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A. Proofs
A.1. Proof of Proposition 1

Since Pk is a mixture component of P with probability mass at least α, we can see that

dPk
dP
≤ 1

α
(19)

Notice that when t ≥ 1,

f ′β(t) =
1

β − 1
(tβ−1 − 1) > 0 (20)

Hence, f ′β(t) is an increasing function when t > 1, therefore,

Dβ(Pk||P ) =

∫
fβ(

dPk
dP

)dP (21)

≤
∫
fβ(

1

α
)dP (22)

= fβ(
1

α
) (23)

Therefore, by the definition of β-DRO risk, we have completed the proof.

A.2. Proof of Corollary 2

For any k, let pk = P (Dk), then P (z) = pkP (z|Dk) + (1 − pk)P (z|Dk) holds for all x. Let Q = Pk and Q′(z) =
pk−α
1−α P (z|Dk) + 1−pk

1−α P (z|Dk). Then P = αQ + (1 − α)Q′, which implies that EPk [`(θ;Z)] ≤ CVaRα(θ;P ). Thus,
Rmax(θ;P ) ≤ CVaRα(θ;P ). On the other hand, for any Q such that there exists Q′ satisfying P = αQ+ (1− α)Q′, we
have dQ

dP (z) ≤ 1
α a.e., so that Dχ2(Q ‖ P ) ≤ 1

2 ( 1
α − 1)2 = ρ. Thus, CVaRα(θ;P ) ≤ RDχ2 ,ρ(θ;P ).

A.3. Proposition 3

A.3.1. PROOF OF PROPOSITION 3

By (6) and (11) we have

RDβ ,ρ,ε(θ;Ptrain) = inf
P ′

{
RDβ ,ρ(θ;P ′) : ∃P̃ ′ s.t. Ptrain = (1− ε)P ′ + εP̃ ′

}
= inf
P ′,η

{
cβ(ρ)EP ′ [(`(θ;Z)− η)β∗+ ]

1
β∗ + η

}
= inf

η

{
cβ(ρ) inf

P ′
{[
∫
R+

P ′((`(θ;Z)− η)β∗+ > u)du]
1
β∗ }+ η

} (24)

By Ptrain = (1− ε)P ′ + εP̃ ′ we have for all `0,

P ′(`(θ;Z) ≤ `0) ≤ min

{
1,

1

1− ε
Ptrain(`(θ;Z) ≤ `0)

}
(25)
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and we can also show that there exists a P ∗ = P ′ such that the equality is achieved in (25) for all `0: Since both `
and Ptrain are continuous, Ptrain(`(θ; z)) is a continuous function of z for any fixed θ, so there exists an `∗ such that
Ptrain(`(θ;Z) > `∗) = ε. Define

P ∗(z) =

{
1

1−εPtrain(z) , `(θ; z) ≤ `∗
0 , `(θ; z) > `∗

(26)

For (26), we have
∫
X×Y P

∗(z)dz = 1
1−ε

∫
`(θ;z)<`∗

Ptrain(z)dz = 1
1−εPtrain(`(θ;Z) < `∗) = 1 because Ptrain(`(θ;Z) =

`∗) = 0, so (26) is a distribution function.

Let v = u
1
β∗ . Plugging P ∗(`(θ;Z) ≤ `0) = min

{
1, 1

1−εPtrain(`(θ;Z) ≤ `0)
}

into (24) produces

RDβ ,ρ,ε(θ;Ptrain) = inf
η

cβ(ρ)

[∫
R+

[1− P ∗((`(θ;Z)− η)β∗+ ≤ vβ∗)]dvβ∗
] 1
β∗

+ η


= inf

η

cβ(ρ)

[∫
R+

[1− 1

1− ε
Ptrain(`(θ;Z) ≤ η + v)]+dv

β∗

] 1
β∗

+ η


= inf

η

cβ(ρ)

[∫ (`∗−η)+

0

1

1− ε
[(1− ε)− Ptrain(`(θ;Z) ≤ η + v)]+dv

β∗

] 1
β∗

+ η



(27)

On the other hand, we have

EPtrain
[(`− η)β∗+ | PZ′∼Ptrain

(`(θ;Z ′) > `(θ;Z)) ≥ ε]

=
1

1− ε

∫ `∗

0

(u− η)β∗+ d(Ptrain(` ≤ u))

=
1

1− ε

{[
(u− η)β∗+ Ptrain(` ≤ u)

]`∗
0
−
∫ `∗

0

Ptrain(` ≤ u)d((u− η)β∗+ )

}

=
1

1− ε

{
(`∗ − η)β∗+ (1− ε)−

∫ `∗

0

Ptrain(` ≤ u)d((u− η)β∗+ )

}

=
1

1− ε

{∫ (`∗−η)+

0

(1− ε)dvβ∗ −
∫ (`∗−η)+

0

Ptrain(` ≤ η + w)dwβ∗

}
(28)

where w = (u− η)+. Thus, (27) is equal to the right-hand side of (12).

