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Abstract

Federated Learning (FL) is a distributed learning
paradigm that scales on-device learning collab-
oratively and privately. Standard FL algorithms
such as FEDAVG are primarily geared towards
smooth unconstrained settings. In this paper,
we study the Federated Composite Optimization
(FCO) problem, in which the loss function con-
tains a non-smooth regularizer. Such problems
arise naturally in FL applications that involve spar-
sity, low-rank, monotonicity, or more general con-
straints. We first show that straightforward exten-
sions of primal algorithms such as FEDAVG are
not well-suited for FCO since they suffer from
the “curse of primal averaging,” resulting in poor
convergence. As a solution, we propose a new
primal-dual algorithm, Federated Dual Averaging
(FEDDUALAVG), which by employing a novel
server dual averaging procedure circumvents the
curse of primal averaging. Our theoretical anal-
ysis and empirical experiments demonstrate that
FEDDUALAVG outperforms the other baselines.

1. Introduction
Federated Learning (FL, Konečnỳ et al. 2015; McMahan
et al. 2017) is a novel distributed learning paradigm in which
a large number of clients collaboratively train a shared
model without disclosing their private local data. The two
most distinct features of FL, when compared to classic
distributed learning settings, are (1) heterogeneity in data
amongst the clients and (2) very high cost to communicate
with a client. Due to these aspects, classic distributed opti-
mization algorithms have been rendered ineffective in FL
settings (Kairouz et al., 2019). Several algorithms specif-
ically catered towards FL settings have been proposed to
address these issues. The most prominent amongst them is
Federated Averaging (FEDAVG) algorithm, which by em-

1Stanford University 2Based on work performed at Google
Research 3Google Research. Correspondence to: Honglin Yuan
<yuanhl@stanford.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

0 100 200 300
Round r

0.5

0.6

0.7

0.8

va
lid

at
io

n 
ac

cu
ra

cy

0 100 200 300
Round r

0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

F D A F M D F A ( ) centralized local

Figure 1. Results on sparse (`1-regularized) logistic regres-
sion for a federated fMRI dataset based on (Haxby, 2001).
centralized corresponds to training on the centralized dataset
gathered from all the training clients. local corresponds to
training on the local data from only one training client without
communication. FEDAVG (∂) corresponds to running FEDAVG al-
gorithms with subgradient in lieu of SGD to handle the non-smooth
`1-regularizer. FEDMID is another straightforward extension of
FEDAVG running local proximal gradient method (see Section 3.1
for details). We show that using our proposed algorithm FED-
DUALAVG, one can 1) achieve performance comparable to the
centralized baseline without the need to gather client data,
and 2) significantly outperforms the local baseline on the iso-
lated data and the FEDAVG baseline. See Section 5.3 for details.

ploying local SGD updates, significantly reduces the com-
munication overhead under moderate client heterogeneity.
Several follow-up works have focused on improving the
FEDAVG in various ways (e.g., Li et al. 2020a; Karimireddy
et al. 2020; Reddi et al. 2020; Yuan & Ma 2020).

Existing FL research primarily focuses on the unconstrained
smooth objectives; however, many FL applications involve
non-smooth objectives. Such problems arise naturally in
the context of regularization (e.g., sparsity, low-rank, mono-
tonicity, or additional constraints on the model). For in-
stance, consider the problem of cross-silo biomedical FL,
where medical organizations collaboratively aim to learn
a global model on their patients’ data without sharing. In
such applications, sparsity constraints are of paramount im-
portance due to the nature of the problem as it involves
only a few data samples (e.g., patients) but with very high
dimensions (e.g., fMRI scans). For the purpose of illus-
tration, in Fig. 1, we present results on a federated sparse
(`1-regularized) logistic regression task for an fMRI dataset
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(Haxby, 2001). As shown, using a federated approach that
can handle non-smooth objectives enables us to find a highly
accurate sparse solution without sharing client data.

In this paper, we propose to study the Federated Composite
Optimization (FCO) problem. As in standard FL, the losses
are distributed to M clients. In addition, we assume all
the clients share the same, possibly non-smooth, non-finite
regularizer ψ. Formally, (FCO) is of the following form

min
w∈Rd

Φ(w) := F (w) + ψ(w) :=
1

M

M∑
m=1

Fm(w) + ψ(w),

(FCO)
where Fm(w) := Eξm∼Dm

f(w; ξm) is the loss at the m-
th client, assuming Dm is its local data distribution. We
assume that each client m can access ∇f(w; ξm) by draw-
ing independent samples ξm from its local distribution Dm.
Common examples of ψ(w) include `1-regularizer or more
broadly `p-regularizer, nuclear-norm regularizer (for ma-
trix variable), total variation (semi-)norm, etc. The (FCO)
reduces to the standard federated optimization problem if
ψ ≡ 0. The (FCO) also covers the constrained federated
optimization if one takes ψ to be the following constraint
characteristics χC(w) := 0 if w ∈ C or +∞ otherwise.

Standard FL algorithms such as FEDAVG (see Algorithm 1)
and its variants (e.g., Li et al. 2020a; Karimireddy et al.
2020) are primarily tailored to smooth unconstrained set-
tings, and are therefore, not well-suited for FCO. The most
straightforward extension of FEDAVG towards (FCO) is to
apply local subgradient method (Shor, 1985) in lieu of SGD.
This approach is largely ineffective due to the intrinsic slow
convergence of subgradient approach (Boyd et al., 2003),
which is also demonstrated in Fig. 1 (marked FEDAVG (∂)).

A more natural extension of FEDAVG is to replace the lo-
cal SGD with proximal SGD (Parikh & Boyd 2014, a.k.a.
projected SGD for constrained problems), or more gen-
erally, mirror descent (Duchi et al., 2010). We refer to
this algorithm as Federated Mirror Descent (FEDMID, see
Algorithm 2). The most noticeable drawback of a primal-
averaging method like FEDMID is the “curse of primal
averaging,” where the desired regularization of FCO may
be rendered completely ineffective due to the server aver-
aging step typically used in FL. For instance, consider a
`1-regularized logistic regression setting. Although each
client is able to obtain a sparse solution, simply averaging
the client states will inevitably yield a dense solution. See
Fig. 2 for an illustrative example.

To overcome this challenge, we propose a novel
primal-dual algorithm named Federated Dual Averaging
(FEDDUALAVG, see Algorithm 3). Unlike FEDMID (or
its precursor FEDAVG), the server averaging step of FED-
DUALAVG operates in the dual space instead of the primal.
Locally, each client runs dual averaging algorithm (Nes-
terov, 2009) by tracking of a pair of primal and dual states.

sparse clients

server
averaging

dense server

Figure 2. Illustration of “curse of primal averaging”. While
each client of FEDMID can locate a sparse solution, simply aver-
aging them will yield a much denser solution on the server side.

During communication, the dual states are averaged across
the clients.

Thus, FEDDUALAVG employs a novel double averaging
procedure — averaging of dual states across clients (as in
FEDAVG), and the averaging of gradients in dual space
(as in the sequential dual averaging). Since both levels
of averaging operate in the dual space, we can show that
FEDDUALAVG provably overcomes the curse of primal
averaging. Specifically, we prove that FEDDUALAVG can
attain significantly lower communication complexity when
deployed with a large client learning rate.

Contributions. In light of the above discussion, let us
summarize our key contributions below:

• We propose a generalized federated learning problem,
namely Federated Composite Optimization (FCO), with
non-smooth regularizers and constraints.

• We first propose a natural extension of FEDAVG, namely
Federated Mirror Descent (FEDMID). We show that FED-
MID can attain the mini-batch rate in the small client
learning rate regime (Section 4.1). We argue that FED-
MID may suffer from the effect of “curse of primal aver-
aging,” which results in poor convergence, especially in
the large client learning rate regime (Section 3.2).

• We propose a novel primal-dual algorithm named Fed-
erated Dual Averaging (FEDDUALAVG), which prov-
ably overcomes the curse of primal averaging (Sec-
tion 3.3). Under certain realistic conditions, we show that
by virtue of “double averaging” property, FEDDUALAVG
can have significantly lower communication complexity
(Section 4.2).

• We demonstrate the empirical performance of FED-
MID and FEDDUALAVG on various tasks, including `1-
regularization, nuclear-norm regularization, and various
constraints in FL (Section 5).

Notations. We use [n] to denote the set {1, . . . , n}. We
use 〈·, ·〉 to denote the inner product, ‖ · ‖ to denote an
arbitrary norm, and ‖ · ‖∗ to denote its dual norm, unless
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otherwise specified. We use ‖ · ‖2 to denote the `2 norm
of a vector or the operator norm of a matrix, and ‖ · ‖A to
denote the vector norm induced by positive definite matrix
A, namely ‖w‖A :=

√
〈w,Aw〉. For any convex function

g(w), we use g∗(z) to denote its convex conjugate g∗(z) :=
supw∈Rd{〈z, w〉−g(w)}. We usew? to denote the optimum
of the problem (FCO). We use O,Θ to hide multiplicative
absolute constants only and x . y to denote x = O(y).

1.1. Related Work

In this subsection, we briefly discuss the main related work.
We provide a more detailed literature review in Appendix A,
including the relation to classic composite optimization and
distributed consensus optimization literature.

The first analysis of general FEDAVG was established by
Stich (2019) for the homogeneous client dataset. This result
was improved by Haddadpour et al. (2019b); Khaled et al.
(2020); Woodworth et al. (2020b); Yuan & Ma (2020) via
tighter analysis and accelerated algorithms. For heteroge-
neous clients, numerous recent papers (Haddadpour et al.,
2019b; Khaled et al., 2020; Li et al., 2020b; Koloskova
et al., 2020; Woodworth et al., 2020a) studied the conver-
gence of FEDAVG under various notions of heterogeneity
measure. FEDAVG has also been studied for non-convex
objectives (Zhou & Cong, 2018; Haddadpour et al., 2019a;
Wang & Joshi, 2018; Yu & Jin, 2019; Yu et al., 2019a;b).
Other variants of FEDAVG have been proposed to overcome
heterogeneity challenges (e.g., Mohri et al. 2019; Liang
et al. 2019; Li et al. 2020a; Wang et al. 2020; Karimireddy
et al. 2020; Pathak & Wainwright 2020; Fallah et al. 2020;
Hanzely et al. 2020; T. Dinh et al. 2020; Lin et al. 2020; He
et al. 2020; Bistritz et al. 2020; Zhang et al. 2020). We refer
readers to (Kairouz et al., 2019) for a comprehensive survey
of recent advances in FL.

We note that none of the aforementioned works can handle
non-smooth problems such as (FCO). Furthermore, the con-
tributions of this work can potentially be integrated with
other emerging techniques in FL (e.g., acceleration, adaptiv-
ity, variance reduction) to overcome challenges in FL such
as communication efficiency and client heterogeneity.

2. Preliminaries
In this section, we review the necessary background for com-
posite optimization and federated learning. A detailed tech-
nical exposition of these topics is relegated to Appendix C.

2.1. Composite Optimization

Composite optimization covers a variety of statistical infer-
ence, machine learning, signal processing problems. Stan-
dard (non-distributed) composite optimization is defined as

min
w∈Rd

Eξ∼D f(w; ξ) + ψ(w), (CO)

where ψ is a non-smooth, possibly non-finite regularizer.

Proximal Gradient Method. A natural extension of SGD
for (CO) is the following proximal gradient method (PGM):

wt+1 ← proxηψ (wt − η∇f(wt; ξt))

= arg min
w

(
η〈∇f(wt; ξt), w〉+

1

2
‖w − wt‖22 + ηψ(w)

)
.

(2.1)

The sub-problem Eq. (2.1) can be motivated by optimizing
a quadratic upper bound of f together with the original ψ.
This problem can often be efficiently solved by virtue of the
special structure of ψ. For instance, one can verify that PGM
reduces to projected gradient descent if ψ is a constraint
characteristic χC , soft thresholding if ψ(w) = λ‖w‖1, or
weight decay if ψ(w) := λ‖w‖22.

Mirror Descent / Bregman-PGM. PGM can be gener-
alized to the Bregman-PGM if one replaces the Euclidean
proximity term by the general Bregman divergence, namely

wt+1 ← arg min
w

(η 〈∇f(wt; ξt), w〉+ ηψ(w) +Dh(w,wt)) ,

(2.2)
where h is a strongly convex distance-generating function,
Dh is the Bregman divergence which reduces to Euclidean
distance if one takes h(w) = 1

2‖w‖
2
2. We will still refer

to this step as a proximal step for ease of reference. This
general formulation (2.2) enables an equivalent primal-dual
interpretation:

wt+1 ← ∇(h+ ηψ)∗(∇h(wt)−∇f(wt; ξt)). (2.3)

A common interpretation of (2.3) is to decompose it into
the following three sub-steps (Nemirovski & Yudin, 1983):

(a) Apply ∇h to carry wt to a dual state (denoted as zt).

(b) Update zt to yt+1 with the gradient queried at wt.

(c) Map yt+1 back to primal via∇(h+ ηψ)∗.

This formulation is known as the composite objective mir-
ror descent (COMID, Duchi et al. 2010), or simply mirror
descent in the literature (Flammarion & Bach, 2017).

Dual Averaging. An alternative approach for (CO) is the
following dual averaging algorithm (Nesterov, 2009):

zt+1 ← zt − η∇f (∇(h+ ηtψ)∗(zt); ξt) . (2.4)

Similarly, we can decompose (2.4) into two sub-steps:

(a) Apply ∇(h+ ηtψ)∗ to map dual state zt to primal wt.
Note that this sub-step can be reformulated into

wt = arg min
w

(〈−zt, w〉+ ηtψ(w) + h(w)) ,

which allows for efficient computation for many ψ.
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(b) Update zt to zt+1 with the gradient queried at wt.

Dual averaging is also known as the “lazy” mirror descent
algorithm (Bubeck, 2015) since it skips the forward mapping
(∇h) step. Theoretically, mirror descent and dual averaging
often share the similar convergence rates for sequential (CO)
(e.g., for smooth convex f , c.f. Flammarion & Bach 2017).

Remark. There are other algorithms that are popular for
certain types of (CO) problems. For example, Frank-Wolfe
method (Frank & Wolfe, 1956; Jaggi, 2013) solves con-
strained optimization with a linear optimization oracle.
Smoothing method (Nesterov, 2005) can also handle non-
smoothness in objectives, but is in general less efficient
than specialized CO algorithms such as dual averaging
(c.f., Nesterov 2018). In this work, we mostly focus on
Mirror Descent and Dual Averaging algorithms since they
only employ simple proximal oracles such as projection and
soft-thresholding. We refer readers to Appendix A.2 for
additional related work in composite optimization.

2.2. Federated Averaging

Federated Averaging (FEDAVG, McMahan et al. 2017) is
the de facto standard algorithm for Federated Learning with
unconstrained smooth objectives (namely ψ = 0 for (FCO)).
In this work, we follow the exposition of (Reddi et al., 2020)
which splits the client learning rate and server learning rate,
offering more flexibility (see Algorithm 1).

FEDAVG involves a series of rounds in which each round
consists of a client update phase and server update phase.
We denote the total number of rounds asR. At the beginning
of each round r, a subset of clients Sr are sampled from the
client pools of size M . The server state is then broadcast
to the sampled client as the client initialization. During the
client update phase (highlighted in blue shade), each sam-
pled client runs local SGD for K steps with client learning
rate ηc with their own data. We use wmr,k to denote the m-th
client state at the k-th local step of the r-th round. During
the server update phase, the server averages the updates of
the sampled clients and treats it as a pseudo-anti-gradient
∆r (Line 9). The server then takes a server update step to
update its server state with server learning rate ηs and the
pseudo-anti-gradient ∆r (Line 10).

3. Proposed Algorithms for FCO
In this section, we explore the possible solutions to approach
(FCO). As mentioned earlier, existing FL algorithms such as
FEDAVG and its variants do not solve (FCO). Although it is
possible to apply FEDAVG to non-smooth settings by using
subgradient in place of the gradient, such an approach is
usually ineffective owing to the intrinsic slow convergence
of subgradient methods (Boyd et al., 2003).

