
Barlow Twins: Self-Supervised Learning via Redundancy Reduction

A. Connection between BARLOW TWINS and

the Information Bottleneck Principle

Figure 6. The information bottleneck principle applied to self-
supervised learning (SSL) posits that the objective of SSL is to
learn a representation Z✓ which is informative about the image
sample, but invariant (i.e. uninformative) to the specific distortions
that are applied to this sample. BARLOW TWINS can be viewed as
a specific instanciation of the information bottleneck objective.

We explore in this appendix the connection between BAR-
LOW TWINS’ loss function and the Information Bottleneck
(IB) principle (Tishby & Zaslavsky, 2015; Tishby et al.,
2000).

As a reminder, BARLOW TWINS’ loss function is given by:
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where � is a positive constant trading off the importance of
the first and second terms of the loss, and where C is the
cross-correlation matrix computed between the outputs of
the two identical networks along the batch dimension :
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where b indexes batch samples and i, j index the vector di-
mension of the networks’ outputs. C is a square matrix with
size the dimensionality of the network’s output, and with
values comprised between -1 (i.e. perfect anti-correlation)
and 1 (i.e. perfect correlation).

Applied to self-supervised learning, the IB principle posits
that a desirable representation should be as informative
as possible about the sample represented while being as
invariant (i.e. non-informative) as possible to distortions

of that sample (here the data augmentations used) (Fig. 6).
This trade-off is captured by the following loss function:

IB✓ , I(Z✓, Y )� �I(Z✓, X) (5)

where I(., .) denotes mutual information and � is a positive
scalar trading off the desideratas of preserving information
and being invariant to distortions.

Using a classical identity for mutual information, we can
rewrite equation 5 as:

IB✓ = [H(Z✓)�⇠⇠⇠⇠⇠:0
H(Z✓|Y )]��[H(Z✓)�H(Z✓|X)] (6)

where H(.) denotes entropy. The conditional entropy
H(Z✓|Y ) —the entropy of the representation conditioned
on a specific distorted sample— cancels to 0 because the
function f✓ is deterministic, and so the representation Z✓

conditioned on the input sample Y is perfectly known and
has zero entropy. Since the overall scaling factor of the loss
function is not important, we can rearrange equation 6 as:

IB✓ = H(Z✓|X) +
1� �

�
H(Z✓) (7)

Measuring the entropy of a high-dimensional signal gener-
ally requires vast amounts of data, much larger than the size
of a single batch. In order to circumvent this difficulty, we
make the simplifying assumption that the representation Z

is distributed as a Gaussian. The entropy of a Gaussian dis-
tribution is simply given by the logarithm of the determinant
of its covariance function (up to a constant corresponding
to the assumed discretization level that we ignore here) (Cai
et al., 2015). The loss function becomes:

IB✓ = EX log |CZ✓|X |+ 1� �

�
log |CZ✓ | (8)

This equation is still not exactly the one we optimize for
in practice (see eqn. 3 and 4). Indeed, our loss function is
only connected to the IB loss given by eqn. 8 through the
following simplifications and approximations:

• In the case where � <= 1, it is easy to see from eqn.
8 that the best solution to the IB trade-off is to set the
representation to a constant that does not depend on the
input. This trade-off thus does not lead to interesting
representations and can be ignored. When � > 1, we
note that the second term of eqn. 8 is preceded by a
negative constant. We can thus simply replace 1��

� by
a new positive constant �, preceded by a negative sign.
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• In practice, we find that directly optimizing the de-
terminant of the covariance matrices does not lead to
SoTA solutions. Instead, we replace the second term of
the loss in eqn. 8 (maximizing the information about
samples), by the proxy which consist in simply min-
imizing the Frobenius norm of the cross-correlation
matrix. If the representations are assumed to be re-
scaled to 1 along the batch dimension before entering
the loss (an assumption we are free to make since the
cross-correlation matrix is invariant to this re-scaling),
this minimization only affects the off-diagonal terms of
the covariance matrix (the diagonal terms being fixed
to 1 by the re-scaling) and encourages them to be as
close to 0 as possible. It is clear that this surrogate
objective, which consists in decorrelating all output
units, has the same global optimum than the original
information maximization objective.

• For consistency with eqn. 8, the second term in BAR-
LOW TWINS’ loss should be computed from the auto-
correlation matrix of one of the twin networks, instead
of the cross-correlation matrix between twin networks.
In practice, we do not see a strong difference in perfor-
mance between these alternatives.

• Similarly, it can easily be shown that the first term of
eqn. 8 (minimizing the information the representation
contains about the distortions) has the same global opti-
mum than the first term of eqn. 3, which maximizes the
alignment between representations of pairs of distorted
samples.

B. Evaluations on ImageNet

B.1. Linear evaluation on ImageNet

The linear classifier is trained for 100 epochs with a learning
rate of 0.3 and a cosine learning rate schedule. We mini-
mize the cross-entropy loss with the SGD optimizer with
momentum and weight decay of 10�6. We use a batch size
of 256. At training time we augment an input image by tak-
ing a random crop, resizing it to 224⇥ 224, and optionally
flipping the image horizontally. At test time we resize the
image to 256⇥256 and center-crop it to a size of 224⇥224.

B.2. Semi-supervised training on ImageNet

We train for 20 epochs with a learning rate of 0.002 for the
ResNet-50 and 0.5 for the final classification layer. The
learning rate is multiplied by a factor of 0.2 after the 12th
and 16th epoch. We minimize the cross-entropy loss with
the SGD optimizer with momentum and do not use weight
decay. We use a batch size of 256. The image augmentations
are the same as in the linear evaluation setting.

C. Transfer Learning

C.1. Linear evaluation

We follow the exact settings from PIRL (Misra & van der
Maaten, 2019) for evaluating linear classifiers on the Places-
205, VOC07 and iNaturalist2018 datasets. For Places-205
and iNaturalist2018 we train a linear classifier with SGD
(14 epochs on Places-205, 84 epochs on iNaturalist2018)
with a learning rate of 0.01 reduced by a factor of 10 at
two equally spaced intervals, a weight decay of 5 ⇥ 10�4

and SGD momentum of 0.9. We train SVM classifiers on
the VOC07 dataset where the C values are computed using
cross-validation.

C.2. Object Detection and Instance Segmentation

We use the detectron2 library (Wu et al., 2019) for train-
ing the detection models and closely follow the evaluation
settings from (He et al., 2019). The backbone ResNet50
network for Faster R-CNN (Ren et al., 2015) and Mask
R-CNN (He et al., 2017) is initialized using our BARLOW
TWINS pretrained model.

VOC07+12 We use the VOC07+12 trainval set of 16K
images for training a Faster R-CNN (Ren et al., 2015) C-4
backbone for 24K iterations using a batch size of 16 across
8 GPUs using SyncBatchNorm. The initial learning rate for
the model is 0.1 which is reduced by a factor of 10 after
18K and 22K iterations. We use linear warmup (Goyal
et al., 2017) with a slope of 0.333 for 1000 iterations.

COCO We train Mask R-CNN (He et al., 2017) C-4 back-
bone on the COCO 2017 train split and report results
on the val split. We use a learning rate of 0.03 and keep
the other parameters the same as in the 1⇥ schedule in
detectron2.