A.3.2. EXTENSION TO ARBITRARY Ptrain

For any distribution Ptrain, we can obtain a similar but more complex formula (31). For any Ptrain, there exists an `∗ such
that Ptrain(`(θ;Z) > `∗) ≤ ε and Ptrain(`(θ;Z) < `∗) ≤ 1− ε. If Ptrain(`(θ;Z) = `∗) = 0, then the proof above is still
correct, so the formula is still (12).

Now assume that Ptrain(`(θ;Z) = `∗) > 0. Similar to (26), define

P ∗(z) =


1

1−εPtrain(z) , `(θ; z) < `∗[
1− 1

1−εPtrain(`(θ;Z) < `∗)
]
/Ptrain(`(θ;Z) = `∗) , `(θ; z) = `∗

0 , `(θ; z) > `∗
(29)
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Then we still have P ∗(`(θ;Z) ≤ `0) = min
{

1, 1
1−εPtrain(`(θ;Z) ≤ `0)

}
, so (27) still holds. On the other hand, we have

EPtrain [(`− η)β∗+ | PZ′∼Ptrain(`(θ;Z ′) > `(θ;Z)) > ε]

=
1

Ptrain(`(θ;Z) < `∗)

{∫ (`∗−η)+

0

(1− ε)dvβ∗ −
∫ (`∗−η)+

0

Ptrain(` ≤ η + w)dwβ∗

}
(30)

Thus, the formula becomes

RDβ ,ρ,ε(θ;Ptrain) = inf
η
{cβ(ρ)(

Ptrain(` < `∗)

1− ε
EZ [(`(θ;Z)− η)β∗+ | PZ′(`(θ;Z ′) > `(θ;Z)) > ε]

+
1− Ptrain(` < `∗)

1− ε
(`∗ − η)β∗+ )

1
β∗ + η}

(31)

A.4. Proofs of Results in Section 5

A.4.1. A KEY TECHNICAL LEMMA

The following lemma will be useful in the analysis of CVaR-DORO and χ2-DORO: it controls the difference of dual
objective in two distributions P, P ′ by their total variation distance, with the assumption that loss function l has bounded
2k-th moment under P .
Lemma 8. For any distributions P, P ′, non-negative loss function l(·, Z) and 1 ≤ β∗ < 2k, such that EP [l(θ, Z)2k] <∞,
we have

EP [(`− η)β∗+ ]
1
β∗ ≤ EP ′ [(`− η)β∗+ ]

1
β∗ + EP [(l(θ, Z)− η)2k

+ ]
1
2kTV(P, P ′)(

1
β∗−

1
2k )β

− 1
2k

∗ ·
(

2k

2k − β∗

) 1
β∗

(32)

Proof. By the definition of total variation distance, we have

P (`(θ;Z) > u)− P ′(`(θ;Z ′) > u) ≤ TV(P, P ′) (33)

holds for any u ≥ 0.

By Markov’s Inequality and the non-negativity of `, we have for any η ≥ 0,

P (`− η > u) ≤
E[(`− η)2k

+ ]

u2k
:= (

s2k

u
)2k (34)

where we introduced the shorthand s2k := E[(`− η)2k
+ ]

1
2k Using integration by parts, we can see that:

EP [(`− η)β∗+ ] =

∫ ∞
η

β∗(t− η)(β∗−1)P (` ≥ t)dt (35)

=

∫ ∞
0

β∗u
(β∗−1)P (`− η ≥ u)du (36)

Thus,

EP [(`− η)β∗+ ]− EP ′ [(`− η)β∗+ ] =

∫ ∞
0

β∗u
(β∗−1) (P (`− η ≥ u)− P ′(`− η ≥ u)) du

=

(∫ M

0

+

∫ ∞
M

)(
β∗u

(β∗−1) (P (`− η ≥ u)− P ′(`− η ≥ u)) du
) (37)

Here, M is a positive parameter whose value will be determined later. Next, we will upper bound each of the two integrals
separately. By equation 37,∫ M

0

β∗u
(β∗−1) (P (`− η ≥ u)− P ′(`− η ≥ u)) du ≤

∫ M

0

β∗u
(β∗−1)TV(P, P ′)du (38)

= Mβ∗TV(P, P ′), (39)
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which gives an upper bound for the first integral. For the second integral, notice that P ′(`− η ≥ u) is non-negative and use
equation 34, we have:∫ ∞

M

β∗u
(β∗−1) (P (`− η ≥ u)− P ′(`− η ≥ u)) du ≤

∫ ∞
M

β∗u
(β∗−1)P (`− η ≥ u)du (40)

≤
∫ ∞
M

β∗u
(β∗−1)

(s2k

u

)2k

(41)

=
s2k

2k

2k − β∗
· 1

M2k−β∗
(42)

Therefore, by setting M = s2k(TV(P, P ′)β∗)
−1/2k which minimizes the sum of two terms, we have