Algorithm 1 Federated Averaging (FEDAVG)
1: procedure FEDAVG (w0, ηc, ηs)
2: for r = 0, . . . , R− 1 do
3: sample a subset of clients Sr ⊆ [M ]
4: on client for m ∈ Sr in parallel do
5: wmr,0 ← wr B broadcast client initialization
6: for k = 0, . . . ,K − 1 do
7: gmr,k ← ∇f(wmr,k; ξmr,k) B query gradient
8: wmr,k+1 ← wmr,k − ηc · gmr,k B client update
9: ∆r = 1

|Sr|
∑
m∈Sr (wmr,K − wmr,0)

10: wr+1 ← wr + ηs ·∆r B server update

Algorithm 2 Federated Mirror Descent (FEDMID)
1: procedure FEDMID (w0, ηc, ηs)
2: for r = 0, . . . , R− 1 do
3: sample a subset of clients Sr ⊆ [M ]
4: on client for m ∈ Sr in parallel do
5: wmr,0 ← wr B broadcast primal initialization
6: for k = 0, . . . ,K − 1 do
7: gmr,k ← ∇f(wmr,k; ξmr,k) B query gradient
8: wmr,k+1 ← ∇(h+ ηcψ)∗(∇h(wmr,k)− ηc · gmr,k)

9: ∆r = 1
|Sr|

∑
m∈Sr (wmr,K − wmr,0)

10: wr+1 ← ∇(h+ ηsηcKψ)∗(∇h(wr) + ηs ·∆r)

3.1. Federated Mirror Descent (FEDMID)

A more natural extension of FEDAVG towards (FCO) is to
replace the local SGD steps in FEDAVG with local prox-
imal gradient (mirror descent) steps (2.3). The resulting
algorithm, which we refer to as Federated Mirror Descent
(FEDMID)1, is outlined in Algorithm 2.

Specifically, we make two changes compared to FEDAVG:

• The client local SGD steps in FEDAVG are replaced with
proximal gradient steps (Line 8).

• The server update step is replaced with another proximal
step (Line 10).

As a sanity check, for constrained (FCO) with ψ = χC , if
one takes server learning rate ηs = 1 and Euclidean dis-
tance h(w) = 1

2‖w‖
2
2, FEDMID will simply reduce to the

following parallel projected SGD with periodic averaging:

(a) Each sampled client runs K steps of projected SGD
following wmr,k+1 ← ProjC(w

m
r,k − ηcgmr,k).

1Despite sharing the same term “prox”, FEDMID is fundamen-
tally different from FEDPROX (Li et al., 2020a). The proximal step
in FEDPROX was to regularize the client drift caused by hetero-
geneity, whereas the proximal step in this work is to overcome the
non-smoothness of ψ. The problems approached by the two meth-
ods are also different – FEDPROX still solves an unconstrained
smooth problem, whereas ours concerns with approaches (FCO).



Federated Composite Optimization

(b) AfterK local steps, the server simply average the client
states following wr+1 ← 1

|Sr|
∑
m∈Sr w

m
r,K .

3.2. Limitation of FEDMID: Curse of Primal
Averaging

Despite its simplicity, FEDMID exhibits a major limitation,
which we refer to as “curse of primal averaging”: the server
averaging step in FEDMID may severely impede the opti-
mization progress. To understand this phenomenon, let us
consider the following two illustrative examples:

• Constrained problem: Suppose the optimum of the
aforementioned constrained problem resides on a non-
flat boundary C. Even when each client is able to obtain a
local solution on the boundary, the average of them will
almost surely be off the boundary (and hence away from
the optimum) due to the curvature.

• Federated `1-regularized logistic regression problem:
Suppose each client obtains a local sparse solution, simply
averaging them across clients will invariably yield a non-
sparse solution.

As we will see theoretically (Section 4) and empirically
(Section 5), the “curse of primal averaging” indeed hampers
the performance of FEDMID.

3.3. Federated Dual Averaging (FEDDUALAVG)

Before we look into the solution of the curse of primal
averaging, let us briefly investigate the cause of this effect.
Recall that in standard smooth FL settings, server averaging
step is helpful because it implicitly pools the stochastic
gradients and thereby reduces the variance (Stich, 2019).
In FEDMID, however, the server averaging operates on the
post-proximal primal states, but the gradient is updated
in the dual space (recall the primal-dual interpretation of
mirror descent in Section 2.1). This primal/dual mismatch
creates an obstacle for primal averaging to benefit from the
pooling of stochastic gradients in dual space. This thought
experiment suggests the importance of aligning the gradient
update and server averaging.

Building upon this intuition, we propose a novel
primal-dual algorithm, named Federated Dual Averaging
(FEDDUALAVG, Algorithm 3), which provably addresses
the curse of primal averaging. The major novelty of FED-
DUALAVG, in comparison with FEDMID or its precursor
FEDAVG, is to operate the server averaging in the dual space
instead of the primal. This facilitates the server to aggre-
gate the gradient information since the gradients are also
accumulated in the dual space.

Formally, each client maintains a pair of primal and dual
states (wmr,k, z

m
r,k). At the beginning of each client update

Algorithm 3 Federated Dual Averaging (FEDDUALAVG)
1: procedure FEDDUALAVG (w0, ηc, ηs)
2: z0 ← ∇h(w0) B server dual initialization
3: for r = 0, . . . , R− 1 do
4: sample a subset of clients Sr ⊆ [M ]
5: on client for m ∈ Sr in parallel do
6: zmr,0 ← zr B broadcast dual initialization
7: for k = 0, . . . ,K − 1 do
8: η̃r,k ← ηsηcrK + ηck
9: wmr,k ← ∇(h+ η̃r,kψ)∗(zmr,k) B retrieve primal

10: gmr,k ← ∇f(wmr,k; ξmr,k) B query gradient
11: zmr,k+1 ← zmr,k − ηcgmr,k B client dual update
12: ∆r = 1

|Sr|
∑
m∈Sr (zmr,K − zmr,0)

13: zr+1 ← zr + ηs∆r B server dual update
14: wr+1 ← ∇(h+ ηsηc(r + 1)Kψ)∗(zr+1)
15: B (optional) retrieve server primal state

round, the client dual state is initialized with the server
dual state. During the client update stage, each client runs
dual averaging steps following (2.4) to update its primal
and dual state (highlighted in blue shade). The coefficient
of ψ, namely η̃r,k, is to balance the contribution from F
and ψ. At the end of each client update phase, the dual up-
dates (instead of primal updates) are returned to the server.
The server then averages the dual updates of the sampled
clients and updates the server dual state. We observe that
the averaging in FEDDUALAVG is two-fold: (1) averaging
of gradients in dual space within a client and (2) averaging
of dual states across clients at the server. As we shall see
shortly in our theoretical analysis, this novel “double” av-
eraging of FEDDUALAVG in the non-smooth case enables
lower communication complexity and faster convergence of
FEDDUALAVG under realistic assumptions.

4. Theoretical Results
In this section, we demonstrate the theoretical results of
FEDMID and FEDDUALAVG. We assume the following
assumptions throughout the paper. The convex analysis
definitions in Assumption 1 are reviewed in Appendix C.

Assumption 1. Let ‖ · ‖ be a norm and ‖ · ‖∗ be its dual.

(a) ψ : Rd → R ∪ {+∞} is a closed convex function with
closed domψ. Assume that Φ(w) = F (w) + ψ(w)
attains a finite optimum at w? ∈ domψ.

(b) h : Rd → R ∪ {+∞} is a Legendre function that is 1-
strongly-convex w.r.t. ‖ · ‖. Assume domh ⊃ domψ.

(c) f(·, ξ) : Rd → R is a closed convex function that is
differentiable on domψ for any fixed ξ. In addition,
f(·, ξ) is L-smooth w.r.t. ‖ · ‖ on domψ, namely for
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any u,w ∈ domψ,

f(u; ξ) ≤ f(w; ξ)+〈∇f(w; ξ), u− w〉+1

2
L‖u−w‖2.

(d) ∇f has σ2-bounded variance over Dm under ‖ · ‖∗
within domψ, namely for any w ∈ domψ,

Eξ∼Dm ‖∇f(w, ξ)−∇Fm(w)‖2∗ ≤ σ
2, for any m ∈ [M ]

(e) Assume that all the M clients participate in the client
updates for every round, namely Sr = [M ].

Assumption 1(a) & (b) are fairly standard for composite
optimization analysis (c.f. Flammarion & Bach 2017). As-
sumption 1(c) & (d) are standard assumptions in stochas-
tic federated optimization literature (Khaled et al., 2020;
Woodworth et al., 2020b). (e) is assumed to simplify the
exposition of the theoretical results. All results presented
can be easily generalized to the partial participation case.

Remark. This work focuses on convex settings because
the non-convex composite optimization (either F or ψ non-
convex) is noticeably challenging and under-developed even
for non-distributed settings. This is in sharp contrast to
non-convex smooth optimization for which simple algo-
rithms such as SGD can readily work. Existing literature on
non-convex CO (e.g., Attouch et al. 2013; Chouzenoux et al.
2014; Li & Pong 2015; Bredies et al. 2015) typically relies
on non-trivial additional assumptions (such as K-Ł condi-
tions) and sophisticated algorithms. Hence, it is beyond the
scope of this work to study non-convex FCO. 2

4.1. FEDMID and FEDDUALAVG: Small Client
Learning Rate Regime

We first show that both FEDMID and FEDDUALAVG are
(asymptotically) at least as good as stochastic mini-batch al-
gorithms with R iterations and batch-size MK when client
learning rate ηc is sufficiently small.
Theorem 4.1 (Simplified from Theorem F.1). Assuming As-
sumption 1, then for sufficiently small client learning rate ηc,

and server learning rate ηs = Θ(min{ 1
ηcKL

, B
1
2M

1
2

ηcK
1
2R

1
2 σ
}),

both FEDDUALAVG and FEDMID can output ŵ such that

E [Φ(ŵ)]− Φ(w?) .
LB

R
+

σB
1
2

√
MKR

, (4.1)

where B := Dh(w?, w0).

The intuition is that when ηc is small, the client update will
not drift too far away from its initialization of the round. Due
to space constraints, the proof is relegated to Appendix F.

2However, we conjecture that for simple non-convex settings
(e.g., optimize non-convex f on a convex set, as tested in Ap-
pendix B.5), it is possible to show the convergence and obtain
similar advantageous results for FEDDUALAVG.

4.2. FEDDUALAVG with a Larger Client Learning
Rate: Usefulness of Local Step

In this subsection, we show that FEDDUALAVG may attain
stronger results with a larger client learning rate. In addi-
tion to possible faster convergence, Theorems 4.2 and 4.3
also indicate that FEDDUALAVG allows for much broader
searching scope of efficient learning rates configurations,
which is of key importance for practical purpose.

Bounded Gradient. We first consider the setting with
bounded gradient. Unlike unconstrained, the gradient bound
may be particularly useful when the constraint is finite.
Theorem 4.2 (Simplified from Theorem D.1). Assuming
Assumption 1 and supw∈domψ ‖∇f(w, ξ)‖∗ ≤ G, then for
FEDDUALAVG with ηs = 1 and ηc ≤ 1

4L , considering

ŵ :=
1

KR

R−1∑
r=0

K∑
k=1

[
∇ (h+ η̃r,kψ)∗

(
1

M

M∑
m=1

zmr,k

)]
, (4.2)

the following inequality holds

E [Φ (ŵ)]− Φ(w?) .
B

ηcKR
+
ηcσ

2

M
+ η2cLK

2G2,

where B := Dh(w?, w0). Moreover, there exists ηc such
that

E [Φ(ŵ)]− Φ(w?) .
LB

KR
+

σB
1
2

√
MKR

+
L

1
3B

2
3G

2
3

R
2
3

. (4.3)

We refer the reader to Appendix D for complete proof details
of Theorem 4.2.

Remark. The result in Theorem 4.2 not only matches the
rate by Stich (2019) for smooth, unconstrained FEDAVG
but also allows for a general non-smooth composite ψ, gen-
eral Bregman divergence induced by h, and arbitrary norm
‖ · ‖. Compared with the small learning rate result The-
orem 4.1, the first term in Eq. (4.3) is improved from LB

R

to LB
KR , whereas the third term incurs an additional loss

regarding infrequent communication. One can verify that
the bound Eq. (4.3) is better than Eq. (4.1) if R . L2B

G2 .
Therefore, the larger client learning rate may be preferred
when the communication is not too infrequent.

Bounded Heterogeneity. Next, we consider the settings
with bounded heterogeneity. For simplicity, we focus on
the case when the loss F is quadratic, as shown in Assump-
tion 2. We will discuss other options to relax the quadratic
assumption in Section 4.3.

Assumption 2 (Bounded heterogeneity, quadratic).
(a) The heterogeneity of∇Fm is bounded, namely

sup
w∈domψ

‖∇Fm(w)−∇F (w)‖∗ ≤ ζ2, for any m ∈ [M ]



Federated Composite Optimization

(b) F (w) := 1
2w
>Qw + c>w for some Q � 0.

(c) Assume Assumption 1 is satisfied in which the norm ‖·‖
is taken to be the Q

‖Q‖2 -norm, namely ‖w‖ =
√

w>Qw
‖Q‖2 .

Remark. Assumption 2(a) is a standard assumption to
bound the heterogeneity among clients (e.g., Woodworth
et al. 2020a). Note that Assumption 2 only assumes the
objective F to be quadratic. We do not impose any stronger
assumptions on either the composite function ψ or the
distance-generating function h. Therefore, this result still
applies to a broad class of problems such as LASSO.

The following results hold under Assumption 2. We sketch
the proof in Section 4.3 and defer the details to Appendix E.
Theorem 4.3 (Simplified from Theorem E.1). Assuming
Assumption 2, then for FEDDUALAVG with ηs = 1 and
ηc ≤ 1

4L , the following inequality holds

E[Φ(ŵ)]− Φ(w?) .
B

ηcKR
+
ηcσ

2

M
+ η2cLKσ

2 + η2cLK
2ζ2,

where ŵ is the same as defined in Eq. (4.2), and B :=
Dh(w?, w0). Moreover, there exists ηc such that

E [Φ(ŵ)]−Φ(w?) .
LB

KR
+

σB
1
2

√
MKR

+
L

1
3B

2
3 σ

2
3

K
1
3R

2
3

+
L

1
3B

2
3 ζ

2
3

R
2
3

.

(4.4)

Remark. The result in Theorem 4.3 matches the best-
known convergence rate for smooth, unconstrained FE-
DAVG (Khaled et al., 2020; Woodworth et al., 2020a),
while our results allow for general composite ψ and non-
Euclidean distance. Compared with Theorem 4.2, the over-
head in Eq. (4.4) involves variance σ and heterogeneity ζ
but no longer depends on G. The bound Eq. (4.4) could sig-
nificantly outperform the previous ones when the variance
σ and heterogeneity ζ are relatively mild.

4.3. Proof Sketch and Discussions

In this subsection, we demonstrate our proof framework by
sketching the proof for Theorem 4.3.

Step 1: Convergence of Dual Shadow Sequence. We
start by characterizing the convergence of the dual shadow
sequence zr,k := 1

M

∑M
m=1 z

m
r,k. The key observation for

FEDDUALAVG when ηs = 1 is the following relation

zr,k+1 = zr,k − ηc ·
1

M

M∑
m=1

∇f(wmr,k; ξmr,k). (4.5)

This suggests that the shadow sequence zr,k almost executes
a dual averaging update (2.4), but with some perturbed gra-
dient 1

M

∑M
m=1∇f(wmr,k; ξmr,k). To this end, we extend the

perturbed iterate analysis framework (Mania et al., 2017)
to the dual space. Theoretically we show the following
Lemma 4.4, with proof relegated to Appendix D.2.

Lemma 4.4 (Convergence of dual shadow sequence of FED-
DUALAVG, simplified version of Lemma D.2). Assuming
Assumption 1, then for FEDDUALAVG with ηs = 1 and
ηc ≤ 1

4L , the following inequality holds

E

[
Φ

(
1

KR

R−1∑
r=0

K∑
k=1

∇ (h+ η̃r,kψ)∗ (zr,k)

)]
− Φ(w?)

≤ B

ηcKR
+
ηcσ

2

M
+︸ ︷︷ ︸

Rate if synchronized
every iteration

L

MKR

[
R−1∑
r=0

K−1∑
k=0

M∑
m=1

E ‖zr,k − zmr,k‖2∗

]
︸ ︷︷ ︸

Discrepancy overhead

.

(4.6)

The first two terms correspond to the rate when FEDDU-
ALAVG is synchronized every step. The last term corre-
sponds to the overhead for not synchronizing every step,
which we call “discrepancy overhead”. Lemma 4.4 can
serve as a general interface towards the convergence of FED-
DUALAVG as it only assumes the blanket Assumption 1.
Remark. Note that the relation (4.5) is not satisfied by
FEDMID due to the incommutability of the proximal oper-
ator and the the averaging operator, which thereby breaks
Lemma 4.4. Intuitively, this means FEDMID fails to pool the
gradients properly (up to a high-order error) in the absence
of communication. FEDDUALAVG overcomes the incom-
mutability issue because all the gradients are accumuluated
and averaged in the dual space, whereas the proximal step
only operates at the interface from dual to primal. This key
difference explains the “curse of primal averaging” from
the theoretical perspective.

