better view.

CLASS

AERO & BIKE

BIRD & BOAT

BOTTLE & BUS

CAR & CAT

CHAIR & COW

TABLE & DOG

HORSE & MBIKE

PERSON & PLANT

SHEEP & SOFA

TRAIN & TV

Deep Latent Graph Matching

Table 9. Generated topology compared with original Delaunay triangulation in a pairwise fashion. Note the 1st and the 4th columns
correspond to two input images with topology constructed by Delaunay triangulation, respectively. 2nd and 3rd columns are the generated
topology given Delaunay results as prior.

DELAUNAY 1 GENERATED 1 GENERATED 2 DELAUNAY 2