EP [(`− η)β∗+ ]−EP ′ [(`− η)β∗+ ] ≤ inf
M>0

(
Mβ∗TV(P, P ′) +

s2k
2k

2k − β∗
· 1

M2k−β∗

)
= sβ∗2kTV(P, P ′)1− β∗2k β

− β∗2k
∗ · 2k

2k − β∗
(43)

Using the inequality (A+B)
1
β∗ ≤ A

1
β∗ +B

1
β∗ when β∗ ≥ 1, we have:

EP [(`− η)β∗+ ]
1
β∗ ≤ EP ′ [(`− η)β∗+ ]

1
β∗ + s2kTV(P, P ′)(

1
β∗−

1
2k )β

− 1
2k

∗ ·
(

2k

2k − β∗

) 1
β∗

(44)

A.4.2. PROOF OF LEMMA 4

For any P ′ such that Ptrain = (1 − ε)P ′ + εP̃ ′ for some P̃ ′, let U = P ∧ P ′, i.e. U(z) = min{P (z), P ′(z)} for any
z ∈ X × Y . We have

(1− ε)U(z) + εP̃ (z) + εP̃ ′(z) ≥ Ptrain(z) for any z ∈ X × Y (45)

because both P̃ (z) and P̃ ′(z) are non-negative. Integrating both sides produces∫
X×Y

U(z)dz ≥ 1− 2ε

1− ε
(46)

which implies TV(P, P ′) ≤ ε
1−ε . Thus,

RD,ρ(θ;P ′) ≥ inf
P ′′
{RD,ρ(θ, P ′′) : TV(P, P ′′) ≤ ε

1− ε
} (47)

which together with (11) proves (13).

A.4.3. PROOF OF THEOREM 5, ANALYSIS OF CVAR-DORO

Proof of Theorem 5, CVaR-DORO. For any θ, by Lemma 4 we have

CVaRα,ε(θ;Ptrain) ≥ CVaRα,ε(θ̂;Ptrain) ≥ inf
P ′
{CVaRα(θ̂;P ′) : TV(P, P ′) ≤ ε

1− ε
} (48)

By Lemma 8, we have for any η ≥ 0 and TV(P, P ′) ≤ ε
1−ε ,

EP [(`− η)+]− EP ′ [(`− η)+] ≤
(

1 +
1

2k − 1

)
EP [(`− η)2k

+ ]
1
2kTV(P, P ′)1− 1

2k

≤
(

1 +
1

2k − 1

)
σ2kTV(P, P ′)1− 1

2k

(49)

Here, we used the fact that 0 ≤ (` − η)2k
+ ≤ `2k Moreover, for any η < 0, EP [(` − η)+] − EP ′ [(` − η)+] = EP [(` −

0)+]− EP ′ [(`− 0)+] because ` is non-negative. So (49) holds for all η ∈ R. Thus, by (7) we have for any η ∈ R,

CVaRα(θ̂;P ) ≤ α−1EP [(`− η)+] + η ≤ α−1

{
EP ′ [(`− η)+] +

(
1 +

1

2k − 1

)(
ε

1− ε

)1− 1
2k

}
+ η (50)
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and taking the infimum over η, we have the following inequality holds for any θ:

CVaRα(θ̂;P ) ≤ CVaRα(θ̂;P ′) +

(
1 +

1

2k − 1

)
α−1σ2k

(
ε

1− ε

)1− 1
2k

(51)

By (11) we have CVaRα,ε(θ;Ptrain) ≤ CVaRα(θ;P ). Thus, by (48), taking the infimum over P ′ yields

CVaRα(θ̂;P ) ≤ CVaRα,ε(θ;Ptrain) +

(
1 +

1

2k − 1

)
α−1σ2k

(
ε

1− ε

)1− 1
2k

(52)

≤ CVaRα(θ;P ) +

(
1 +

1

2k − 1

)
α−1σ2k

(
ε

1− ε

)1− 1
2k

(53)

Taking the infimum over θ completes the proof.

A.4.4. PROOF OF THEOREM 5, ANALYSIS OF χ2-DORO

We begin with a structral lemma about the optimal dual variable η in the dual formulation equation 5. Recall that β = β∗ = 2
for χ2 divergence.

Lemma 9. Let η∗(P ) be the minimizer of equation 5. We have the following characterization about η∗(P ):

1. When ρ ≤ VarP [l(θ,Z)]
2E[l(θ,Z)]2 , we have η∗ ≤ 0;

Furthermore, the DRO risk and optimal dual variable η∗ can be formulated as:

RDχ2 ,ρ(θ;P ) = EP [l(θ, Z)] +
√

2ρVarP [l(θ, Z)] (54)

η∗ = EP [l(θ, Z)]−

√
VarP [l(θ, Z)]

2ρ
(55)

2. When ρ ≥ VarP [l(θ,Z)]
2E[l(θ,Z)]2 , we have η∗ ≥ 0.

Proof. (1) We will prove that for any ρ > 0,

RDχ2 ,ρ(θ;P ) ≤ EP [l(θ, Z)] +
√

2ρVarP [l(θ, Z)] (56)

and the equality is achievable when ρ ≤ VarP [l(θ,Z)]
2E[l(θ,Z)]2 .