Step 2: Bounding Discrepancy Overhead via Stability
Analysis. The next step is to bound the discrepancy term
introduced in Eq. (4.6). Intuitively, this term characterizes
the stability of FEDDUALAVG, in the sense that how far
away a single client can deviate from the average (in dual
space) if there is no synchronization for k steps.

However, unlike the smooth convex unconstrained settings
in which the stability of SGD is known to be well-behaved
(Hardt et al., 2016), the stability analysis for composite
optimization is challenging and absent from the literature.
We identify that the main challenge originates from the
asymmetry of the Bregman divergence. In this work, we
provide a set of simple conditions, namely Assumption 2,
such that the stability of FEDDUALAVG is well-behaved.
Lemma 4.5 (Dual stability of FEDDUALAVG under As-
sumption 2, simplified version of Lemma E.2). Under the
same settings of Theorem 4.3, the following inequality holds
1
M

∑M
m=1 E

∥∥∥zr,k − zmr,k∥∥∥2∗ . η2cKσ
2 + η2cK

2ζ2.

Step 3: Deciding ηc. The final step is to plug in the bound
in step 2 back to step 1, and find appropriate ηc to optimize
such upper bound. We defer the details to Appendix E.
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Figure 3. Sparsity recovery on a synthetic LASSO problem
with 50% sparse ground truth. Observe that FEDDUALAVG not
only identifies most of the sparsity pattern but also is fastest. It is
also worth noting that the less-principled FEDDUALAVG-OSP is
also very competitive. The poor performance of FEDMID can be
attributed to the “curse of primal averaging”, as the server averag-
ing step “smooths out” the sparsity pattern, which is corroborated
empirically by the least sparse solution obtained by FEDMID.

5. Numerical Experiments
In this section, we validate our theory and demonstrate the
efficiency of the algorithms via numerical experiments. We
mostly compare FEDDUALAVG with FEDMID since the lat-
ter serves a natural baseline. We do not present subgradient-
FEDAVG in this section due to its consistent ineffectiveness,
as demonstrated in Fig. 1 (marked FEDAVG (∂)). To exam-
ine the necessity of client proximal step, we also test two
less-principled versions of FEDMID and FEDDUALAVG, in
which the proximal steps are only performed on the server-
side. We refer to these two versions as FEDMID-OSP and
FEDDUALAVG-OSP, where “OSP” stands for “only server
proximal,” with pseudo-code provided in Appendix B.1. We
provide the complete setup details in Appendix B, including
but not limited to hyper-parameter tuning, dataset process-
ing and evaluation metrics. The source code is available at
https://github.com/hongliny/FCO-ICML21.

5.1. Federated LASSO for Sparse Feature Recovery

In this subsection, we consider the LASSO (`1-regularized
least-squares) problem on a synthetic dataset, motivated
by models from biomedical and signal processing litera-
ture (e.g., Ryali et al. 2010; Chen et al. 2012). The goal is to
recover the sparse signal w from noisy observations (x, y).

min
w∈Rd,b∈R

1

M

M∑
m=1

E(x,y)∼Dm
(x>w + b− y)22 + λ‖w‖1.
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Figure 4. Low-rank matrix estimation comparison on a syn-
thetic dataset with the ground truth of rank 16. We observe
that FEDDUALAVG finds the solution with exact rank in less than
100 communication rounds. FEDMID and FEDMID-OSP con-
verge slower in loss and rank. The unprincipled FEDDUALAVG-
OSP can generate low-rank solutions but is far less accurate.

To generate the synthetic dataset, we first fix a sparse ground
truth wreal ∈ Rd and some bias breal ∈ R, and then sample
the dataset (x, y) following y = x>wreal + breal + ε for
some noise ε. We let the distribution of (x, y) vary over
clients to simulate the heterogeneity. We select λ so that
the centralized solver (on gathered data) can successfully
recover the sparse pattern. Since the ground truth wreal

is known, we can assess the quality of the sparse features
recovered by comparing it with the ground truth.

We evaluate the performance by recording precision, recall,
sparsity density, and F1-score. We tune the client learning
rate ηc and server learning rate ηs only to attain the best F1-
score. The results are presented in Fig. 3. The best learning
rates configuration is ηc = 0.01, ηs = 1 for FEDDUALAVG,
and ηc = 0.001, ηs = 0.3 for other algorithms (including
FEDMID). This matches our theory that FEDDUALAVG can
benefit from larger learning rates. We defer the rest of the
setup details and further experiments to Appendix B.2.

5.2. Federated Low-Rank Matrix Estimation via
Nuclear-Norm Regularization

In this subsection, we consider a low-rank matrix estimation
problem via the nuclear-norm regularization

min
W,b

1

M

M∑
m=1

E(X,y)∼Dm
(〈X,W 〉+ b− y)

2
+ λ‖W‖nuc,

where ‖W‖nuc denotes the matrix nuclear norm. The goal
is to recover a low-rank matrix W from noisy observations

https://github.com/hongliny/FCO-ICML21
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Figure 5. Results on `1-regularized logistic regression for
fMRI data from (Haxby, 2001). We observe that FEDDUALAVG

yields sparse and accurate solutions that are comparable with the
centralized baseline. FEDMID and FEDMID-OSP provides denser
solutions that are relatively less accurate. The unprincipled FED-
DUALAVG-OSP can provide sparse solutions but far less accurate.

(X, y). This formulation captures a variety of problems
such as low-rank matrix completion and recommendation
systems (Candès & Recht, 2009). Note that the proximal op-
erator with respect to the nuclear-norm regularizer reduces
to singular-value thresholding operation (Cai et al., 2010).

We evaluate the algorithms on a synthetic federated dataset
with known low-rank ground truth Wreal ∈ Rd1×d2 and
bias breal ∈ R, similar to the above LASSO experiments.
We focus on four metrics for this task: the training (reg-
ularized) loss, the validation mean-squared-error, the re-
covered rank, and the recovery error in Frobenius norm
‖Woutput −Wreal‖F. We tune the client learning rate ηc
and server learning rate ηs only to attain the best recovery
error. We also record the results obtained by the determin-
istic solver on centralized data, marked as optimum. The
results are presented in Fig. 4. We provide the rest of the
setup details and more experiments in Appendix B.3.

5.3. Sparse Logistic Regression for fMRI Scan

In this subsection, we consider the cross-silo setup of learn-
ing a binary classifier on fMRI scans. For this purpose,
we use the data collected by Haxby (2001), to understand
the pattern of response in the ventral temporal (vt) area of
the brain given a visual stimulus. There were six subjects
doing image recognition in a block-design experiment over
11 to 12 sessions, with a total of 71 sessions. Each session
consists of 18 fMRI scans under the stimuli of a picture

of either a house or a face. We use the nilearn pack-
age (Abraham et al., 2014) to normalize and transform the
four-dimensional raw fMRI scan data into an array with
39,912 volumetric pixels (voxels) using the standard mask.
We plan to learn a sparse (`1-regularized) binary logistic
regression on the voxels to classify the stimuli given the
voxels input. Enforcing sparsity is crucial for this task as
it allows domain experts to understand which part of the
brain is differentiating between the stimuli. We select five
(out of six) subjects as the training set and the last subject
as the held-out validation set. We treat each session as a
client, with a total of 59 training clients and 12 validation
clients, where each client possesses the voxel data of 18
scans. As in the previous experiment, we tune the client
learning rate ηc and server learning rate ηs only. We set the
`1-regularization strength to be 10−3. For each setup, we
run the federated algorithms for 300 communication rounds.

We compare the algorithms with two non-federated base-
lines: 1) centralized corresponds to training on the
centralized dataset gathered from all the training clients; 2)
local corresponds to training on the local data from only
one training client without communication. The results are
shown in Fig. 5. In Appendix B.4.2, we provide another
presentation of this experiment to visualize the progress of
federated algorithms and understand the robustness to learn-
ing rate configurations. The results suggest FEDDUALAVG
not only recovers sparse and accurate solutions, but also
behaves most robust to learning-rate configurations. We
defer the rest of the setup details to Appendix B.4.

In Appendix B.5, we provide another set of experiments on
federated constrained optimization for Federated EMNIST
dataset (Caldas et al., 2019).

6. Conclusion
In this paper, we have shown the shortcomings of primal
FL algorithms for FCO and proposed a primal-dual method
(FEDDUALAVG) to tackle them. Our theoretical and empir-
ical analysis provide strong evidence to support the supe-
rior performance of FEDDUALAVG over natural baselines.
Potential future directions include control variates and ac-
celeration based methods for FCO, and applying FCO to
personalized settings.
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Lower bounds and optimal algorithms for personalized
federated learning. In Advances in Neural Information
Processing Systems 33, 2020.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays,
F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage,
D. Federated Learning for Mobile Keyboard Prediction.
arXiv:1811.03604 [cs], 2018.

Hard, A., Partridge, K., Nguyen, C., Subrahmanya, N., Shah,
A., Zhu, P., Lopez-Moreno, I., and Mathews, R. Training
keyword spotting models on non-iid data with federated
learning. In Interspeech 2020, 21st Annual Conference
of the International Speech Communication Association,
Virtual Event, Shanghai, China, 25-29 October 2020.
ISCA, 2020.

Hardt, M., Recht, B., and Singer, Y. Train faster, gener-
alize better: Stability of stochastic gradient descent. In
Proceedings of the 33rd International Conference on Ma-
chine Learning, volume 48. PMLR, 2016.

Hartmann, F., Suh, S., Komarzewski, A., Smith, T. D., and
Segall, I. Federated Learning for Ranking Browser His-
tory Suggestions. arXiv:1911.11807 [cs, stat], 2019.

Haxby, J. V. Distributed and Overlapping Representations
of Faces and Objects in Ventral Temporal Cortex. Science,
293(5539), 2001.

He, C., Annavaram, M., and Avestimehr, S. Group Knowl-
edge Transfer: Federated Learning of Large CNNs at the

Edge. In Advances in Neural Information Processing
Systems 33, volume 33, 2020.

Hiriart-Urruty, J.-B. and Lemaréchal, C. Fundamentals of
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Appendices
The appendices are structured as follows. In Appendix A, we discuss the additional related literature of this work. In
Appendix B, we include additional experiments and detailed setups. In Appendix C, we provide the necessary backgrounds
for our theoretical results. We prove two of our main results, namely Theorems 4.2 and 4.3, in Appendices D and E,
respectively. The proof of Theorem 4.1 is sketched in Appendix F.
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A. Additional Related Work
A.1. Federated Learning

Recent years have witnessed a growing interest in various aspects of Federated Learning. The early analysis of FEDAVG
preceded the inception of Federated Learning, which was studied under the names of parallel SGD and local SGD (Zinkevich
et al., 2010; Zhou & Cong, 2018) Early results on FEDAVG mostly focused on the “one-shot” averaging case, in which
the clients are only synchronized once at the end of the procedure (e.g., Mcdonald et al. 2009; Shamir & Srebro 2014;
Rosenblatt & Nadler 2016; Jain et al. 2018; Godichon-Baggioni & Saadane 2020). The first analysis of general FEDAVG
was established by (Stich, 2019) for the homogeneous client dataset. This result was improved by (Haddadpour et al., 2019b;
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Khaled et al., 2020; Woodworth et al., 2020b; Yuan & Ma, 2020) via tighter analysis and accelerated algorithms. FEDAVG
has also been studied for non-convex objectives (Zhou & Cong, 2018; Haddadpour et al., 2019a; Wang & Joshi, 2018; Yu
& Jin, 2019; Yu et al., 2019a;b). For heterogeneous clients, numerous recent papers (Haddadpour et al., 2019b; Khaled
et al., 2020; Li et al., 2020b; Koloskova et al., 2020; Woodworth et al., 2020a) studied the convergence of FEDAVG under
various notions of heterogeneity measure. Other variants of FEDAVG have been proposed to overcome heterogeneity (e.g.,
Mohri et al. 2019; Zhang et al. 2020; Li et al. 2020a; Wang et al. 2020; Karimireddy et al. 2020; Reddi et al. 2020; Pathak
& Wainwright 2020; Al-Shedivat et al. 2021). A recent line of work has studied the behavior of Federated algorithms for
personalized multi-task objectives (Smith et al., 2017; Hanzely et al., 2020; T. Dinh et al., 2020; Deng et al., 2020) and
meta-learning objectives (Fallah et al., 2020; Chen et al., 2019; Jiang et al., 2019). Federated Learning techniques have
been successfully applied in a broad range of practical applications (Hard et al., 2018; Hartmann et al., 2019; Hard et al.,
2020). We refer readers to (Kairouz et al., 2019) for a comprehensive survey of the recent advances in Federated Learning.
However, none of the aforementioned work allows for non-smooth or constrained problems such as (FCO). To the best of
our knowledge, the present work is the first work that studies non-smooth or constrained problems in Federated settings.

Shortly after the initial preprint release of the present work, Tong et al. (2020) proposed a related federated `0-constrained
problem (which does not belong to FCO due to the non-convexity of `0), and two algorithms to solve (similar to FEDMID
(-OSP) but with hard-thresholding instead). As in most hard-thresholding work, the convergence is weaker since it depends
on the sparsity level τ (worsens as τ gets tighter).

A.2. Composite Optimization, Dual Averaging, and Mirror Descent

Composite optimization has been a classic problem in convex optimization, which covers a variety of statistical inference,
machine learning, signal processing problems. Mirror Descent (MD, a generalization of proximal gradient method) and
Dual Averaging (DA, a.k.a. lazy mirror descent) are two representative algorithms for convex composite optimization.
The Mirror Descent (MD) method was originally introduced by Nemirovski & Yudin (1983) for the constrained case and
reinterpreted by Beck & Teboulle (2003). MD was generalized to the composite case by Duchi et al. (2010) under the
name of COMID, though numerous preceding work had studied the special case of COMID under a variety of names such as
gradient mapping (Nesterov, 2013), forward-backward splitting method (FOBOS,Duchi & Singer 2009), iterative shrinkage
and thresholding (ISTA, Daubechies et al. 2004), and truncated gradient (Langford et al., 2009). The Dual Averaging (DA)
method was introduced by Nesterov (2009) for the constrained case, which is also known as Lazy Mirror Descent in the
literature (Bubeck, 2015). The DA method was generalized to the composite (regularized) case by (Xiao, 2010; Dekel
et al., 2012) under the name of Regularized Dual Averaging, and extended by recent works (Flammarion & Bach, 2017;
Lu et al., 2018) to account for non-Euclidean geometry induced by an arbitrary distance-generating function h. DA also
has its roots in online learning (Zinkevich, 2003), and is related to the follow-the-regularized-leader (FTRL) algorithms
(McMahan, 2011). Other variants of MD or DA (such as delayed / skipped proximal step) have been investigated to mitigate
the expensive proximal oracles (Mahdavi et al., 2012; Yang et al., 2017). Composite optimization has also been studied
for non-convex objective (Attouch et al., 2013; Chouzenoux et al., 2014; Bredies et al., 2015; Li & Pong, 2015). These
works are typically limited to special cases due to the hardness of non-convex composite optimization, which is in sharp
constrast to smooth non-convex settings. In addition to MD and DA, there are other algorithms that are popular for certain
types of composite optimization problems. For example, Frank-Wolfe method (Frank & Wolfe, 1956; Jaggi, 2013) solves
constrained optimization with a linear optimization oracle, which is different from the proximal oracle applied by MD and
DA. We refer readers to (Flammarion & Bach, 2017; Diakonikolas & Orecchia, 2019) for more detailed discussions on the
recent advances of MD and DA.

A.3. Classic Decentralized Consensus Optimization

A related distributed setting is the decentralized consensus optimization, also known as multi-agent optimization or
optimization over networks in the literature (Nedich, 2015). Unlike the federated settings, in decentralized consensus
optimization, each client can communicate every iteration, but the communication is limited to its graphic neighborhood.
Standard algorithms for unconstrained consensus optimization include decentralized (sub)gradient methods (Nedic &
Ozdaglar, 2009; Yuan et al., 2016) and EXTRA (Shi et al., 2015a; Mokhtari & Ribeiro, 2016). For constrained or composite
consensus problems, people have studied both mirror-descent type methods (with primal consensus), e.g., (Sundhar Ram
et al., 2010; Shi et al., 2015b; Rabbat, 2015; Yuan et al., 2018; 2020); and dual-averaging type methods (with dual consensus),
e.g., (Duchi et al., 2012; Tsianos et al., 2012; Tsianos & Rabbat, 2012; Liu et al., 2018). In particular, the distributed dual
averaging (Duchi et al., 2012) has gained great popularity since its dual consensus scheme elegantly handles the constraints,
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and overcomes the technical difficulties of primal consensus, as noted by the original paper. We identify that while the
federated settings share certain backgrounds with the decentralized consensus optimization, the motivations, techniques,
challenges, and results are quite dissimilar due to the fundamental difference of communication protocol, as noted by
(Kairouz et al., 2019). We refer readers to (Nedich, 2015) for a more detailed introduction to the classic decentralized
consensus optimization.

