
You Only Sample (Almost) Once: Appendix

The appendix includes additional details regarding the algorithm and experiments.

1. Algorithm Details
1.1. Normalizing Queries and Keys

Recall our assumption that the vector norms of Qi and Kj are unit length. We used a parameter τ to control the decay
rate of attention weights as the similarities change. In this subsection, we provide additional details about how this can be
achieved using a slightly modified idea from Neyshabur & Srebro (2015).

Assume that the `2 norms of Qi,Kj are bounded by some
√
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1.2. Approximating Random Projections in LSH

The main paper describes estimating self-attention using Bernoulli sampling via LSH. To do so, the first step of LSH is
computing the hash code using random projections. To compute hash codes of a vector x, the hyperplane hash (Charikar,
2002) is used. We use a concatenation of τ hyperplane hashes to boost the decay of collision probability as similarity
decreases.

F : Rd → {0, 1}mτ F (x) = sign(Px)

where P ∈ R(mτ)×d, Pij ∼ N (0, 1). Here, mτ hashes are computed at once, then the output vector is partitioned to m
τ -dimensional binary hash codes. The time complexity for random project is O(nmτd). To efficiently approximate random
projections, we follow the construction used in (Andoni et al., 2015). The output of the mτ -dimensional vector is divided
into mτ

d d-dimensional vectors and then the hash codes are estimated by
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where Dq
p are diagonal matrices with diagonal entries uniformly sampled from {−1,+1}, and H is the Hadamard matrix.

This approximation reduces the time complexity to O(nmτ log2(d)) via the Fast Hadamard Transform.

1.3. Derivation of the Backpropagation scheme

When using expectation of LSH collision as attention weights, the attention output of one queryQi to keysKj and associated
values Vj for all j = 1, ..., n is defined as

Yi =

n∑
j=1

(
1− arccos(QTi Kj)

π

)τ
Vj

Then, given the gradient of the loss w.r.t. Yi, denoted∇YiL, the goal is to compute the gradient of the loss w.r.t. Qi, denoted
∇QiL. We start by computing the q-th entry of∇QiL:
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Then we use
d
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and plug it into (1),
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After swapping the order of the two summations, (1) becomes
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Note that only Kj,q is different for different entries of∇QiL, so we can write it as

∇QiL =
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The term ∇QL in the main text is the matrix form of above expression for i = 1, · · ·n

∇QL =[
(
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T
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where �,� are element-wise multiplication and division respectively. Note that π
√

1− (QKT )2 approaches 0 as the
similarity score between the query and the key approaches 1 – so to avoid numerical and stability issues, we use the fact that
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for x ∈ [−1, 1]

and define a lower bound to replace the actual gradient
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1.4. Alternative Procedure for Approximating Backpropagation

The main paper described a procedure to estimate (3), which uses LSH-based Bernoulli Sampling d times as a subroutine.
The complexity of this procedure is linear w.r.t. sequence length n, which is desirable but the runtime can be large if d is set
to be very large. An alternative described here based on additional assumptions, is linear with respect to d.

The gradient of L w.r.t. the i-th row of Q is written as

∇̂QiL =

n∑
j=1

(∇YiL)TVjB(Q,K)i,j
τ

2
Kj

Note that if B(Q,K)i,j is zero then the corresponding summation term does not need to be computed. The alternative
procedure relies on the sparsity of attention matrices (which we have not exploited so far) to reduce the workload. The
procedure is simple: it checks the value of B(Q,K)i,j and only computes the summation term when B(Q,K)i,j = 1.

For m samples, the procedure counts the number of times Qi and Kj collide, and only computes the summation term
corresponding toQi andKj when at least one collides occurs. Therefore, the runtime isO(nnz(B(Q,K))(m+d)) (counting
number of success + computing nonzero terms). In the worst case, nnz(B(Q,K)) = n2, it would be as expensive as dense
matrix multiplications in complexity and even worse in practice due to a large memory latency resulting from indirect
memory access. However, in practice, B(Q,K) is generally sparse if τ is set sensibly. Further, the first procedure guarantees
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a linear complexity scaling of our method for extremely long sequences. As an improvement, one can dynamically select
one from these two method based on runtime, then the time complexity is O(min(nmd2, nnz(B(Q,K))(m+ d))).