By the definition of χ2-DRO risk,
RDχ2 ,ρ(θ;P ) = sup

Q:Dχ2 (Q||P )≤ρ
EQ[l(θ, Z)] (57)

Let µ := EP [l(θ, Z)], notice that

EQ[l(θ, Z)] = EP [l(θ, Z)
dQ

dP
] (58)

= EP [l(θ, Z)] + EP [l(θ, Z)

(
dQ

dP
− 1

)
] (59)

= µ+ EP [(l(θ, Z)− µ)

(
dQ

dP
− 1

)
] (60)

where in the last step we used the fact that EP dQdP = 1.

By the definition of χ2 divergence,

EP [

(
dQ

dP
− 1

)2

] = 2Dχ2(Q||P ) ≤ 2ρ, (61)
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Therefore, by Cauchy-Schwarz inequality,

EP [(l(θ, Z)− µ)

(
dQ

dP
− 1

)
] ≤ (EP [(l(θ, Z)− µ)])

1/2

(
EP [

(
dQ

dP
− 1

)2

]

)1/2

(62)

≤
√

VarP [l(θ, Z)] · 2ρ (63)

Plug in this upper bound to equation 58 completes the proof of equation 56.

To see that the equality can be achieved when ρ ≤ VarP [l(θ,Z)]
E[l(θ,Z)]2 , we only need to verify that η = η∗ gives the same dual

objective EP [l(θ, Z)] +
√

2ρVarP [l(θ, Z)]. Since η∗ < 0, we have

EP [(l(θ, Z)− η∗)2
+] (64)

=EP [(l(θ, Z)− η∗)2] (65)

=EP [(l(θ, Z)− EP [l(θ, Z)] +

√
1

2ρ
VarP [l(θ, Z)])2] (66)

=EP [(l(θ, Z)− EP [l(θ, Z)])2] + 2

√
1

2ρ
VarP [l(θ, Z)]E[(l(θ, Z)− EP [l(θ, Z)])] +

1

2ρ
VarP [l(θ, Z)] (67)

=VarP [l(θ, Z)] + 0 + +
1

2ρ
VarP [l(θ, Z)] =

1 + 2ρ

2ρ
VarP [l(θ, Z)] (68)

Therefore,√
1 + 2ρ

(
EP [(l(θ, Z)− η∗)2

+]
)1/2

+ η∗ =
1 + 2ρ√

2ρ

√
VarP [l(θ, Z)] + EP [l(θ, Z)]− 1√

2ρ

√
VarP [l(θ, Z)] (69)

= EP [l(θ, Z)] +
√

2ρVarP [l(θ, Z)] (70)

and we have completed the proof.

(2) Let g(η, P ) =
√

1 + 2ρ
(
EP [(l(θ, Z)− η)2

+]
) 1

2 + η and recall that RDχ2 ,ρ(θ;P ) = infη∈R g(η, P ). To show that
η∗ ≤ 0, we only need to prove that g(η) ≤ g(0) whenever η < 0, which is equivalent to:√

1 + 2ρ
(
EP [(l(θ, Z)− η)2]

) 1
2 ≥

√
1 + 2ρ

(
EP [l(θ, Z)2]

) 1
2 − η (71)

Since both sides are non-negative, this inequality is equivalent to:

(1 + 2ρ)EP [(l(θ, Z)− η)2 ≥ (1 + 2ρ)EP [l(θ, Z)2 + η2 − 2η
√

1 + 2ρ
(
EP [l(θ, Z)2]

) 1
2 (72)

After re-organizing terms, it remains to prove

2ρη2 − 2(1 + 2ρ)ηEP [l(θ, Z)] + 2η
√

1 + 2ρ
(
EP [l(θ, Z)2]

) 1
2 ≥ 0 (73)

Since ρ ≥ VarP [l(θ,Z)]
2E[l(θ,Z)]2 , we have (1 + 2ρ) ≥ E[l(θ,Z)2]

E[l(θ,Z)]2 . Therefore,

LHS ≥ 2η
√

1 + 2ρ
(
EP [l(θ, Z)2]

) 1
2 − 2(1 + 2ρ)ηEP [l(θ, Z)] (74)

= 2η
√

1 + 2ρ
((

EP [l(θ, Z)2]
) 1

2 −
√

1 + 2ρEP [l(θ, Z)]
)

(75)

≥ 0 (76)

where in the last step we used the assumption that η ≤ 0. Therefore we have completed the proof.