Another related (but different) non-smooth distribution optimization setting is the network Lasso (NLASSO, Hallac et al.
2015) problem. NLASSO considers min

∑
i Fi(wi) +

∑
(j,k)∈E Ajk‖wj − wk‖2, where each client i only optimizes a

disjoint subset of parameters wi, with non-smooth TV-regularization to control the difference between clients. A similar
inter-client regularized objective has also been studied by Smith et al. (2017) for multi-task learning purpose. Due to its
decentralized nature, NLASSO can often be efficiently solved by decomposition methods (e.g., ADMM by Hallac et al.
(2015), precondioned Chambolle-Pock method by Jung (2018)). These decomposition methods often require (almost) exact
solution of a subproblem involving fi, which is typically not required in FL algorithms and analyses. In contrast, the
present work considers (FCO) where all clients jointly optimize the shared w. The non-smooth ψ is to regularize the desired
property of the shared w (e.g., sparsity). Algorithmically, decomposition methods do not apply to FCO since w is shared.
As in standard FL practice (Kairouz et al., 2019), our algorithms follow the local optimization + periodic synchronization
framework to save communication.

B. Additional Experiments and Setup Details
B.1. General Setup

Algorithms. In this paper we mainly test four Federated algorithms, namely Federated Mirror Descent (FEDMID, see
Algorithm 2), Federated Dual Averaging (FEDDUALAVG, see Algorithm 3), as well as two less-principled algorithms
which skip the client-side proximal operations. We refer to these two algorithms as FEDMID-OSP and FEDDUALAVG-
OSP, where “OSP” stands for ”only server proximal”. We formally state these two OSP algorithms in Algorithms 4
and 5. We study these two OSP algorithms mainly for ablation study purpose, thouse they might be of special interest
if the proximal step is computationally intensive. For instance, in FEDMID-OSP, the client proximal step is replaced by
wmr,k+1 ← ∇h∗(∇h(wmr,k)− ηcgmr,k) with no ψ involved (see line 8 of Algorithm 4). This step reduces to the ordinary SGD
wmr,k+1 ← wmr,k − ηcgmr,k if h(w) = 1

2‖w‖
2
2 in which case both ∇h and ∇h∗ are identity mapping. Theoretically, it is not

hard to establish similar rates of Theorem 4.1 for FEDMID-OSP with finite ψ. For infinite ψ, we need extension of f outside
domψ to fix regularity. To keep this paper focused, we will not establish these results formally. There is no theoretical
guarantee on the convergence of FEDDUALAVG-OSP.

Algorithm 4 Federated Mirror Descent Only Server Proximal (FEDMID-OSP)
1: procedure FEDMID-OSP (w0, ηc, ηs)
2: for r = 0, . . . , R− 1 do
3: sample a subset of clients Sr ⊆ [M ]
4: on client for m ∈ Sr in parallel do
5: client initialization wmr,0 ← wr B Broadcast primal initialization for round r
6: for k = 0, . . . ,K − 1 do
7: gmr,k ← ∇f(wmr,k; ξmr,k) B Query gradient
8: wmr,k+1 ← ∇h∗(∇h(wmr,k)− ηcgmr,k) B Client (primal) update – proximal operation skipped
9: ∆r = 1

|Sr|
∑
m∈Sr (wmr,K − wmr,0) B Compute pseudo-anti-gradient

10: wr+1 ← ∇(h+ ηsηcKψ)∗(∇h(wr) + ηs∆r) B Server (primal) update

Environments. We simulate the algorithms in the TensorFlow Federated (TFF) framework (Ingerman & Ostrowski, 2019).
The implementation is based on the Federated Research repository.3

Tasks. We experiment the following four tasks in this work.

1. Federated Lasso (`1-regularized least squares) for sparse feature selection, see Appendix B.2.

3https://github.com/google-research/federated

https://github.com/google-research/federated
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Algorithm 5 Federated Dual Averaging Only Server Proximal (FEDDUALAVG-OSP)
1: procedure FEDDUALAVG-OSP(w0, ηc, ηs)
2: server initialization z0 ← ∇h(w0)
3: for r = 0, . . . , R− 1 do
4: sample a subset of clients Sr ⊆ [M ]
5: on client for m ∈ Sr in parallel do
6: client initialization zmr,0 ← zr B Broadcast dual initialization for round r
7: for k = 0, . . . ,K − 1 do
8: wmr,k ← ∇h∗(zmr,k) B Compute primal point wmr,k – proximal operation skipped
9: gmr,k ← ∇f(wmr,k; ξmr,k) B Query gradient

10: zmr,k+1 ← zmr,k − ηcgmr,k B Client (dual) update
11: ∆r = 1

|Sr|
∑
m∈Sr (zmr,K − zmr,0) B Compute pseudo-anti-gradient

12: zr+1 ← zr + ηs∆r B Server (dual) update
13: wr+1 ← ∇(h+ ηsηc(r + 1)Kψ)∗(zr+1) B (Optional) Compute server primal state

2. Federated low-rank matrix recovery via nuclear-norm regularization, see Appendix B.3.

3. Federated sparse (`1-regularized) logistic regression for fMRI dataset (Haxby, 2001), see Appendix B.4.

4. Federated constrained optimization for Federated EMNIST dataset (Caldas et al., 2019), see Appendix B.5.

We take the distance-generating function h to be h(w) := 1
2‖w‖

2
2 for all the four tasks. The detailed setups of each

experiment are stated in the corresponding subsections.

B.2. Federated LASSO for Sparse Feature Selection

B.2.1. SETUP DETAILS

In this experiment, we consider the federated LASSO (`1-regularized least squares) on a synthetic dataset inspired by models
from biomedical and signal processing literature (e.g., Ryali et al. 2010; Chen et al. 2012)

min
w,b

1

M

M∑
m=1

E(x,y)∼Dm
(x>w + b− y)22 + λ‖w‖1.

The goal is to retrieve sparse features of w from noisy observations.

Synthetic Dataset Descriptions. We first generate the ground truth wreal with d1 ones and d0 zeros for some d1 +d0 = d,
namely

wreal =

[
1d1
0d0

]
∈ Rd,

and ground truth breal ∼ N (0, 1).

The observations (x, y) are generated as follows to simulate the heterogeneity among clients. Let (x
(i)
m , y

(i)
m ) denotes the i-th

observation of the m-th client. For each client m, we first generate and fix the mean µm ∼ N (0, Id×d). Then we sample
nm pairs of observations following

x(i)m = µm + δ(i)m , where δ(i)m ∼ N (0d, Id×d) are i.i.d., for i = 1, . . . , nm;

y(i)m = w>realx
(i)
m + breal + ε(i)m , where ε(i)m ∼ N (0, 1) are i.i.d., for i = 1, . . . , nm.

We test four configurations of the above synthetic dataset.

(I) The ground truth wreal has d1 = 512 ones and d0 = 512 zeros. We generate M = 64 training clients where each client
possesses 128 pairs of samples. There are 8,192 training samples in total.
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(II) (sparse ground truth) The ground truth wreal has d1 = 64 ones and d0 = 960 zeros. The rest of the configurations are
the same as dataset (I).

(III) (sparser ground truth) The ground truth wreal has d1 = 8 ones and d0 = 1016 zeros. The rest of the configurations are
the same as dataset (I).

(IV) (more distributed data) The ground truth is the same as (I). We generate M = 256 training clients where each client
possesses 32 pairs of samples. The total number of training examples are the same.

Evaluation Metrics. Since the ground truth of the synthetic dataset is known, we can evaluate the quality of the sparse
features retrieved by comparing it with the ground truth. To numerically evaluate the sparsity, we treat all the features in w
with absolute values smaller than 10−2 as zero elements, and non-zero otherwise. We evaluate the performance by recording
precision, recall, F1-score, and sparse density.

Hyperparameters. For all algorithms, we tune the client learning rate ηc and server learning rate ηs only. We test
49 different combinations of ηc and ηs. ηc is selected from {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}, and ηs is selected
from {0.01, 0.03, 0.1, 0.3, 1, 3, 10}. All methods are tuned to achieve the best averaged recovery error over the last 100
communication rounds. We claim that the best learning rate combination falls in this range for all the algorithms tested. We
draw 10 clients uniformly at random at each communication round and let the selected clients run local algorithms with
batch size 10 for one epoch (of its local dataset) for this round. We run 500 rounds in total, though FEDDUALAVG usually
converges to almost perfect solutions in much fewer rounds.

The Fig. 4 presented in the main paper (Section 5.1) is for the synthetic dataset (I). Now we test the performance on the
other three datasets.

B.2.2. RESULTS ON SYNTHETIC DATASET (II) AND (III) WITH SPARSER GROUND TRUTH

We repeat the experiments on the dataset (II) and (III) with 1/24 and 1/27 ground truth density, respectively. The results are
shown in Figs. 6 and 7. We observe that FEDDUALAVG converges to the perfect F1-score in less than 100 rounds, which
outperforms the other baselines by a margin. The F1-score of FEDDUALAVG-OSP converges faster on these sparser datasets
than (I), which makes it comparably more competitive. The convergence of FEDMID and FEDMID-OSP remains slow.
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Figure 6. Results on Dataset (II): 1/24 Ground Truth Density. See Appendix B.2.2 for discussions.

B.2.3. RESULTS ON SYNTHETIC DATASET (IV): MORE DISTRIBUTED DATA (256 CLIENTS)

We repeat the experiments on the dataset (IV) with more distributed data (256 clients). The results are shown in Fig. 8.
We observe that all the four algorithms take more rounds to converge in that each client has fewer data than the previous
configurations. FEDDUALAVG manages to find perfect F1-score in less than 200 rounds, which outperforms the other
algorithms significantly. FEDDUALAVG-OSP can recover an almost perfect F1-score after 500 rounds, but is much slower
than on the less distributed dataset (I). FEDMID and FEDMID-OSP have very limited progress within 500 rounds. This is
because the server averaging step in FEDMID and FEDMID-OSP fails to aggregate the sparsity patterns properly. Since
each client is subject to larger noise due to the limited amount of local data, simply averaging the primal updates will
“smooth out” the sparsity pattern.
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B.3. Nuclear-Norm-Regularization for Low-Rank Matrix Estimation

B.3.1. SETUP DETAILS

In this subsection, we consider a low-rank matrix estimation problem via the nuclear-norm regularization

min
W∈Rd1×d2 ,b∈R

1

M

M∑
m=1

E(X,y)∼Dm
(〈X,W 〉+ b− y)

2
+ λ‖W‖nuc,

where ‖W‖nuc :=
∑
i σi(W ) denotes the nuclear norm (a.k.a. trace norm) defined by the summation of all the singular

values. The goal is to recover a low-rank matrix W from noisy observations (X, y). This formulation captures a variety of
problems, such as low-rank matrix completion and recommendation systems (c.f. Candès & Recht 2009). Note that the
proximal operator with respect to the nuclear-norm regularizer ‖ ·‖nuc reduces to the well-known singular-value thresholding
operation (Cai et al., 2010).

Synthetic Dataset Descriptions. We first generate the following ground truth Wreal ∈ Rd×d of rank r

Wreal =

[
Ir×r 0r×(d−r)

0(d−r)×r 0(d−r)×(d−r)

]
,

and ground truth breal ∼ N (0, 1).

The observations (X, y) are generated as follows to simulate the heterogeneity among clients. Let (X
(i)
m , y

(i)
m ) denotes the

i-th observation of the m-th client. For each client m, we first generate and fix the mean µm ∈ Rd×d where all coordinates
are i.i.d. standard Gaussian N (0, 1). Then we sample nm pairs of observations following

X(i)
m = µm + δ(i)m ,where δ(i)m ∈ Rd×d is a matrix with all coordinates from standard Gaussian;

y(i)m = 〈wreal, X
(i)
m 〉+ breal + ε(i)m ,where ε(i)m ∼ N (0, 1) are i.i.d.

We tested four configurations of the above synthetic dataset.
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Figure 7. Results on Dataset (III): 1/27 Ground Truth Density. See Appendix B.2.2 for discussions.
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Figure 8. Results on Dataset (IV): More Distributed Data. See Appendix B.2.3 for discussions.
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(I) The ground truth Wreal is a matrix of dimension 32 × 32 with rank r = 16. We generate M = 64 training clients
where each client possesses 128 pairs of samples. There are 8,192 training samples in total.

(II) (rank-4 ground truth) The ground truth Wreal has rank r = 4. The other configurations are the same as the dataset (I).

(III) (rank-1 ground truth) The ground truth Wreal has rank r = 1. The other configurations are the same as the dataset (I).

(IV) (more distributed data) The ground truth is the same as (I). We generate M = 256 training clients where each client
possesses 32 samples. The total number of training examples remains the same.

Evaluation Metrics. We focus on four metrics for this task: the training (regularized) loss, the validation mean-squared-
error, the recovered rank, and the recovery error in Frobenius norm ‖Woutput −Wreal‖F. To numerically evaluate the rank,
we count the number of singular values that are greater than 10−2.

Hyperparameters. For all algorithms, we tune the client learning rate ηc and server learning rate ηs only. We test
49 different combinations of ηc and ηs. ηc is selected from {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}, and ηs is selected
from {0.01, 0.03, 0.1, 0.3, 1, 3, 10}. All methods are tuned to achieve the best averaged recovery error on the last 100
communication rounds. We claim that the best learning rate combination falls in this range for all algorithms tested. We
draw 10 clients uniformly at random at each communication round and let the selected clients run local algorithms with
batch size 10 for one epoch (of its local dataset) for this round. We run 500 rounds in total, though FEDDUALAVG usually
converges to perfect F1-score in much fewer rounds.

The Fig. 4 presented in the main paper (Section 5.2) is for the synthetic dataset (I). Now we test the performance of the
algorithms on the other three datasets.

B.3.2. RESULTS ON SYNTHETIC DATASET (II) AND (III) WITH GROUND TRUTH OF LOWER RANK

We repeat the experiments on the dataset (II) and (III) with 4 and 1 ground truth rank, respectively. The results are shown in
Figs. 9 and 10. The results are qualitatively reminiscent of the previous experiments on the dataset (I). FEDDUALAVG can
recover the exact rank in less than 100 rounds, which outperforms the other baselines by a margin. FEDDUALAVG-OSP can
recover a low-rank solution but is less accurate. The convergence of FEDMID and FEDMID-OSP remains slow.
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Figure 9. Results on Dataset (II): Ground Truth Rank 4. See Appendix B.3.2 for discussions.
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Figure 10. Results on Dataset (III): Ground Truth Rank 1. See Appendix B.3.2 for discussions.
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B.3.3. RESULTS ON SYNTHETIC DATASET (IV): MORE DISTRIBUTED DATA (256 CLIENTS)

We repeat the experiments on the dataset (IV) with more distributed data. The results are shown in Fig. 11. We observe that
all four algorithms take more rounds to converge in that each client has fewer data than the previous configurations. The
other messages are qualitatively similar to the previous experiments – FEDDUALAVG manages to find exact rank in less
than 200 rounds, which outperforms the other algorithms significantly.
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Figure 11. Results on Dataset (IV): More Distributed Data. See Appendix B.3.3 for discussions.

B.4. Sparse Logistic Regression for fMRI

B.4.1. SETUP DETAILS

In this subsection, we provide the additional setup details for the fMRI experiment presented in Fig. 5. The goal is to
understand the pattern of response in ventral temporal area of the brain given a visual stimulus. Enforcing sparsity is
important as it allows domain experts to understand which part of the brain is differentiating between the stimuli. We apply
`1-regularized logistic regression on the voxels to classify the visual stimuli.

Dataset Descriptions and Preprocessing. We use data collected by Haxby (2001). There were 6 subjects doing binary
image recognition (from a horse and a face) in a block-design experiment over 11-12 sessions per subject, in which each
session consists of 18 scans. We use nilearn package (Abraham et al., 2014) to normalize and transform the 4-dimensional
raw fMRI scan data into an array with 39,912 volumetric pixels (voxels) using the standard mask. We choose the first 5
subjects as training set and the last subject as validation set. To simulate the cross-silo federated setup, we treat each session
as a client. There are 59 training clients and 12 test clients, where each client possesses the voxel data of 18 scans.

Evaluation Metrics. We focus on three metrics for this task: validation (regularized) loss, validation accuracy, and
(sparsity) density. To numerically evaluate the density, we treat all weights with absolute values smaller than 10−4 as zero
elements. The density is computed as non-zero parameters divided by the total number of parameters.