Estimating backpropagation based on (2). To test the effect of using (3) instead of (2) for backpropagation, we developed
a similar procedure to estimate (2). We only consider the gradient backpropagation through the non-zero entries of B(Q,K),
so the quantity computed is as follows,

∇QL =[
(
(∇YOSOL)V

T
)
�
(
τ(1− arccos(QKT )

π
)τ−1

)
�
(
π
√
1− (QKT )2

)
� 1B(Q,K)]K

where 1B(Q,K) is an n × n matrix whose (i, j) entry is 1 if B(Q,K)ij 6= 0 else it is 0. Then, we can use the sparsity of
B(Q,K) to save compute steps. The procedure initializes∇YOSOQi to zero and checks if Qi and Kj collide in any of m
hashes. If so, it computes the weight

wij = ((∇YOSOL)
T
i Vj)

(τ(1− arccos(QTi Kj)
π )τ−1

π
√
1− (QTi Kj)2 + ε

where a small ε is introduced to avoid a divide by zero error, and then accumulates wijKj to ∇YOSOQi. This procedure
has the same runtime complexity as the procedure above. The models trained using this procedure for backpropagation
computation is denoted as *YOSO in the experimental section.

2. Experiment Details
2.1. Efficiency

We provide a table of runtime and memory consumption for each efficient Transformer method in Table 1. The runtime
difference between YOSO and *YOSO is generally less than 20%. In addition to testing the efficiency when the largest
batch size for each methods is used, we tested the efficiency when using the same batch size that can fit in memory for all
methods. The results are summarized in Table 2. Compared to baselines, the batch size setting appears to have a weaker
impact on the efficiency of our method. This indicates that YOSO could potentially be used on memory constrained settings
where only small batch sizes are possible.

SEQ LENGTH 128 256 512 1024 2048 4096
BS TIME/STD MEM BS TIME/STD MEM BS TIME/STD MEM BS TIME/STD MEM BS TIME/STD MEM BS TIME/STD MEM

SOFTMAX 512 0.5/0.00 17 128 1.1/0.00 43 64 3.0/0.01 126 16 8.9/0.05 423 4 29.2/0.20 1529 1 100.8/0.72 5794
NYSTRÖMFORMER 256 1.1/0.01 32 128 1.8/0.01 49 64 3.1/0.03 83 64 5.6/0.01 149 32 11.0/0.07 283 16 21.9/0.14 551
LONGFORMER - - - - - - 32 11.3/0.03 169 16 24.4/0.04 348 8 50.4/0.10 699 4 102.1/0.14 1404
LINFORMER 256 0.7/0.00 27 128 1.3/0.00 51 64 2.5/0.00 99 32 5.2/0.01 197 16 10.1/0.03 391 8 20.9/0.08 782
REFORMER 256 1.1/0.00 28 128 2.2/0.00 57 64 4.3/0.01 114 32 8.7/0.01 228 16 17.5/0.05 457 8 35.3/0.04 916
PERFORMER 256 1.1/0.00 32 128 2.1/0.00 60 64 4.2/0.01 116 32 8.5/0.01 229 16 16.9/0.02 453 8 34.3/0.04 903
YOSO-32 512 1.0/0.00 15 256 2.0/0.01 31 128 4.0/0.01 63 64 8.5/0.01 127 32 16.5/0.01 255 16 34.8/0.19 510
YOSO-C-32 512 1.2/0.00 16 256 2.4/0.01 33 128 5.0/0.01 67 64 10.0/0.06 134 32 20.1/0.03 269 16 42.9/0.04 538
YOSO-C-16 512 1.0/0.00 15 256 1.9/0.00 31 128 3.9/0.02 62 64 7.9/0.01 125 32 15.9/0.02 250 16 32.1/0.04 501
*YOSO-32 512 1.0/0.00 15 256 2.0/0.01 31 128 4.5/0.01 63 64 9.6/0.02 127 32 18.7/0.05 254 16 41.3/0.14 509
*YOSO-16 512 0.8/0.00 14 256 1.6/0.00 29 128 3.4/0.01 59 64 7.5/0.11 119 32 15.4/0.08 238 16 30.4/0.05 476
*YOSO-C-32 512 1.2/0.00 16 256 2.5/0.00 33 128 5.0/0.00 67 64 11.5/0.04 134 32 23.1/0.09 268 16 48.3/0.10 537
*YOSO-C-16 512 1.0/0.00 15 256 2.0/0.02 31 128 4.1/0.01 62 64 8.9/0.01 125 32 18.1/0.12 250 16 36.6/0.05 500