Having prepared with Lemma 9, we are now ready to prove the χ2-DORO part of Theorem 5.
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Proof of Theorem 5, χ2-DORO. We will first show that

RDχ2 ,ρ(θ̂;P ) ≤ RDχ2 ,ρ(θ̂;P
′) +

√
1 + 2ρ(1 + Cρ)σ2kTV(P, P ′)(

1
2−

1
2k )2−

1
2k ·

(
k

k − 1

) 1
2

(77)

This inequality will be proved by combining two different strategies: when η∗(P ′) is relatively large, we will use an
argument based on Lemma 8, similar to what we did in the analysis of CVaR-DORO. Otherwise, when η∗(P ′) is small, we
need a different proof which builds upon the structral result Lemma 9.

Define Cρ =
√

1+2ρ
2ρ . Below we discuss two cases: η∗(P ′) < −Cρσ2k and η∗(P ′) ≥ −Cρσ2k.

Case 1: η∗(P ′) < −Cρσ2k. When η∗(P ′) < −Cρσ2k, by Lemma 9, we have

RDχ2 ,ρ(θ̂;P
′) = EP ′ [l(θ̂, Z)] +

√
2ρVarP ′ [l(θ̂, Z)] (78)

η∗(P ′) = EP ′ [l(θ̂, Z)]−

√
VarP ′ [l(θ̂, Z)]

2ρ
< −Cρσ2k (79)

Therefore, we can lower bound
√

VarP ′ [l(θ̂, Z)] as:√
VarP ′ [l(θ̂, Z)] ≥

√
2ρEP ′ [l(θ̂, Z)] +

√
2ρCρσ2k ≥

√
2ρCρσ2k, (80)

and consequently, we have a lower bound forRDχ2 ,ρ(θ;P
′):

RDχ2 ,ρ(θ̂;P
′) = EP ′ [l(θ̂, Z)] +

√
2ρVarP ′ [l(θ̂, Z)] (81)

≥
√

2ρVarP ′ [l(θ̂, Z)] ≥ 2ρCρσ2k =
√

1 + 2ρσ2k (82)

On the other hand, by setting the dual variable η = 0, we have a simple upper bound forRDχ2 ,ρ(θ̂;P ):

RDχ2 ,ρ(θ̂;P ) ≤
√

1 + 2ρEP [l(θ̂, Z)2]1/2 ≤
√

1 + 2ρσ2k (83)

Combining equation 81 and equation 83, we conclude that RDχ2 ,ρ(θ̂;P
′) ≥ RDχ2 ,ρ(θ̂;P ) and the inequality is trivially

true.

Case 2: η∗(P ′) ≥ −Cρσ2k By Lemma 8, we have

EP [(`− η)2
+]

1
2 ≤ EP ′ [(`− η)2

+]
1
2 + EZ [(l(θ, Z)− η)2k

+ ]
1
2kTV(P, P ′)(

1
2−

1
2k )2−

1
2k ·

(
k

k − 1

) 1
2

(84)

holds for any η ∈ R. Since η∗(P ′) ≥ −Cρσ2k, we can upper bound the 2k-th moment EZ [(l(θ, Z)− η∗(P ′))2k
+ ]

1
2k as:

EZ [(l(θ, Z)− η∗(P ′))2k
+ ]

1
2k ≤ EZ [(l(θ, Z) + Cρσ2k)2k

+ ]
1
2k (85)

≤ EZ [(l(θ, Z)]
1
2k + Cρσ2k = (1 + Cρ)σ2k (86)

Hence,

RDχ2 ,ρ(θ̂;P ) ≤
√

1 + 2ρEP [(`− η∗(P ′))2
+]

1
2 + η∗(P ′) (87)

≤
√

1 + 2ρEP ′ [(`− η∗(P ′))2
+]

1
2 + η∗(P ′) +

√
1 + 2ρ(1 + Cρ)σ2kTV(P, P ′)(

1
2−

1
2k )2−

1
2k ·

(
k

k − 1

) 1
2

(88)

= RDχ2 ,ρ(θ̂;P
′) +

√
1 + 2ρ(1 + Cρ)σ2kTV(P, P ′)(

1
2−

1
2k )2−

1
2k ·

(
k

k − 1

) 1
2

(89)
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Hence, we have proved the inequality equation 77. The rest of proof mimics CVaR-DORO. For any θ, by Lemma 4 we have

RDχ2 ,ρ,ε(θ;Ptrain) ≥ RDχ2 ,ρ,ε ≥ inf
P ′
{RDχ2 ,ρ(θ̂;P

′) : TV(P, P ′) ≤ ε

1− ε
} (90)

By (11) we haveRDχ2 ,ρ,ε(θ;Ptrain) ≤ RDχ2 ,ρ(θ;P ). Thus, by (48), taking the infimum over P ′ yields

RDχ2 ,ρ(θ̂;P ) ≤ RDχ2 ,ρ,ε(θ;Ptrain) +
√

1 + 2ρ(1 + Cρ)σ2k

(
ε

1− ε

)( 1
2−

1
2k )

2−
1
2k ·

(
k

k − 1

) 1
2

(91)

≤ RDβ ,ρ(θ;P ) +
√

1 + 2ρ(1 + Cρ)σ2k

(
ε

1− ε

)( 1
2−

1
2k )

2−
1
2k ·

(
k

k − 1

) 1
2

(92)

Taking the infimum over θ completes the proof.