Hyperparameters. For all algorithms, we adjust only client learning rate ηc and server learning rate ηs. For each federated
setup, we tested 49 different combinations of ηc and ηs. ηc is selected from {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}, and ηs is
selected from {0.01, 0.03, 0.1, 0.3, 1, 3, 10}. We let each client run its local algorithm with batch-size one for one epoch per
round. At the beginning of each round, we draw 20 clients uniformly at random. We run each configuration for 300 rounds
and present the configuration with the lowest validation (regularized) loss at the last round.

We also tested two non-federated baselines for comparison, marked as centralized and local. centralized
corresponds to training on the centralized dataset gathered from all the 59 training clients. local corresponds to training
on the local data from only one training client without communication. We run proximal gradient descent for these two
baselines for 300 epochs. The learning rate is tuned from {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1} to attain the
best validation loss at the last epoch. The results are presented in Fig. 5.

B.4.2. PROGRESS VISUALIZATION ACROSS VARIOUS LEARNING RATE CONFIGURATIONS

In this subsection, we present an alternative viewpoint to visualize the progress of federated algorithms and understand the
robustness to hyper-parameters. To this end, we run four algorithms for various learning rate configurations (we present
all the combinations of learning rates mentioned above such that ηcηs ∈ [0.003, 0.3]) and record the validation accuracy
and (sparsity) density after 10th, 30th, 100th, and 300th round. The results are presented in Fig. 12. Each dot stands for a
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learning rate configuration (client and server). We can observe that most FEDDUALAVG configurations reach the upper-left
region of the box, which indicates sparse and accurate solutions. FEDDUALAVG-OSP reaches to the mid-left region of the
box, which indicates sparse but less accurate solutions. The majority of FEDMID and FEDMID-OSP lands on the right side
region box, which reflects the hardness for FEDMID and FEDMID-OSP to find the sparse solutions.
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Figure 12. Progress of Federated Algorithms Under Various Learning Rate Configurations for fMRI. Each dot stands for a learning
rate configuration (client and server). FEDDUALAVG recovers sparse and accurate solutions, and is robust to learning-rate configurations.

B.5. Constrained Federated Optimization for Federated EMNIST

B.5.1. SETUP DETAILS

In this task we test the performance of the algorithms when the composite term ψ is taken to be convex characteristics

χC(w) :=

{
0 if w ∈ C,
+∞ if w /∈ C.

which encodes a hard constraint.

Dataset Descriptions and Models. We tested on the Federated EMNIST (FEMNIST) dataset provided by TensorFlow
Federated, which was derived from the Leaf repository (Caldas et al., 2019). EMNIST is an image classification dataset that
extends MNIST dataset by incorporating alphabetical classes. The Federated EMNIST dataset groups the examples from
EMNIST by writers.

We tested two versions of FEMNIST in this work:

(I) FEMNIST-10: digits-only version of FEMNIST which contains 10 label classes. We experiment the logistic regression
models with `1-ball-constraint or `2-ball-constraint on this dataset. Note that for this task we only trained on 10%
of the examples in the original FEMNIST-10 dataset because the original FEMNIST-10 has an unnecessarily large
number (340k) of examples for the logistic regression model.

(II) FEMNIST-62: full version of FEMNIST which contains 62 label classes (including 52 alphabetical classes and 10
digital classes). We test a two-hidden-layer fully connected neural network model where all fully connected layers are
simultaneously subject to `1-ball-constraint. Note that there is no theoretical guarantee for either of the four algorithms
on non-convex objectives. We directly implement the algorithms as if the objectives were convex. We defer the study
of FEDMID and FEDDUALAVG for non-convex objectives to the future work.

Evaluation Metrics. We focused on three metrics for this task: training error, training accuracy, and test accuracy. Note
that the constraints are always satisfied because all the trajectories of all the four algorithms are always in the feasible region.

Hyperparameters. For all algorithms, we tune only the client learning rate ηc and server learning rate ηs. For each setup,
we tested 25 different combinations of ηc and ηs. ηc is selected from {0.001, 0.003, 0.01, 0.03, 0.1}, and ηs is selected from
{0.01, 0.03, 0.1, 0.3, 1}. We draw 10 clients uniformly at random at each communication round and let the selected clients
run local algorithms with batch size 10 for 10 epochs (of its local dataset) for this round. We run 5,000 communication
rounds in total and evaluate the training loss every 100 rounds. All methods are tuned to achieve the best averaged training
loss on the last 10 checkpoints.
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Figure 13. `1-Constrained logistic regression. Dataset: FEMNIST-10. Constraint: ‖w‖1 ≤ 1000.
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Figure 14. `2-constrained logistic regression. Dataset: FEMNIST-10. Constraint: ‖w‖2 ≤ 10.

B.5.2. EXPERIMENTAL RESULTS

`1-Constrained Logistic Regression We first test the `1-regularized logistic regression. The results are shown in Fig. 13.
We observe that FEDDUALAVG outperforms the other three algorithms by a margin. Somewhat surprisingly, we observe
that the other three algorithms behave very closely in terms of the three metrics tested. This seems to suggest that the client
proximal step (in this case projection step) might be saved in FEDMID.

`2-Constrained Logistic Regression Next, we test the `2-regularized logistic regression. The results are shown in Fig. 14.
We observe that FEDDUALAVG outperforms the FEDMID and FEDMID-OSP in all three metrics (note again that FEDMID
and FEDMID-OSP share very similar trajectories). Interestingly, the FEDDUALAVG-OSP behaves much worse in training
loss than the other three algorithms, but the training accuracy and validation accuracy are better. We conjecture that this
effect might be attributed to the homogeneous property of `2-constrained logistic regression which FEDDUALAVG-OSP can
benefit from.

`1-Constrained Two-Hidden-Layer Neural Network Finally, we test on the two-hidden-layer neural network with
`1-constraints. The results are shown in Fig. 15. We observe that FEDDUALAVG outperforms FEDMID and FEDMID-OSP
in all three metrics (once again, note that FEDMID and FEDMID-OSP share similar trajectories). On the other hand,
FEDDUALAVG-OSP behaves much worse (which is out of the plotting ranges). This is not quite surprising because
FEDDUALAVG-OSP does not have any theoretical guarantees.
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Figure 15. `1-Constrained Two-Hidden-Layer Neural Network. Dataset: FEMNIST-62. Constraint: all three dense kernels w[l]

simultaneously satisfy ‖w[l]‖1 ≤ 1000.
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C. Theoretical Background and Technicalities
In this section, we introduce some definitions and propositions that are necessary for the proof of our theoretical results.
Most of the definitions and results are standard and can be found in the classic convex analysis literature (e.g., Rockafellar
1970; Hiriart-Urruty & Lemaréchal 2001), unless otherwise noted.

The following definition of the effective domain extends the notion of domain (of a finite-valued function) to an extended-
valued convex function Rd → R ∪ {+∞}.
Definition C.1 (Effective domain). Let g : Rd → R∪ {+∞} be an extended-valued convex function. The effective domain
of g, denoted by dom g, is defined by

dom g := {w ∈ Rd : g(w) < +∞}.

In this work we assume all extended-valued convex functions discussed are proper, namely the effective domain is
nonempty.

Next, we formally define the concept of strict and strong convexity. Note that the strong convexity is parametrized by some
parameter µ > 0 and therefore implies strict convexity.

Definition C.2 (Strict and Strong convexity (Hiriart-Urruty & Lemaréchal, 2001, Definition B.1.1.1)). A convex function
g : Rd → R ∪ {+∞} is strictly convex if for any w1, w2 ∈ dom g, for any α ∈ (0, 1), it is the case that

g(αw1 + (1− α)w2) < αg(w1) + (1− α)g(w2).

Moreover, g is µ-strongly convex with respect to ‖ · ‖ norm if for any w1, w2 ∈ dom g, for any α ∈ (0, 1), it is the case
that

g(αw1 + (1− α)w2) ≤ αg(w1) + (1− α)g(w2)− 1

2
µα(1− α)‖w2 − w1‖2.

The notion of convex conjugate (a.k.a. Legendre-Fenchel transformation) is defined as follows. The outcome of convex
conjugate is always convex and closed.

Definition C.3 (Convex conjugate). Let g : Rd → R ∪ {+∞} be a convex function. The convex conjugate is defined as

g∗(z) := sup
w∈Rd

{〈z, w〉 − g(w)} .

The following result shows that the differentiability of the conjugate function and the strict convexity of the original function
is linked.

Proposition C.4 (Differentiability of the conjugate of strictly convex function (Hiriart-Urruty & Lemaréchal, 2001, Theorem
E.4.1.1)). Let g: Rd → R ∪ {+∞} be a closed, strictly convex function. Then we have int dom g∗ 6= ∅ and g∗ is
continuously differentiable on int dom g∗ (where int stands for interior).

Moreover, for z ∈ int dom g∗, it is the case that

∇g∗(z) = arg min
w

{〈−z, w〉+ g(w)} .

The differentiability in Proposition C.4 can be strengthened to smoothness if we further assume the strong convexity of the
original function g.

Proposition C.5 (Smoothness of the conjugate of strongly convex function (Hiriart-Urruty & Lemaréchal, 2001, Theorem
E.4.2.1)). Let g : Rd → R ∪ {+∞} be a closed, µ-strongly convex function. Then g∗ is continuously differentiable on Rd,
and g∗ is 1

µ -smooth on Rd, namely ‖∇g∗(z)−∇g∗(y)‖∗ ≤ 1
µ‖z − y‖.

Next we define the Legendre function class.

Definition C.6 (Legendre function (Rockafellar, 1970, §26)). A proper, convex, closed function h : Rd → R ∪ {+∞} is of
Legendre type if
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(a) h is strictly convex.

(b) h is essentially smooth, namely h is differentiable on int domh, and ‖∇h(wk)‖ → ∞ for every sequence {wk}∞k=0 ⊂
int domh converging to a boundary point of domh as k → +∞.

An important property of the Legendre function is the following proposition (Bauschke et al., 1997).
Proposition C.7 (Rockafellar (1970, Theorem 26.5)). A convex function g is of Legendre type if and only if its conjugate g∗

is. In this case, the gradient mapping∇g is a toplogical isomorphism with inverse mapping, namely (∇g)−1 = ∇g∗.

Next, recall the definition of Bregman divergence:
Definition C.8 (Bregman divergence (Bregman, 1967)). Let g : Rd → R ∪ {+∞} be a closed, strictly convex function that
is differentiable in int dom g. The Bregman divergence Dg(w, u) for w ∈ dom g, u ∈ int dom g is defined by

Dg(w, u) = g(w)− g(u)− 〈∇g(u), w − u〉 .

Note the definition of Bregman divergence requires the differentiability of the base function g. To extend the concept of
Bregman divergence to non-differentiable function g, we consider the following generalized Bregman divergence (slightly
modified from (Flammarion & Bach, 2017)). The generalized Bregman divergence plays an important role in the analysis of
FEDDUALAVG.
Definition C.9 (Generalized Bregman divergence (slightly modified from Flammarion & Bach, 2017, Section B.2)). Let
g : Rd → R ∪ {+∞} be a closed strictly convex function (which may not be differentiable). The Generalized Bregman
divergence D̃g(w, z) for w ∈ dom g, z ∈ int dom g∗ is defined by

D̃g(w, u) = g(w)− g(∇g∗(z))− 〈z, w −∇g∗(z)〉 .

Note that ∇g∗ is well-defined because g∗ is differentiable in int dom g∗ according to Proposition C.4.

The generalized Bregman divergence is lower bounded by the ordinary Bregman divergence in the following sense.
Proposition C.10 ((Flammarion & Bach, 2017, Lemma 6)). Let h : Rd → R ∪ {+∞} be a Legendre function. Let
ψ : Rd → R be a convex function (which may not be differentiable). Then for anyw ∈ domh, for any z ∈ int dom(h+ψ)∗,
the following inequality holds

D̃h+ψ(w, z) ≥ Dh(w,∇(h+ ψ)∗(z)).

Proof of Proposition C.10. The proof is very similar to Lemma 6 of (Flammarion & Bach, 2017), and we include for
completeness. By definition of the generalized Bregman divergence (Definition C.9),

D̃h+ψ(w, z) = (h+ ψ)(w)− (h+ ψ)(∇(h+ ψ)∗(z))− 〈z, w −∇(h+ ψ)∗(z)〉 .

By definition of the (ordinary) Bregman divergence (Definition C.8),

Dh(w,∇(h+ ψ)∗(z)) = h(w)− h(∇(h+ ψ)∗(z))− 〈∇h (∇(h+ ψ)∗(z)) , w −∇(h+ ψ)∗(z)〉 .

Taking difference,

D̃h+ψ(w, z)−Dh(w,∇(h+ ψ)∗(z)) = ψ(w)− ψ (∇(h+ ψ)∗(z))− 〈z −∇h (∇(h+ ψ)∗(z)) , w −∇(h+ ψ)∗(z)〉 .
(C.1)

By Proposition C.4, one has z ∈ ∂(h+ψ)(∇(h+ψ)∗(z)). Since h is differentiable in int domh, we have (by subgradient
calculus)

z −∇h(∇(h+ ψ)∗(z)) ∈ ∂ψ(∇(h+ ψ)∗(z)).

Therefore by the property of subgradient as the supporting hyperplane,

ψ(w) ≥ ψ(∇(h+ ψ)∗(z)) +
〈
z −∇h (∇(h+ ψ)∗(z)) , w −∇ (h+ ψ)

∗
(z)
〉

(C.2)

Combining Eq. (C.1) and Eq. (C.2) yields

D̃h+ψ(w, z)−Dh(w,∇(h+ ψ)∗(z)) ≥ 0,

completing the proof.
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D. Proof of Theorem 4.2: Convergence of FEDDUALAVG Under Bounded Gradient Assumption
In this section, we provde a complete, non-asymptotic version of Theorem 4.2 with detailed proof.

We now formally state the assumptions of Theorem 4.2 for ease of reference.

Assumption 3 (Bounded gradient). In addition to Assumption 1, assume that the gradient is G-uniformly-bounded,
namely

sup
w∈domψ

‖∇f(w, ξ)‖∗ ≤ G

This is a standard assumption in analyzing classic distributed composite optimization (Duchi et al., 2012).

Before we start, we introduce a few more notations to simplify the exposition and analysis throughout this section. Let
hr,k(w) = h(w) + (rK + k)ηcψ(w). Let zr,k := 1

M

∑M
m=1 z

m
r,k denote the average over clients, and ŵr,k := ∇h∗r,k(zr,k)

denote the primal image of zr,k. Formally, we use Fr,k to denote the σ-algebra generated by {zmρ,κ : ρ < r or (ρ =
r and κ ≤ k),m ∈ [M ]}.

D.1. Main Theorem and Lemmas

Now we introduce the full version of Theorem 4.2 regarding the convergence of FEDDUALAVG with unit server learning
rate ηs = 1 under bounded gradient assumptions.

Theorem D.1 (Detailed version of Theorem 4.2). Assume Assumption 3, then for any initialization w0 ∈ domψ, for unit
server learning rate ηs = 1 and any client learning rate ηc ≤ 1

4L , FEDDUALAVG yields

E

[
Φ

(
1

KR

R−1∑
r=0

K∑
k=1

ŵr,k

)
− Φ(w?)

]
≤ B

ηcKR
+
ηcσ

2

M
+ 4η2cL(K − 1)2G2, (D.1)

where B := Dh(w?, w0) is the Bregman divergence between the optimal w∗ and the initial w0.

Particularly for

ηc = min

{
1

4L
,
M

1
2B

1
2

σK
1
2R

1
2

,
B

1
3

L
1
3KR

1
3G

2
3

}
,

one has

E

[
Φ

(
1

KR

R−1∑
r=0

K∑
k=1

ŵr,k

)
− Φ(w?)

]
≤ 4LB

KR
+

2σB
1
2

M
1
2K

1
2R

1
2

+
5L

1
3B

2
3G

2
3

R
2
3

.

The proof of Theorem D.1 is based on the following two lemmas regarding perturbed convergence and stability respectively.

Lemma D.2 (Perturbed iterate analysis of FEDDUALAVG). Assume Assumption 1, then for any initialization w0 ∈ domψ,
for any reference point w ∈ domψ, for ηs = 1, for any ηc ≤ 1

4L , FEDDUALAVG yields

E

[
Φ

(
1

KR

R−1∑
r=0

K∑
k=1

ŵr,k

)
− Φ(w)

]
≤ 1

ηcKR
Dh(w,w0) +

ηcσ
2

M
+

L

MKR

[
R−1∑
r=0

K−1∑
k=0

M∑
m=1

E
∥∥zr,k − zmr,k∥∥2∗

]
.

Lemma D.2 decomposes the convergence of FEDDUALAVG into two parts: the first part 1
ηcKR

Dh(w,w0) + ηcσ
2

2M +
L

MKR corresponds to the convergence rate if all clients were synchronized every iteration. The second part
L

MKR

∑R−1
r=0

∑K−1
k=0

∑M
m=1 E ‖zmr,k − zr,k‖2∗ characterizes the stability of the algorithm. Note that Lemma D.2 only

assumes the blanket Assumption 1. We defer the proof of Lemma D.2 to Appendix D.2.