Table 1. Runtime and memory efficiency for each method when the largest batch size is used for each method on each sequence length.
BS: batch size, TIME/STD: the mean and standard deviation of runtime in ms, MEM: memory in MB

2.2. BERT-Small for Baseline Comparisons

In this section, we provide a table of experimental results of BERT-small pretraining and GLUE downstream finetuning
results, see Table 3. YOSO-C is comparable to softmax self-attention and Nyströmformer in MLM and SOP tasks while
it outperforms Reformer and Performer. We noticed that Reformer performs very well on GLUE tasks despite a modest
performance on MLM and SOP. Via further investigation, we found that 99% of instances in QNLI, QQP, and MNLI have
sequence lengths less than 112. Reformer sorts and chunks the input sequence and then calculates attention within chunked
sequences and consecutive chunks. The default size of each chunk is 64, so the equivalent attention window is 128 if the
number of hashes is set to 1 and is at least 128 if the number of hashes is larger than 1. Therefore, Reformer can capture
the full attention across all tokens in GLUE tasks. This full attention might be the reason for the better performance on
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SEQ LENGTH 128 256 512 1024 2048 4096
BS TIME/STD MEM BS TIME/STD MEM BS TIME/STD MEM BS TIME/STD MEM BS TIME/STD MEM BS TIME/STD MEM

SOFTMAX 256 0.5/0.00 17 128 1.2/0.00 43 32 3.1/0.01 127 16 8.9/0.03 423 4 29.1/0.11 1529 1 101.6/1.96 5794
NYSTROMFORMER 256 1.1/0.00 32 128 1.8/0.01 49 32 3.3/0.05 83 16 6.2/0.09 151 4 17.6/0.24 292 1 70.9/1.15 592
LONGFORMER - - - - - - 32 11.2/0.04 169 16 24.3/0.05 348 4 55.6/0.25 706 1 134.9/1.25 1335
LINFORMER 256 0.7/0.00 27 128 1.3/0.00 51 32 2.7/0.01 100 16 5.3/0.01 197 4 12.0/0.30 398 1 36.9/0.84 642
REFORMER 256 1.1/0.00 28 128 2.1/0.01 57 32 4.5/0.02 114 16 9.0/0.03 229 4 19.3/0.15 464 1 53.2/1.07 935
PERFORMER 256 1.1/0.00 32 128 2.1/0.00 60 32 4.4/0.02 117 16 8.7/0.03 230 4 18.5/0.11 461 1 48.1/0.66 942
YOSO-32 256 1.0/0.00 16 128 2.0/0.00 32 32 4.3/0.01 64 16 8.8/0.01 129 4 18.0/0.07 263 1 46.6/1.50 549
YOSO-16 256 0.8/0.00 14 128 1.6/0.00 29 32 3.3/0.01 60 16 6.8/0.02 121 4 14.6/0.15 247 1 41.5/0.89 518
YOSO-C-32 256 1.2/0.00 16 128 2.5/0.00 33 32 5.0/0.01 68 16 10.2/0.01 136 4 22.6/0.06 277 1 63.7/0.33 577
*YOSO-32 256 1.0/0.00 16 128 2.1/0.00 32 32 4.3/0.02 64 16 10.0/0.03 129 4 21.6/0.17 263 1 52.9/3.70 549
*YOSO-16 256 0.8/0.00 14 128 1.6/0.00 29 32 3.5/0.01 60 16 7.6/0.02 121 4 16.5/0.21 247 1 43.5/0.55 518
*YOSO-C-32 256 1.3/0.00 16 128 2.5/0.00 33 32 5.1/0.01 68 16 11.7/0.02 136 4 25.6/0.13 277 1 69.7/1.11 577
*YOSO-C-16 256 1.0/0.00 15 128 1.9/0.00 31 32 4.1/0.01 63 16 9.1/0.02 127 4 20.1/0.10 259 1 62.9/1.21 542