A.4.5. PROOF OF THEOREM 6

We consider an optimization problem with the parameter space restricted to only two possible values Θ = {θ0, θ1}. Our
proof is constructive, which relies on the following distribution PM,∆,ε:

l(θ0, Z) = 0, l(θ1, Z) = ∆ w.p. (1− ε) (93)
l(θ0, Z) = M, l(θ1, Z) = ∆ w.p. ε (94)

here M,∆ are some non-negative parameters whose value to be determined later and the probability is taken over the
randomness of Z.

We have the following characterization of CVaR and χ2-DRO risk:

Lemma 10 (DRO Risk of PM,∆,ε). Assume that α ≥ ε and 1 + 2ρ ≤ 1
ε , we have the following closed-form expressions for

CVaR and χ2-DRO risk:

CVaRα(θ0;PM,∆,ε) =
Mε

α
(95)

CVaRα(θ1;PM,∆,ε) = ∆ (96)

and

RDχ2 ,ρ(θ0;PM,∆,ε) = Mε+M
√

2ρε(1− ε) (97)

RDχ2 ,ρ(θ1;PM,∆,ε) = ∆ (98)

Proof. Since l(θ1, Z) is always a constant ∆, it’s immediate to see CVaRα(θ1;PM,∆,ε) = RDχ2 ,ρ(θ1;PM,∆,ε) = ∆.
Hence we only need to focus on θ0.

By the dual formulation of DRO risk, we have CVaRα(θ0;PM,∆,ε) = infη∈R h(η) andRDχ2 ,ρ(θ0;PM,∆,ε) = infη∈R g(η),
where we use the shorthand g(η) and h(η) for

g(η) :=
√

1 + 2ρ
(
EP [(l(θ, Z)− η)2

+]
) 1

2 + η (99)

h(η) =
1

α
EP [(l(θ, Z)− η)+] + η (100)

Direct calculation gives:

g(η) =


√

1 + 2ρ
√

(η − εM)2 + ε(1− ε)M2 + η, for η < 0√
ε(1 + 2ρ)(M − η) + η, for 0 ≤ η ≤M

η, for η > M

(101)
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and

h(η) =


Mε−η
α + η, for η < 0

ε(M−η)
α + η, for 0 ≤ η ≤M

η, for η > M

(102)

Therefore, when α ≥ ε and 1 + 2ρ ≤ 1
ε , we have

CVaRα(θ0;PM,∆,ε) = inf
η∈R

h(η) = h(0) =
Mε

α
(103)

RDχ2 ,ρ(θ0;PM,∆,ε) = inf
η∈R

g(η) = g(εM −
M
√
ε(1− ε)√

2ρ
) = Mε+M

√
2ρε(1− ε) (104)

and we have completed the proof.

Equipped with Lemma 10, we are now ready to prove the main lower bound Theorem 6.

Proof of Theorem 6. Consider Ptrain = PM,∆,ε. We have two different ways to decompose Ptrain into mixture of two
distributions:

Ptrain = PM,∆,ε = (1− ε)PM,∆,ε + εPM,∆,ε = (1− ε)P0,∆,0 + εPM,∆,0 (105)

In other words, with only access to Ptrain = PM,∆,ε, the learner cannot distinguish the following two possibilities:

• (a) The clean distribution is P = PM,∆,ε, and the outlier distribution is P ′ = PM,∆,ε.

• (b) The clean distribution is Q = P0,∆,1, and the outlier distribution is Q′ = PM,∆,1.

Furthermore, as long as M ≤ σ2kε
− 1

2k and ∆ ≤ σ2k, both P and Q satisfy the bounded 2k-th moment condition
E[l(θ, Z)2k] ≤ σ2k

2k . With our construction below, we can ensure that θ1 is Θ(∆)-suboptimal under P , while θ0 is Θ(∆)-
suboptimal under Q. Therefore, in the worst case scenario, it’s impossible for the learner to find a solution with O(∆)
sub-optimality gap under both P and Q.

CVaR lower bound Assume that α ≥ 1
2ε

1− 1
2k . Let M = σ2kε

− 1
2k ,∆ = σ2k

ε1−
1
2k

2α ≤ σ2k. Recall that P = PM,∆,ε, by
Lemma 10, we have:

CVaRα(θ0;P ) =
Mε

α
=
σ2k

α
ε1− 1

2k = 2∆ (106)

CVaRα(θ1;P ) = ∆ (107)

Therefore,

CVaRα(θ0;P )− inf
θ∈Θ

CVaRα(θ;P ) = ∆ = Ω(
1

α
σ2kε

1− 1
2k ) (108)

For Q = P0,∆,1, both l(θ0, Z) and l(θ1, Z) are constants, and hence

CVaRα(θ0;Q) = 0 (109)
CVaRα(θ1;Q) = ∆ (110)

and

CVaRα(θ1;Q)− inf
θ∈Θ

CVaRα(θ;Q) = ∆ = Ω(
1

α
σ2kε

1− 1
2k ) (111)