The following Lemma D.3 bounds the stability term under the additional bounded gradient assumptions.

Lemma D.3 (Stability of FEDDUALAVG under bounded gradient assumption). In the same settings of Theorem D.1, it is
the case that

1

M

M∑
m=1

E
∥∥zmr,k − zr,k∥∥2∗ ≤ 4η2c (K − 1)2G2.
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We defer the proof of Lemma D.3 to Appendix D.3. With Lemmas D.2 and D.3 at hands the proof of Theorem D.1 is
immediate.

Proof of Theorem D.1. Eq. (D.1) follows immediately from Lemmas D.2 and D.3 by putting w = w? in Lemma D.2.

Now put

ηc = min

{
1

4L
,
M

1
2B

1
2

σK
1
2R

1
2

,
B

1
3

L
1
3KR

1
3G

2
3

}
,

which yields

B

ηcKR
= max

{
4LB

KR
,

σB
1
2

M
1
2K

1
2R

1
2

,
L

1
3B

2
3G

2
3

R
2
3

}
≤ 4LB

KR
+

σB
1
2

M
1
2K

1
2R

1
2

+
L

1
3B

2
3G

2
3

R
2
3

,

and

ηcσ
2

2M
≤ M

1
2B

1
2

σT
1
2

· σ
2

2M
=

σB
1
2

2M
1
2K

1
2R

1
2

, 4η2cLK
2G2 ≤ 4

(
B

1
3

L
1
3KR

1
3G

2
3

)2

LK2G2 =
4L

1
3B

2
3G

2
3

R
2
3

.

Summarizing the above three inequalities completes the proof of Theorem D.1.

D.2. Perturbed Iterate Analysis of FEDDUALAVG: Proof of Lemma D.2

In this subsection, we prove Lemma D.2. We start by showing the following Proposition D.4 regarding the one step
improvement of the shadow sequence zr,k.

Proposition D.4 (One step analysis of FEDDUALAVG). Under the same assumptions of Lemma D.2, the following inequality
holds

E
[
D̃hr,k+1

(w, zr,k+1)
∣∣∣Fr,k] ≤D̃hr,k

(w, zr,k)− ηc E
[
Φ(ŵr,k+1)− Φ(w)

∣∣Fr,k]
+ ηcL · E

[
1

M

M∑
m=1

∥∥zr,k − zmr,k∥∥2∗
∣∣∣∣∣Fr,k

]
+
η2cσ

2

M
,

where D̃ is the generalized Bregman divergence defined in Definition C.9.

The proof of Proposition D.4 relies on the following two claims regarding the deterministic analysis of FEDDUALAVG. We
defer the proof of Claims D.5 and D.6 to Appendices D.2.1 and D.2.2, respectively.

Claim D.5. Under the same assumptions of Lemma D.2, the following inequality holds

D̃hr,k+1
(w, zr,k+1)

=D̃hr,k
(w, zr,k)− D̃hr,k

(ŵr,k+1, zr,k)− ηc(ψ(ŵr,k+1)− ψ(w)))− ηc

〈
1

M

M∑
m=1

∇f(wmr,k; ξmr,k), ŵr,k+1 − w

〉
. (D.2)

Claim D.6. Under the same assumptions of Lemma D.2, it is the case that

F (ŵr,k+1)− F (w) ≤

〈
1

M

M∑
m=1

∇f(wmr,k; ξmr,k), ŵr,k+1 − w

〉

+

〈
1

M

M∑
m=1

(
∇Fm(wmr,k)−∇f(wmr,k; ξmr,k)

)
, ŵr,k+1 − w

〉
+ L‖ŵr,k+1 − ŵr,k‖2 +

L

M

M∑
m=1

∥∥zr,k − zmr,k∥∥2∗ .
(D.3)

With Claims D.5 and D.6 at hand we are ready to prove the one step analysis Proposition D.4.
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Proof of Proposition D.4. Applying Claims D.5 and D.6 yields (summating Eq. (D.2) with ηc times of Eq. (D.3)),

D̃hr,k+1
(w, zr,k+1) ≤D̃hr,k

(w, zr,k)− D̃hr,k
(ŵr,k+1, zr,k) + ηcL‖ŵr,k+1 − ŵr,k‖2 − ηc

(
Φ(ŵr,k+1)− Φ(w)

)
+ ηc

〈
1

M

M∑
m=1

(
∇Fm(wmr,k)−∇f(wmr,k; ξmr,k)

)
, ŵr,k+1 − w

〉

+ ηcL ·
1

M

M∑
m=1

∥∥zr,k − zmr,k∥∥2∗ . (D.4)

Note that

D̃hr,k
(ŵr,k+1, zr,k) ≥ Dh(ŵr,k+1,∇h∗r,k(zr,k)) = Dh(ŵr,k+1, ŵr,k) ≥ 1

2
‖ŵr,k+1 − ŵr,k‖2,

and
ηcL‖ŵr,k+1 − ŵr,k‖2 ≤

1

4
‖ŵr,k+1 − ŵr,k‖2,

since ηc ≤ 1
4L by assumption. Therefore,

−D̃hr,k
(ŵr,k+1, zr,k) + ηcL‖ŵr,k+1 − ŵr,k‖2 ≤ −

1

4
‖ŵr,k+1 − ŵr,k‖2. (D.5)

Plugging Eq. (D.5) to Eq. (D.4) gives

D̃hr,k+1
(w, zr,k+1) ≤D̃hr,k

(w, zr,k)− 1

4
‖ŵr,k+1 − ŵr,k‖2 − ηc

(
Φ(ŵr,k+1)− Φ(w)

)
+ ηc

〈
1

M

M∑
m=1

(
∇Fm(wmr,k)−∇f(wmr,k; ξmr,k)

)
, ŵr,k+1 − w

〉

+ ηcL ·
1

M

M∑
m=1

∥∥zr,k − zmr,k∥∥2∗ . (D.6)

Now we take conditional expectation. Note that

E

[〈
1

M

M∑
m=1

∇Fm(wmr,k)−∇f(wmr,k; ξmr,k), ŵr,k+1 − w

〉∣∣∣∣∣Fr,k
]

=E

[〈
1

M

M∑
m=1

∇Fm(wmr,k)−∇f(wmr,k; ξmr,k), ŵr,k+1 − ŵr,k

〉∣∣∣∣∣Fr,k
]

(since Eξmr,k∼Dm [∇f(wmr,k; ξmr,k)] = ∇Fm(wmr,k))

≤E

[∥∥∥∥∥ 1

M

M∑
m=1

∇Fm(wmr,k)−∇f(wmr,k; ξmr,k)

∥∥∥∥∥
∗

∣∣∣∣∣Fr,k
]
· E
[∥∥ŵr,k+1 − ŵr,k

∥∥∣∣Fr,k] (by definition of dual norm ‖ · ‖∗)

≤ σ√
M

E
[∥∥ŵr,k+1 − ŵr,k

∥∥∣∣Fr,k] . (by bounded variance assumption and independence)

Plugging the above inequality to Eq. (D.6) gives

E
[
D̃hr,k+1

(w, zr,k+1)
∣∣∣Fr,k]

≤D̃hr,k
(w, zr,k)− ηc E

[
Φ(ŵr,k+1)− Φ(w)

∣∣Fr,k]+ ηcL · E

[
1

M

M∑
m=1

∥∥zr,k − zmr,k∥∥2∗
∣∣∣∣∣Fr,k

]

+
ηcσ√
M

E
[∥∥ŵr,k+1 − ŵr,k

∥∥∣∣Fr,k]− 1

4
E
[
‖ŵr,k+1 − ŵr,k‖2

∣∣Fr,k]
≤D̃hr,k

(w, zr,k)− ηc E
[
Φ(ŵr,k+1)− Φ(w)

∣∣Fr,k]+ ηcL · E

[
1

M

M∑
m=1

∥∥zr,k − zmr,k∥∥2∗
∣∣∣∣∣Fr,k

]
+
η2cσ

2

M
,

(by quadratic maximum)
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completing the proof of Proposition D.4.

The Lemma D.2 then follows by telescoping the one step analysis Proposition D.4.

Proof of Lemma D.2. Let us first telescope Proposition D.4 within the same round r, from k = 0 to K, which gives

E
[
D̃hr,K

(w, zr,K)
∣∣∣Fr,0] ≤D̃hr,0

(w, zr,0)− ηc
K∑
k=1

E [Φ(ŵr,k)− Φ(w)|Fr,0]

+ ηcL · E

[
1

M

K−1∑
k=0

M∑
m=1

∥∥zr,k − zmr,k∥∥2∗
∣∣∣∣∣Fr,0

]
+
η2cKσ

2

M
.

Since server learning rate ηs = 1 we have zr,K = zr+1,0. Therefore we can telescope the round from r = 0 to R, which
gives

E
[
D̃hR,0

(w, zR,0)
]
≤D̃h0,0(w, z0,0)− ηc

R−1∑
r=0

K∑
k=1

E [Φ(ŵr,k)− Φ(w)]

+ ηcL · E

[
1

M

R−1∑
r=0

K−1∑
k=0

M∑
m=1

∥∥zr,k − zmr,k∥∥2∗
]

+
η2cKRσ

2

M
.

Dividing both sides by ηc ·KR and rearranging

1

KR

R−1∑
r=0

K∑
k=1

E [Φ(ŵr,k)− Φ(w)] ≤ 1

ηcKR

(
D̃h0,0

(w, z0,0)− E
[
D̃hR,0

(w, zR,0)
])

+ L · E

[
1

MKR

R−1∑
r=0

K−1∑
k=0

M∑
m=1

∥∥zr,k − zmr,k∥∥2∗
]

+
ηcσ

2

M
.

Applying Jensen’s inequality on the LHS and dropping the negative term on the RHS yield

E

[
Φ

(
1

KR

R−1∑
r=0

K∑
k=1

ŵr,k

)
− Φ(w)

]
≤ 1

ηcKR
D̃h0,0(w, z0,0) +

L

MKR

[
R−1∑
r=0

K−1∑
k=0

M∑
m=1

E
∥∥zr,k − zmr,k∥∥2∗

]
+
ηcσ

2

M
.

(D.7)

Since z0,0 = ∇h(w0) and w0 ∈ domψ, we have ∇h∗0,0(∇h(w0)) = w0 by Proposition C.7 since h is assumed to be of
Legendre type. Consequently

D̃h0,0
(w, z0) = h(w)− h(∇h∗0,0(∇h(w0)))−

〈
z0, w −∇h∗0,0(∇h(w0))

〉
= h(w)− h(w0)− 〈∇h(w0), w − w0〉 = Dh(w,w0). (D.8)

Plugging Eq. (D.8) back to Eq. (D.7) completes the proof of Lemma D.2.

D.2.1. DEFERRED PROOF OF CLAIM D.5

Proof of Claim D.5. By definition of FEDDUALAVG procedure, for all m ∈ [M ], k ∈ {0, 1, . . . ,K − 1}, we have

zmr,k+1 = zmr,k − ηc∇f(wmr,k; ξmr,k).

Taking average over m ∈ [M ] gives (recall the overline denotes the average over clients)

zr,k+1 = zr,k − ηc ·
1

M

M∑
m=1

∇f(wmr,k; ξmr,k). (D.9)
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Now we study generalized Bregman divergence D̃h,k+1(w, zr,k+1) for any arbitrary pre-fixed w ∈ domhr,k

D̃hr,k+1
(w, zr,k+1)

=hr,k+1(w)− hr,k+1

(
∇h∗r,k+1(zr,k+1)

)
−
〈
zr,k+1, w −∇h∗r,k+1(zr,k+1)

〉
(By definition of D̃)

=hr,k+1(w)− hr,k+1

(
ŵr,k+1

)
−
〈
zr,k+1, w − ŵr,k+1

〉
(By definition of ŵr,k+1)

=hr,k+1(w)− hr,k+1

(
ŵr,k+1

)
−

〈
zr,k − ηc ·

1

M

M∑
m=1

∇f(wmr,k; ξmr,k), w − ŵr,k+1

〉
(By Eq. (D.9))

=(hr,k(w) + ηcψ(w))− (hr,k(ŵr,k+1) + ηcψ(ŵr,k+1))−

〈
zr,k − ηc ·

1

M

M∑
m=1

∇f(wmr,k; ξmr,k), w − ŵr,k+1

〉
(Since hr,k+1 = hr,k + ηcψ by definition of hr,k+1)

= [hr,k(w)− hr,k(ŵr,k)− 〈zr,k, w − ŵr,k〉]−
[
hr,k(ŵr,k+1)− hr,k(ŵr,k)−

〈
zr,k, ŵr,k+1 − ŵr,k

〉]
− ηc

(
ψ(ŵr,k+1)− ψ(w)

)
− ηc

〈
1

M

M∑
m=1

∇f(wmr,k; ξmr,k), ŵr,k+1 − w

〉
(Rearranging)

=D̃hr,k
(w, zr,k)− D̃hr,k

(ŵr,k+1, zr,k)− ηc(ψ(ŵr,k+1)− ψ(w)))− ηc

〈
1

M

M∑
m=1

∇f(wmr,k; ξmr,k), ŵr,k+1 − w

〉
,

where the last equality is by definition of D̃.

D.2.2. DEFERRED PROOF OF CLAIM D.6

Proof of Claim D.6. By smoothness and convexity of Fm, we know

Fm(ŵr,k+1) ≤ Fm(wmr,k) +
〈
∇Fm(wmr,k), ŵr,k+1 − wmr,k

〉
+
L

2
‖ŵr,k+1 − wmr,k‖2 (smoothness)

≤ Fm(w) +
〈
∇Fm(wmr,k), ŵr,k+1 − w

〉
+
L

2
‖ŵr,k+1 − wmr,k‖2. (convexity)

Taking summation over m gives

F (ŵr,k+1)− F (w) =
1

M

M∑
m=1

(
Fm(ŵr,k+1)− Fm(w)

)
≤

〈
1

M

M∑
m=1

∇Fm(wmr,k), ŵr,k+1 − w

〉
+

L

2M

M∑
m=1

‖ŵr,k+1 − wmr,k‖2

=

〈
1

M

M∑
m=1

∇f(wmr,k; ξmr,k), ŵr,k+1 − w

〉
+

〈
1

M

M∑
m=1

(
∇Fm(wmr,k)−∇f(wmr,k; ξmr,k)

)
, ŵr,k+1 − w

〉

+
L

2M

M∑
m=1

‖ŵr,k+1 − wmr,k‖2

≤

〈
1

M

M∑
m=1

∇f(wmr,k; ξmr,k), ŵr,k+1 − w

〉
+

〈
1

M

M∑
m=1

(
∇Fm(wmr,k)−∇f(wmr,k; ξmr,k)

)
, ŵr,k+1 − w

〉

+ L‖ŵr,k+1 − ŵr,k‖2 +
L

M

M∑
m=1

‖ŵr,k − wmr,k‖2, (D.10)

where in the last inequality we applied the triangle inequality (for an arbitrary norm ‖ · ‖):

‖ŵr,k+1 − wmr,k‖2 ≤
(
‖ŵr,k+1 − ŵr,k‖+ ‖ŵr,k − wmr,k‖

)2 ≤ 2‖ŵr,k+1 − ŵr,k‖2 + 2‖ŵr,k − wmr,k‖2.
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Since ψ is convex and h is 1-strongly-convex according to Assumption 1, we know that hr,k = h+ ηc(rK + k)ψ is also
1-strongly-convex. Therefore h∗r,k is 1-smooth by Proposition C.5. Consequently,∥∥wmr,k − ŵr,k∥∥2 =

∥∥∇h∗r,k(zmr,k)−∇h∗r,k(zr,k)
∥∥2 ≤ ∥∥zmr,k − zr,k∥∥2∗ , (D.11)

where the first equality is by definition of wmr,k and ŵr,k and the second inequality is by 1-smoothness. Plugging Eq. (D.11)
back to Eq. (D.10) completes the proof of Claim D.6.

D.3. Stability of FEDDUALAVG Under Bounded Gradient Assumptions: Proof of Lemma D.3

The proof of Lemma D.3 is straightforward given the assumption of bounded gradient and the fact that zm1
r,0 = zm2

r,0 for all
m1,m2 ∈ [M ].