Table 2. Runtime and memory efficiency for each method when the same batch size is used for each method on each sequence length. BS:
batch size, TIME/STD: the mean and standard deviation of runtime in ms, MEM: memory in MB

GLUE of Reformer. Further, this short sequence length might also explain the reason for the performance on GLUE of
Nyströmformer: when most tokens in the input sequence are padding tokens, the outputted landmarks of the segmented
mean computation are zero vectors.

METHOD MLM SOP QNLI QQP MNLI-M/MM

SOFTMAX 7.05 91.3 87.7 86.0 79.1/79.5

NYSTRÖMFORMER 7.60 90.2 84.3 84.0 75.5/76.0
LINFORMER 8.21 90.9 85.8 85.0 77.4/77.5
REFORMER 8.57 89.0 86.9 86.2 78.2/78.6
PERFORMER 11.59 88.9 82.8 83.7 73.8/74.6
YOSO-32 8.55 89.5 84.7 83.1 75.0/75.3
YOSO-C-32 7.72 89.7 85.1 83.9 75.8/75.8
*YOSO-32 8.43 89.1 84.9 84.4 76.7/77.0
*YOSO-C-32 7.34 89.6 84.9 84.7 77.2/77.2

Table 3. Dev set results on MLM and SOP pretraining and GLUE tasks for baseline comparisons.

2.3. Experiment Summary

We provide a summary of all experiment details in Table 4. Note that since the Transformer model implementation in (Tay
et al., 2021) for LRA tasks is slightly different than the Transformer model used in BERT (Devlin et al., 2019), to follow
the exact setting, we have two variations of Transformers: one for LRA and one for BERT. For compute resources, since
BERT-base pretraining requires a significant amount of computation, we used AWS’s p3dn.24xlarge for experiments related
to BERT (MLM & SOP pretraining and GLUE tasks). Then, we run the rest of our experiments on a 4x2080TI server.

EXPERIMENT BERT-BASE BERT-SMALL LRA
MLM/SOP MRPC/SST-2 QNLI/QQP/MNLI MLM/SOP QNLI/QQP/MNLI LISTOPS TEXT RETRIEVAL IMAGE PATHFINDER

INPUT LENGTH 512 512 512 512 512 2048 4096 4096 1024 1024
NUM OF LAYERS 12 12 12 4 4 2 2 2 2 2
EMBEDDING DIM 768 768 768 512 512 64 64 64 64 64
HIDDEN DIM 3072 3072 3072 2048 2048 128 128 128 128 128
NUM OF HEADS 12 12 12 8 8 2 2 2 2 2
HEAD DIM 64 64 64 64 64 32 32 32 32 32
DROPOUT 0.1
POOLING CLS CLS CLS CLS CLS MEAN MEAN MEAN MEAN MEAN
OPTIMIZER ADAM
BATCH SIZE 256 {8, 16, 32} 32 256 32 32 32 32 256 256
LEARNING RATE 1E-4 {2E-5, 3E-5, 4E-5, 5E-5} 3E-5 1E-4 3E-5 1-E4 1-E4 1-E4 1-E4 1-E4
NUM OF STEPS 500K 4 EPOCHS 500K 4 EPOCHS 5K 20K 30K 35K 62.4K
WARMUP STEPS 10K - - 10K - 1K 8K 800 175 312
WEIGHT DECAY 0.01 0.01 0.01 0.01 0.01 0 0 0 0 0

Table 4. Hyperparameters for all experiments. Pooling represents how token outputs from Transformers are processed to represent the
entire input sequence for sequence classification. CLS means we append one fixed token in input and then use the model output of this
token as a representation of the sequence. MEAN means the output vectors are averaged as a representation of the sequence. For MRPC
and SST-2 in GLUE, a hyperparameter search is performed to select the best batch size and learning rate from the candidate set.
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