Combining equation 108 and equation 111 completes the proof.
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χ2-DRO lower bound Assume that ρ = O(ε
1
k−1). Let M = σ2kε

− 1
2k ,∆ = M

2

(
ε+

√
2ρε(1− ε)

)
≤ σ2k. Recall that

P = PM,∆,ε, by Lemma 10, we have:

RDχ2 ,ρ(θ0;P ) = Mε+M
√

2ρε(1− ε) = 2∆ (112)

RDχ2 ,ρ(θ1;P ) = ∆ (113)

Therefore,
RDχ2 ,ρ(θ0;P )− inf

θ∈Θ
RDχ2 ,ρ(θ;P ) = ∆ = Ω(σ2k

√
ρε

1
2−

1
2k ) (114)

For Q = P0,∆,1, both l(θ0, Z) and l(θ1, Z) are constants, and hence

CVaRα(θ0;Q) = 0 (115)
CVaRα(θ1;Q) = ∆ (116)

and
CVaRα(θ0;Q)− inf

θ∈Θ
CVaRα(θ;Q) = ∆ = Ω(σ2k

√
ρε

1
2−

1
2k ) (117)

Combining equation 114 and equation 117 completes the proof.

A.4.6. PROOF OF THEOREM 7

By Lemma 8, for any P ′ such that TV(P, P ′) ≤ ε
1−ε ,

CVaRα(θ;P )− CVaRα(θ;P ′) ≤ 2α−1σ

√
ε

1− ε
(118)

By Proposition 2, ifRmax(θ;P ) > 3α−1σ
√

ε
1−ε , then CVaRα(θ;P ) > 3α−1σ

√
ε

1−ε , which implies that

CVaRα(θ;P ′)

Rmax(θ;P )
≥ CVaRα(θ;P ′)

CVaRα(θ;P )
= 1− δ

CVaRα(θ;P )
≥ 1−

2α−1σ
√

ε
1−ε

3α−1σ
√

ε
1−ε

=
1

3
(119)

holds for any P ′ such that TV(P, P ′) ≤ ε
1−ε . By Lemma 4, taking the infimum over P ′ yields the first inequality of (18).

Moreover, by Proposition 2, for any θ and P ′, Dχ2,ρ(θ;P
′) ≥ CVaRα(θ;P ′), which together with (119) yields the second

inequality of (18).

B. Experiment Details
B.1. Domain Definition

One important decision we need to make when we design a task with subpopulation shift is how to define the domains
(subpopulations). We refer our readers to the Wilds paper (Koh et al., 2020), which discusses in detail the desiderata and
considerations of domain definition, and defines 16 domains on the CivilComments-Wilds dataset which we use directly.
The authors selected 8 features such as race, sex and religion, and crossed them with the two classes to define the 16 domains.
Such a definition naturally covers class imbalance. There is no official domain definition on CelebA, so we define the
domains on our own. Following their approach, on CelebA we also select 8 features and cross them with the two classes to
compose the 16 domains. Our definition is inspired by (Sagawa et al., 2020), but we cover more types of subpopulation shift
apart from demographic differences.

We select 8 features on CelebA: Male, Female, Young, Old, Attractive, Not-attractive, Straight-hair and Wavy-hair. We
explain why we select these features as follows:

• The first four features cover sex and age, two protected features widely used in algorithmic fairness papers.
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Table 1. Number of training instances in each domain of CelebA and CivilComments-Wilds.

CelebA Blond Others

Male 1387 66874
Female 22880 71629
Young 20230 106558

Old 4037 31945
Attractive 17008 66595

Not-attractive 7259 71908
Straight-hair 5178 28769
Wavy-hair 11342 40640

Total 162770

CivilComments-Wilds Toxic Non-toxic

Male 4437 25373
Female 4962 31282
LGBTQ 2265 6155
Christian 2446 24292
Muslim 3125 10829

Other Religions 1003 5541
Black 3111 6785
White 4682 12016

Total 269038

• We select the next two features in order to cover labeling biases, biases induced by the labelers into the dataset. Among
the 40 features provided by CelebA, the Attractive feature is the most subjective one. Table 1 shows that among the
people with blond hair, more than half are labeled Attractive; while among the other people, more than half are labeled
Not-attractive. It might be that the labelers consider blond more attractive than other hair colors, or it might be that the
labelers consider females more attractive than males, and it turns out that more females have blond hair than males in
this dataset. Although the reason behind is unknown, we believe that these two features well represent the labeling
biases in this dataset, and should be taken into consideration.

• We select the last two features in order to cover confounding variables, features the model uses to do classification that
should have no correlation with the target by prior knowledge. Since the target is the hair color, a convolutional network
trained on this dataset would focus on the hair of the person, so we conjecture that the output of the convolutional
network is highly correlated with the hair style. In our experiments, we find that models trained with ERM misclassify
about 20% of the test instances with blond straight hair, much more than the other three combinations.