Proof of Lemma D.3. Let m1,m2 ∈ [M ] be two arbitrary clients, then

E
[
‖zm1

r,k − z
m2

r,k ‖
2
∗

∣∣∣Fr,0] = η2c E

∥∥∥∥∥
k−1∑
κ=0

(
∇f(wm1

r,κ ; ξm1
r,κ )−∇f(wm2

r,κ ; ξm2
r,κ )

)∥∥∥∥∥
2

∗

∣∣∣∣∣∣Fr,0
 (since zm1

r,0 = zm2
r,0 )

≤ η2c E

(k−1∑
κ=0

∥∥∇f(wm1
r,κ ; ξm1

r,κ )
∥∥
∗ +

k−1∑
κ=0

∥∥∇f(wm2
r,κ ; ξm2

r,κ )
∥∥
∗

)2
∣∣∣∣∣∣Fr,0


(triangle inequality of ‖ · ‖∗)

≤ η2c (2(k − 1)G)2 = 4η2c (K − 1)2G2.

By convexity of ‖ · ‖∗,

1

M

M∑
m=1

E
∥∥zmr,k − zr,k∥∥2∗ ≤ E

∥∥∥zm1

r,k − z
m2

r,k

∥∥∥2
∗
≤ 4η2c (K − 1)2G2,

completing the proof of Lemma D.3.

E. Proof of Theorem 4.3: Convergence of FEDDUALAVG Under Bounded Heterogeneity and
Quadratic Assumptions

In this section, we study the convergence of FEDDUALAVG under Assumption 2 (quadraticness) with unit server learning
rate ηs = 1. We provide a complete, non-asymptotic version of Theorem 4.3 with detailed proof, which expands the proof
sketch in Section 4.3. We will reuse the notations (zr,k, ŵr,k, etc.) introduced at the beginning of Appendix D.

E.1. Main Theorem and Lemmas

Now we state the full version of Theorem 4.3 on FEDDUALAVG with unit server learning rate ηs = 1 under quadratic
assumptions.

Theorem E.1 (Detailed version of Theorem 4.3). Assuming Assumption 2, then for any initialization w0 ∈ domψ, for unit
server learning rate ηs = 1 and any client learning rate ηc ≤ 1

4L , FEDDUALAVG yields

E

[
Φ

(
1

KR

R−1∑
r=0

K∑
k=1

ŵr,k

)
− Φ(w?)

]
≤ B

ηcKR
+
ηcσ

2

M
+ 7η2cLKσ

2 + 14η2cLK
2ζ2,

where B := Dh(w?, w0) is the Bregman divergence between the optimal w? and the initialization w0.

Particularly for

ηc = min

{
1

4L
,
M

1
2B

1
2

σK
1
2R

1
2

,
B

1
3

L
1
3K

2
3R

1
3σ

2
3

,
B

1
3

L
1
3KR

1
3 ζ

2
3

}
,
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we have

E

[
Φ

(
1

KR

R−1∑
r=0

K∑
k=1

ŵr,k

)
− Φ(w?)

]
≤ 4LB

KR
+

2σB
1
2

M
1
2K

1
2R

1
2

+
8L

1
3B

2
3σ

2
3

K
1
3R

2
3

+
15L

1
3B

2
3 ζ

2
3

R
2
3

.

The proof of Theorem E.1 relies on the perturbed iterate analysis Lemma D.2 of FEDDUALAVG and a stability bound
for quadratic objectives, as stated below in Lemma E.2. Note that Lemma D.2 only assumes Assumption 1 and therefore
applicable to Theorem E.1.
Lemma E.2. In the same settings of Theorem E.1, the following inequality holds for any k ∈ {0, 1, . . . ,K} and r ∈
{0, 1, . . . , R},

1

M

M∑
m=1

E
[∥∥zr,k − zmr,k∥∥2∗] ≤ 7η2cKσ

2 + 14η2cK
2ζ2.

The proof of Lemma E.2 is deferred to Appendix E.2. With Lemma E.2 at hand we are ready to prove Theorem E.1.

Proof of Theorem E.1. Applying Lemmas D.2 and E.2 one has

E

[
Φ

(
1

KR

R−1∑
r=0

K∑
k=1

ŵr,k

)
− Φ(w?)

]

≤ 1

ηcKR
Dh(w?, w0) +

ηcσ
2

M
+

L

MKR

[
R−1∑
r=0

K−1∑
k=0

M∑
m=1

E
∥∥zr,k − zmr,k∥∥2∗

]
(by Lemma D.2)

≤ 1

ηcKR
Dh(w?, w0) +

ηcσ
2

M
+ L ·

(
7η2cKσ

2 + 14η2cK
2ζ2
)

(by Lemma E.2)

=
B

ηcKR
+
ηcσ

2

M
+ 7η2cLKσ

2 + 14η2cLK
2ζ2,

which gives the first inequality in Theorem E.1.

Now set

ηc = min

{
1

4L
,
M

1
2B

1
2

σK
1
2R

1
2

,
B

1
3

L
1
3K

2
3R

1
3σ

2
3

,
B

1
3

L
1
3KR

1
3 ζ

2
3

}
.

We have
B

ηcKR
≤ max

{
4LB

KR
,

σB
1
2

M
1
2K

1
2R

1
2

,
L

1
3B

2
3σ

2
3

K
1
3R

2
3

,
L

1
3B

2
3 ζ

2
3

R
2
3

}
,

and
ηcσ

2

M
≤ σB

1
2

M
1
2K

1
2R

1
2

, 7η2cLKσ
2 ≤ 7L

1
3B

2
3σ

2
3

K
1
3R

2
3

, 14η2cLK
2ζ2 ≤ 14L

1
3B

2
3 ζ

2
3

R
2
3

.

Consequently

B

ηcKR
+
ηcσ

2

M
+ 7η2cLKσ

2 + 14η2cLK
2ζ2 ≤ 4LB

KR
+

2σB
1
2

M
1
2K

1
2R

1
2

+
8L

1
3B

2
3σ

2
3

K
1
3R

2
3

+
15L

1
3B

2
3 ζ

2
3

R
2
3

,

completing the proof of Theorem E.1.

E.2. Stability of FEDDUALAVG Under Quadratic Assumptions: Proof of Lemma E.2

In this subsection, we prove Lemma E.2 on the stability of FEDDUALAVG for quadratic F . We first state and prove the
following Proposition E.3 on the one-step analysis of stability.
Proposition E.3. In the same settings of Theorem E.1, let m1,m2 ∈ [M ] be two arbitrary clients. Then the following
inequality holds

E
[∥∥∥zm1

r,k+1 − z
m2

r,k+1

∥∥∥2
Q−1

∣∣∣∣Fr,k] ≤ (1 +
1

K

)∥∥∥zm1

r,k − z
m2

r,k

∥∥∥2
Q−1

+ 2

(
1 +

1

K

)
η2cσ

2‖Q‖−12 + 4(1 +K)η2cζ
2‖Q‖−12 .
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The proof of Proposition E.3 relies on the following three claims. To simplify the exposition we introduce two more
notations for this subsection. For any r, k,m, let

εmr,k := ∇f(wmr,k; ξmr,k)−∇Fm(wmr,k), δmr,k := ∇Fm(wmr,k)−∇F (wmr,k).

The following claim upper bounds the growth of
∥∥∥zm1

r,k+1 − z
m2

r,k+1

∥∥∥2
Q−1

. The proof of Claim E.4 is deferred to Ap-

pendix E.2.1.

Claim E.4. In the same settings of Proposition E.3, the following inequality holds∥∥∥zm1

r,k+1 − z
m2

r,k+1

∥∥∥2
Q−1
≤
(

1 +
1

K

)∥∥∥zm1

r,k − z
m2

r,k − ηc ·Q
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

+ (1 +K) η2c

∥∥∥δm1

r,k − δ
m2

r,k

∥∥∥2
Q−1

. (E.1)

The next claim upper bounds the growth of the first term in Eq. (E.1) in conditional expectation. We extend the stability
technique in (Flammarion & Bach, 2017) to bound this term. The proof of Claim E.5 is deferred to Appendix E.2.2.

Claim E.5. In the same settings of Proposition E.3, the following inequality holds

E
[∥∥∥zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

∣∣∣∣Fr,k] ≤ ∥∥∥zm1

r,k − z
m2

r,k

∥∥∥2
Q−1

+ 2η2cσ
2‖Q‖−12 .

The third claim upper bounds the growth of the second term in Eq. (E.1) under conditional expectation. This is a result of
the bounded heterogeneity assumption (Assumption 2(c)). The proof of Claim E.6 is deferred to Appendix E.2.3.

Claim E.6. In the same settings of Proposition E.3, the following inequality holds

E
[∥∥∥δm1

r,k − δ
m2

r,k

∥∥∥2
Q−1

∣∣∣∣Fr,k] ≤ 4‖Q‖−12 ζ2.

The proof of the above claims as well as the main lemma require the following helper claim which we also state here. The
proof is also deferred to Appendix E.2.3.

Claim E.7. In the same settings of Proposition E.3, the dual norm ‖ · ‖∗ corresponds to the ‖Q‖2 · Q−1-norm, namely
‖z‖∗ =

√
‖Q‖2 · z>Q−1z.

The proof of Proposition E.3 is immediate once we have Claims E.4, E.5 and E.6.

Proof of Proposition E.3. By Claims E.4, E.5 and E.6,

E
[∥∥∥zm1

r,k+1 − z
m2

r,k+1

∥∥∥2
Q−1

∣∣∣∣Fr,k]
≤
(

1 +
1

K

)
E
[∥∥∥zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

∣∣∣∣Fr,k]
+ (1 +K) η2c E

[∥∥∥δm1

r,k − δ
m2

r,k

∥∥∥2
Q−1

∣∣∣∣Fr,k] (by Claim E.4)

≤
(

1 +
1

K

)∥∥∥zm1

r,k − z
m2

r,k

∥∥∥2
Q−1

+ 2

(
1 +

1

K

)
η2σ2‖Q‖−12 + 4(1 +K)η2cζ

2‖Q‖−12 , (by Claims E.5 and E.6)

completing the proof of Proposition E.3.

The main Lemma E.2 then follows by telescoping Proposition E.3.
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Proof of Lemma E.2. Let m1,m2 be two arbitrary clients. Telescoping Proposition E.3 from Fr,0 to Fr,k gives

E
[∥∥∥zm1

r,k − z
m2

r,k

∥∥∥2
Q−1

]
≤
(
1 + 1

K

)k − 1
1
K

(
2

(
1 +

1

K

)
η2cσ

2‖Q‖−12 + 4(1 +K)η2cζ
2‖Q‖−12

)
(telescoping of Proposition E.3)

≤(e− 1)K

(
2

(
1 +

1

K

)
η2cσ

2‖Q‖−12 + 4(1 +K)η2cζ
2‖Q‖−12

)
(since (1 + 1

K )k ≤ (1 + 1
K )K < e)

≤(e− 1)K
(
4η2cσ

2‖Q‖−12 + 8Kη2cζ
2‖Q‖−12

)
(since 1 + 1

K ≤ 2 and 1 +K ≤ 2K)

≤7η2cKσ
2‖Q‖−12 + 14η2cK

2ζ2‖Q‖−12 (since 4(e− 1) < 7 and 8(e− 1) < 14)

By convexity of ‖ · ‖2Q−1 and Proposition E.3 one has

1

M

M∑
m=1

E
[∥∥zr,k − zmr,k∥∥2Q−1

]
≤ E

[∥∥∥zm1

r,k − z
m2

r,k

∥∥∥2
Q−1

]
≤ 7η2cKσ

2‖Q‖−12 + 14η2cK
2ζ2‖Q‖−12 .

Finally, we switch back to ‖ · ‖∗ norm following Claim E.7

1

M

M∑
m=1

E
[∥∥zr,k − zmr,k∥∥2∗] ≤ 7η2cKσ

2 + 14η2cK
2ζ2,

completing the proof of Lemma E.2.

E.2.1. DEFERRED PROOF OF CLAIM E.4

Proof of Claim E.4. By definition of FEDDUALAVG procedure one has

zmr,k+1 = zmr,k − ηc∇f(wmr,k; ξmr,k)

= zmr,k − ηc∇F (wmr,k) + ηc
(
∇Fm(wmr,k)−∇F (wmr,k)

)
+ ηc

(
∇f(wmr,k; ξmr,k)−∇Fm(wmr,k)

)
= zmr,k − ηc∇F (wmr,k)− ηcεmr,k − ηcδmr,k, (E.2)

where the last equality is by definition of εmr,k and δmr,k. Therefore∥∥∥zm1

r,k+1 − z
m2

r,k+1

∥∥∥2
Q−1

=
∥∥∥zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)
− ηc

(
δm1

r,k − δ
m2

r,k

)∥∥∥2
Q−1

(by Eq. (E.2))

=
∥∥∥zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

+ η2c

∥∥∥δm1

r,k − δ
m2

r,k

∥∥∥2
Q−1

+ 2
〈
zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)
, ηcQ

−1
(
δm1

r,k − δ
m2

r,k

)〉
. (E.3)

By Cauchy-Schwartz inequality and AM-GM inequality one has (for any γ > 0)〈
zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)
, ηcQ

−1
(
δm1

r,k − δ
m2

r,k

)〉
≤
∥∥∥zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)∥∥∥
Q−1

∥∥∥ηc (δm1

r,k − δ
m2

r,k

)∥∥∥
Q−1

(Cauchy-Schwarz inequality)

≤ 1

2γ

∥∥∥zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

+
1

2
γ
∥∥∥ηc (δm1

r,k − δ
m2

r,k

)∥∥∥2
Q−1

.

(AM-GM inequality)

≤ 1

2γ

∥∥∥zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

+
1

2
γη2c

∥∥∥(δm1

r,k − δ
m2

r,k

)∥∥∥2
Q−1

. (E.4)
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Plugging Eq. (E.4) to Eq. (E.3) with γ = K gives∥∥∥zm1

r,k+1 − z
m2

r,k+1

∥∥∥2
Q−1

≤
(

1 +
1

K

)∥∥∥zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

+ (1 +K) η2c

∥∥∥δm1

r,k − δ
m2

r,k

∥∥∥2
Q−1

,

completing the proof of Claim E.4.

E.2.2. DEFERRED PROOF OF CLAIM E.5

The proof technique of this claim is similar to (Flammarion & Bach, 2017, Lemma 8) which we adapt to fit into our settings.

Proof of Claim E.5. Let us first expand the ‖ · ‖2Q−1 :∥∥∥zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

=
∥∥∥zm1

r,k − z
m2

r,k

∥∥∥2
Q−1

+
∥∥∥ηQ(wm1

r,k − w
m2

r,k

)∥∥∥2
Q−1

+
∥∥∥η (εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

+ 2
〈
η
(
wm1

r,k − w
m2

r,k

)
, η
(
εm1

r,k − ε
m2

r,k

)〉
+ 2

〈
zm1

r,k − z
m2

r,k ,−η
(
wm1

r,k − w
m2

r,k

)〉
+ 2

〈
zm1

r,k − z
m2

r,k ,−ηQ
−1
(
εm1

r,k − ε
m2

r,k

)〉
.

Now we take conditional expectation. Note that by bounded variance assumption one has

E
[∥∥∥ηc (εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

∣∣∣∣Fr,k] = ‖Q‖−12 · E
[∥∥∥ηc (εm1

r,k − ε
m2

r,k

)∥∥∥2
∗

∣∣∣∣Fr,k] ≤ 2η2cσ
2‖Q‖−12 ,

where in the first equality we applied Claim E.7.

By unbiased and independence assumptions

E
[
εm1

r,k − ε
m2

r,k

∣∣∣Fr,k] = 0.

Thus

E
[∥∥∥zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

∣∣∣∣Fr,k]
≤
∥∥∥zm1

r,k − z
m2

r,k

∥∥∥2
Q−1

+η2c

∥∥∥Q(wm1

r,k − w
m2

r,k

)∥∥∥2
Q−1︸ ︷︷ ︸

(I)

−2ηc

〈
zm1

r,k − z
m2

r,k , w
m1

r,k − w
m2

r,k

〉
︸ ︷︷ ︸

(II)

+2η2cσ
2‖Q‖−12 . (E.5)

Now we analyze (I), (II) in Eq. (E.5). First note that

(I) = η2c

∥∥∥Q(wm1

r,k − w
m2

r,k

)∥∥∥2
Q−1

=η2c

〈
wm1

r,k − w
m2

r,k , Q
(
wm1

r,k − w
m2

r,k

)〉
(by definition of ‖ · ‖2Q−1 )

=ηc

〈
wm1

r,k − w
m2

r,k , ηc

(
∇F (wm1

r,k )−∇F (wm2

r,k )
)〉

(since F is quadratic)

=ηc

〈
wm1

r,k − w
m2

r,k ,∇(ηcF − 2h)(wm1

r,k )−∇(ηcF − 2h)(wm2

r,k )
〉

+ 2ηc

〈
wm1

r,k − w
m2

r,k ,∇h(wm1

r,k )−∇h(wm2

r,k )
〉

By L-smoothness of Fm (Assumption 1(c)) we know that F := 1
M

∑M
m=1 Fm is also L-smooth. Thus ηcF is 1

4 -smooth
since ηc ≤ 1

4L . Thus ηcF − 2h is concave since h is 1-strongly convex, which implies〈
wm1

r,k − w
m2

r,k ,∇(ηcF − 2h)(wm1

r,k )−∇(ηcF − 2h)(wm2

r,k )
〉
≤ 0.
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We obtain
(I) ≤ 2ηc

〈
wm1

r,k − w
m2

r,k ,∇h(wm1

r,k )−∇h(wm2

r,k )
〉
. (E.6)

Now we study (I)+(II) in Eq. (E.5):

(I) + (II) = η2c

∥∥∥Q(wm1

r,k − w
m2

r,k

)∥∥∥2
Q−1
− 2ηc

〈
zm1

r,k − z
m2

r,k , w
m1

r,k − w
m2

r,k

〉
≤2ηc

〈
wm1

r,k − w
m2

r,k ,∇h(wm1

r,k )−∇h(wm2

r,k )
〉
− 2ηc

〈
wm1

r,k − w
m2

r,k , z
m1

r,k − z
m2

r,k

〉
(by inequality Eq. (E.6))

=− 2ηc

〈
wm1

r,k − w
m2

r,k ,
(
zm1

r,k −∇h(wm1

r,k )
)
−
(
zm2

r,k −∇h(wm2

r,k )
)〉

(E.7)

On the other hand, by definition of wmr,k we have

wmr,k = ∇(h+ (rK + k)ηcψ)∗(zmr,k) = arg min
w

{〈
−zmr,k, w

〉
+ (rK + k)ηcψ(w) + h(w)

}
.

By subdifferential calculus one has

zmr,k −∇h(wmr,k) ∈ ∂
[
ηc(rK + k)ψ(wmr,k)

]
.

By monotonicity of subgradients one has〈
wm1

r,k − w
m2

r,k ,
(
zm1

r,k −∇h(wm1

r,k )
)
−
(
zm2

r,k −∇h(wm2

r,k )
)〉
≥ 0. (E.8)

Combining Eqs. (E.7) and (E.8) gives
(I) + (II) ≤ 0. (E.9)

Combining Eqs. (E.5) and (E.9) completes the proof as

E
[∥∥∥zm1

r,k − z
m2

r,k − ηcQ
(
wm1

r,k − w
m2

r,k

)
− ηc

(
εm1

r,k − ε
m2

r,k

)∥∥∥2
Q−1

∣∣∣∣Fr,k] ≤ ∥∥∥zm1

r,k − z
m2

r,k

∥∥∥2
Q−1

+ 2η2cσ
2‖Q‖−12 .

E.2.3. DEFERRED PROOF OF CLAIMS E.6 AND E.7

Proof of Claim E.6. By triangle inequality and AM-GM inequality,

E
[∥∥∥δm1

r,k − δ
m2

r,k

∥∥∥2
Q−1
|Fr,k

]
≤E

[(
‖δm1

r,k ‖Q−1 + ‖δm2

r,k ‖Q−1

)2∣∣∣∣Fr,k] (triangle inequality)

≤2E
[
‖δm1

r,k ‖
2
Q−1 + ‖δm2

r,k ‖
2
Q−1

∣∣∣Fr,k] . (AM-GM inequality)

By Claim E.7,

E
[∥∥∥δm1

r,k − δ
m2

r,k

∥∥∥2
Q−1

∣∣∣∣Fr,k] ≤ 2‖Q‖−12 E
[
‖δm1

r,k ‖
2
∗ + ‖δm2

r,k ‖
2
∗

∣∣∣Fr,k] ≤ 4‖Q‖−12 ζ2,

where the last inequality is due to bounded heterogeneity Assumption 2(c). This completes the proof of Claim E.6.

Proof of Claim E.7. Since the primal norm ‖ · ‖ is (‖Q‖−12 · Q)-norm by Assumption 2(b), the dual norm ‖ · ‖∗ is(
‖Q‖−12 ·Q

)−1
= ‖Q‖2 ·Q−1-norm.
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F. Proof of Theorem 4.1
In this section, we state and prove Theorem 4.1 on the convergence of FEDDUALAVG for small client learning rate ηc. The
intuition is that for sufficiently small client learning rate, FEDDUALAVG is almost as good as stochastic mini-batch with R
iterations and batch-size MK. The proof technique is very similar to the above sections and (Karimireddy et al., 2020)
so we skip a substantial amount of the proof details. We present the proof for FEDDUALAVG only since the analysis of
FEDMID is very similar.

To facilitate the analysis we re-parameterize the hyperparameters by letting η := ηsηc, and we treat (η, ηc) as independent
hyperparameters (rather than (ηc, ηs)). We use the notation hr,k := h+ η̃r,k ·ψ = h+(ηrK+ηck)ψ, zr,k := 1

M

∑M
m=1 z

m
r,k,

and ŵr,k := ∇h∗r,k(zr,k). Note that ŵr,0 = wmr,0 for all m ∈ [M ] by definition.

F.1. Main Theorem and Lemmas

Now we state the full version of Theorem 4.1 on FEDDUALAVG with small client learning rate ηc.
Theorem F.1 (Detailed version of Theorem 4.1). Assuming Assumption 1, then for any η ∈ (0, 1

4KL ], for any initialization
w0 ∈ domψ, there exists an ηmax

c > 0 (which may depend on η and w0) such that for any ηc ∈ (0, ηmax
c ], FEDDUALAVG

yields

E

[
Φ

(
1

R

R∑
r=1

ŵr,0

)
− Φ(w?)

]
≤ B

ηKR
+

3ησ2

M
,

where B := Dh(w?, w0) is the Bregman divergence between the optimal w? and the initialization w0.

In particular for

η = min

{
1

4KL
,
B

1
2M

1
2

K
1
2R

1
2σ

}
,

one has

E

[
Φ

(
1

R

R∑
r=1

ŵr,0

)
− Φ(w?)

]
≤ 4LB

R
+

4σB
1
2

M
1
2K

1
2R

1
2

.

The proof of Theorem F.1 relies on the following lemmas.

The first Lemma F.2 analyzes D̃hr+1,0
(w, zr+1,0). The proof of Lemma F.2 is deferred to Appendix F.2.

Lemma F.2. Under the same settings of Theorem F.1, the following inequality holds.

D̃hr+1,0(w, zr+1,0)− D̃hr,0(w, zr,0)

≤− D̃hr,0
(ŵr+1,0, zr,0)− ηK

(
Φ(ŵr+1,0)− Φ(w)

)
+
L

2
ηK‖ŵr+1,0 − ŵr,0‖2

+ ηK

〈
∇F (ŵr,0)− 1

MK

M∑
m=1

K−1∑
k=0

∇f(wmr,k; ξmr,k), ŵr+1,0 − w

〉

The second lemma analyzes D̃hr+1,0
(w, zr+1,0) under conditional expectation. The proof of Lemma F.3 is deferred to

Appendix F.3.
Lemma F.3. Under the same settings of Theorem F.1, there exists an ηmax

c > 0 (which may depend on η and w0) such that
for any ηc ∈ (0, ηmax

c ], FEDDUALAVG yields

E
[
D̃hr+1,0

(w, zr+1,0)
∣∣∣Fr,0]− D̃hr,0

(w, zr,0) ≤ −ηK E
[(

Φ(ŵr+1,0)− Φ(w)
)∣∣Fr,0]+

3η2Kσ2

M
.

With Lemmas F.2 and F.3 at hand we are ready to prove Theorem F.1.

Proof of Theorem F.1. Telescoping Lemma F.3 and dropping the negative terms gives

1

R

R∑
r=1

E [Φ(ŵr,0)− Φ(w)] ≤ 1

ηKR
D̃hr,0(w, zr,0) +

3ησ2

M
=

B

ηKR
+

3ησ2

M
.
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The second inequality of Theorem F.1 follows immediately once we plug in the specified η.

F.2. Deferred Proof of Lemma F.2

Proof of Lemma F.2. The proof of this lemma is very similar to Claims D.5 and D.6 so we skip most of the details.

We start by analyzing D̃hr+1,0(w, zr+1,0).

D̃hr+1,0
(w, zr+1,0)

=hr+1,0(w)− hr+1,0

(
∇h∗r+1,0(zr+1,0)

)
−
〈
zr+1,0, w −∇h∗r+1,0(zr+1,0)

〉
(By definition of generalized Bregman divergence D̃)

=hr+1,0(w)− hr+1,0(ŵr+1,0)−
〈
zr+1,0, w − ŵr+1,0

〉
(By definition of ŵr+1,0)

=hr+1,0(w)− hr+1,0(ŵr+1,0)−

〈
zr,0 − ηK ·

1

MK

M∑
m=1

K−1∑
k=0

∇f(wmr,k; ξmr,k), w − ŵr+1,0

〉
(By FEDDUALAVG procedure)

= (hr,0(w) + ηKψ(w))−
(
hr,0(ŵr+1,0) + ηKψ(ŵr+1,0)

)
−

〈
zr,0 − ηK ·

1

MK

M∑
m=1

K−1∑
k=0

∇f(wmr,k; ξmr,k), w − ŵr+1,0

〉
(By definition of hr+1,0)

= (hr,0(w)− hr,0(ŵr,0)− 〈zr,0, w − ŵr,0〉)−
(
hr,0(ŵr+1,0)− hr,0(ŵr,0)−

〈
zr,0, ŵr+1,0 − ŵr,0

〉)
− ηK

(
ψ(ŵr+1,0)− ψ(w)

)
− ηK

〈
1

MK

M∑
m=1

K−1∑
k=0

∇f(wmr,k; ξmr,k), ŵr+1,0 − w

〉
(Rearranging)

=D̃hr,0
(w, zr,0)− D̃hr,0

(ŵr+1,0, zr,0)− ηK
(
ψ(ŵr+1,0)− ψ(w)

)
− ηK

〈
1

MK

M∑
m=1

K−1∑
k=0

∇f(wmr,k; ξmr,k), ŵr+1,0 − w

〉
(By definition of D̃)

By smoothness and convexity of F we have

F (ŵr+1,0) ≤F (ŵr,0) +
〈
∇F (ŵr,0), ŵr+1,0 − ŵr,0

〉
+
L

2
‖ŵr+1,0 − ŵr,0‖2 (by L-smoothness of F )

≤F (w) +
〈
∇F (ŵr,0), ŵr+1,0 − w

〉
+
L

2
‖ŵr+1,0 − ŵr,0‖2 (by convexity of F )

Combining the above two (in)equalities gives

D̃hr+1,0
(w, zr+1,0)− D̃hr,0

(w, zr,0) ≤− D̃hr,0
(ŵr+1,0, zr,0)− ηK

(
Φ(ŵr+1,0)− Φ(w)

)
+
L

2
ηK‖ŵr+1,0 − ŵr,0‖2

+ ηK

〈
∇F (ŵr,0)− 1

MK

M∑
m=1

K−1∑
k=0

∇f(wmr,k; ξmr,k), ŵr+1,0 − w

〉
.
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F.3. Deferred Proof of Lemma F.3

Proof of Lemma F.3. We start by splitting the inner product term in the inequality of Lemma F.2:〈
∇F (ŵr,0)− 1

MK

M∑
m=1

K−1∑
k=0

∇f(wmr,k; ξmr,k), ŵr+1,0 − w

〉

=

〈
∇F (ŵr,0)− 1

MK

M∑
m=1

K−1∑
k=0

∇f(ŵr,0; ξmr,k), ŵr,0 − w

〉
︸ ︷︷ ︸

(I)

+

〈
∇F (ŵr,0)− 1

MK

M∑
m=1

K−1∑
k=0

∇f(ŵr,0; ξmr,k), ŵr+1,0 − ŵr,0

〉
︸ ︷︷ ︸

(II)

+
1

MK

M∑
m=1

K−1∑
k=0

〈
∇f(ŵr,0; ξmr,k)−∇f(wmr,k; ξmr,k), ŵr+1,0 − w

〉
︸ ︷︷ ︸

(III)

.

Now we investigate the terms (I)-(III). By conditional independence we know E[(I)|Fr,0] = 0. For (II), we know that

E [(II)|Fr,0] ≤E

[∥∥∥∥∥∇F (ŵr,0)− 1

MK

M∑
m=1

K−1∑
k=0

∇f(ŵr,0; ξmr,k)

∥∥∥∥∥
∗

∣∣∣∣∣Fr,0
]
E
[∥∥ŵr+1,0 − ŵr,0

∥∥∣∣Fr,0]
≤ σ√

MK
· E
[∥∥ŵr+1,0 − ŵr,0

∥∥∣∣Fr,0]
For (III) we observe that (by smoothness assumption)

(III) ≤ 1

MK

M∑
m=1

K−1∑
k=0

∥∥∇f(ŵr,0; ξmr,k)−∇f(wmr,k; ξmr,k)
∥∥
∗ ‖ŵr+1,0 − w‖

≤ L

MK

M∑
m=1

K−1∑
k=0

∥∥ŵr,0 − wmr,k∥∥ ‖ŵr+1,0 − w‖.

Taking conditional expectation,

E [(III)|Fr,0] ≤ 1

MK

M∑
m=1

K−1∑
k=0

E
[∥∥∇f(ŵr,0; ξmr,k)−∇f(wmr,k; ξmr,k)

∥∥
∗

∣∣∣Fr,0]E [‖ŵr+1,0 − w‖
∣∣Fr,0]

≤ L

MK

(
M∑
m=1

K−1∑
k=0

E
[
‖ŵr,0 − wmr,k‖

∣∣Fr,0])E
[
‖ŵr+1,0 − w‖

∣∣Fr,0]

Combining the above inequalities with Lemma F.2 gives

E
[
D̃hr+1,0

(w, zr+1,0)
∣∣∣Ft]− D̃hr,0

(w, zr,0)

≤− ηK E
[(

Φ(ŵr+1,0)− Φ(w)
)∣∣Fr,0]− (1

2
− L

2
ηK

)
E
[
‖ŵr+1,0 − ŵr,0‖2

∣∣Fr,0]
+
ησ
√
K√
M
· E
[∥∥ŵr+1,0 − ŵr,0

∥∥∣∣Fr,0]+
ηL

M

(
M∑
m=1

K−1∑
k=0

E
[
‖ŵr,0 − wmr,k‖

∣∣Fr,0])E
[
‖ŵr+1,0 − w‖

∣∣Fr,0]
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Note that

−
(

1

2
− L

2
ηK

)
E
[
‖ŵr+1,0 − ŵr,0‖2

∣∣Fr,0]+
ησ
√
K√
M
· E
[∥∥ŵr+1,0 − ŵr,0

∥∥∣∣Fr,0]
≤− 3

8
E
[
‖ŵr+1,0 − ŵr,0‖2

∣∣Fr,0]+
ησ
√
K√
M
· E
[∥∥ŵr+1,0 − ŵr,0

∥∥∣∣Fr,0] (since η ≤ 1
4KL )

≤− 1

4
E
[
‖ŵr+1,0 − ŵr,0‖2

∣∣Fr,0]+
2η2Kσ2

M
. (by quadratic optimum)

Therefore

E
[
D̃hr+1,0(w, zr+1,0)

∣∣∣Ft]− D̃hr,0(w, zr,0)

≤− ηK E
[(

Φ(ŵr+1,0)− Φ(w)
)∣∣Fr,0]− 1

4
E
[
‖ŵr+1,0 − ŵr,0‖2

∣∣Fr,0]+
2η2Kσ2

M

+
ηL

M

(
M∑
m=1

K−1∑
k=0

E
[
‖ŵr,0 − wmr,k‖

∣∣Fr,0])E
[
‖ŵr+1,0 − w‖

∣∣Fr,0] .
Since wmr,k is generated by running local dual averaging with learning rate ηc, one has

lim
ηc↓0

[(
M∑
m=1

K−1∑
k=0

E
[
‖ŵr,0 − wmr,k‖

∣∣Fr,0])E
[
‖ŵr+1,0 − w‖

∣∣Fr,0]] = 0.

There exists an upper bound ηmax
c such that for any ηc ∈ (0, ηmax

c ], it is the case that(
M∑
m=1

K−1∑
k=0

E
[
‖ŵr,0 − wmr,k‖

∣∣Fr,0])E
[
‖ŵr+1,0 − w‖

∣∣Fr,0] ≤ ηKσ2

L
.

Therefore, for any ηc ∈ (0, ηmax
c ],

E
[
D̃hr+1,0(w, zr+1,0)

∣∣∣Ft]− D̃hr,0(w, zr,0) ≤ −ηK E
[
Φ(ŵr+1,0)− Φ(w)

∣∣Fr,0]+
3η2Kσ2

M
.
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