Table 1 lists the number of training instances in each domain of each dataset. Each instance may belong to zero, one or
more domains. In CivilComments-Wilds, the aggregated group size of the 16 groups is less than the total number 269,038,
because most online comments do not contain sensitive words.

B.2. Model Selection

In Section 6 we assume access to a domain-aware validation set, which is not available in real domain-oblivious tasks. In
this part we study several domain-oblivious model selection strategies, and discuss why model selection is hard.

We study the following model selection strategies:

• Max Average Accuracy: The model with the highest average accuracy in validation.

• Min CVaR: The model with the lowest CVaR risk (α = 0.2) over the validation set.

• Min CVaR-DORO: The model with the lowest CVaR-DORO risk (α = 0.2, ε = 0.005) over the validation set.

Note that selecting the model that achieves the highest average accuracy over the worst α portion of the data is almost
equivalent to the Max Average Accuracy strategy because the model with the highest average accuracy over the population
also achieves the highest accuracy on the worst α portion (see e.g. (Hu et al., 2018), Theorem 1).

We conduct experiments on CelebA and report the results in Table 2. From the table we draw the following conclusions:

1. For every training algorithm, the oracle strategy achieves a much higher worst-case test accuracy than the other three
strategies, and the gap between the oracle and the non-oracle strategies for DRO and DORO is larger than ERM. While
it is expected that the oracle achieves a higher worst-case accuracy, the large gap indicates that there is still huge room
for improvement.
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Table 2. The average and worst-case test accuracies of the best models selected by different strategies. (%)

Training Algorithm Model Selection Average Accuracy Worst-case Accuracy

ERM

Oracle 95.01± 0.38 53.94± 2.02
Max Avg Acc 95.65± 0.05 45.83± 1.87

Min CVaR 95.68± 0.04 44.83± 2.74
Min CVaR-DORO 95.69± 0.04 44.50± 2.72

Oracle 95.52± 0.08 49.94± 3.36
CVaR Max Avg Acc 95.74± 0.06 39.28± 3.58

(α = 0.2) Min CVaR 95.79± 0.05 38.67± 2.06
Min CVaR-DORO 95.81± 0.05 38.83± 2.05

Oracle 92.91± 0.48 72.17± 3.14
CVaR-DORO Max Avg Acc 95.60± 0.05 45.39± 3.22

(α = 0.2, ε = 0.005) Min CVaR 95.58± 0.06 39.83± 2.37
Min CVaR-DORO 95.56± 0.07 41.28± 3.26

Oracle 82.44± 1.22 63.36± 2.51
χ2-DRO Max Avg Acc 90.70± 0.26 20.67± 3.86

(α = 0.2) Min CVaR 87.28± 2.05 21.44± 11.13
Min CVaR-DORO 89.16± 1.41 25.50± 9.14

Oracle 80.73± 1.41 65.36± 1.02
χ2-DORO Max Avg Acc 90.06± 0.57 22.06± 5.82

(α = 0.2, ε = 0.005) Min CVaR 84.37± 4.08 29.83± 12.10
Min CVaR-DORO 88.76± 0.81 23.61± 7.45

2. For χ2-DRO/DORO, Min CVaR and Min CVaR-DORO work better than Max Average Accuracy. However, for the
other three algorithms, Max Average Accuracy is better. This shows that model selection based on CVaR and selection
based on CVaR-DORO are not good strategies.

3. With the three non-oracle strategies, ERM achieves the highest worst-case test accuracy. This does not mean that DRO
and DORO are not as good as ERM, but suggests that we need other model selection strategies that work better with
DRO and DORO.

The reason why Min CVaR is not a good strategy is that CVaR does not decrease monotonically withRmax. Corollary 2
only guarantees that CVaR is an upper bound ofRmax, but the θ that achieves the minimum CVaR does not necessarily have
the smallestRmax. For the same reason, Min CVaR-DORO is not a good strategy either.

Model selection under the domain oblivious setting is a very difficult task. In fact, Theorem 1 of (Hu et al., 2018) implies
that no strategy can be provably better than Max Average Accuracy under the domain-oblivious setting, i.e. for any model
selection strategy, there always exist D1, · · · ,DK such that the model it selects is not better than the model selected by
the Max Average Accuracy strategy. Thus, to design a provably model selection strategy, prior knowledge or reasonable
assumptions on the domains are necessary.

B.3. Training Hyperparameters

On the COMPAS dataset, we use a two-layer feed-forward neural network activated by ReLU as the classification model.
For optimization we use ASGD with learning rate 0.01. The batch size is 128. The hyperparameters we used in Table 2
were: α = 0.5 for CVaR; α = 0.5, ε = 0.2 for CVaR-DORO; α = 0.5 for χ2-DRO; α = 0.5, ε = 0.2 for χ2-DORO.

On the CelebA dataset, we use a standard ResNet18 as the classification model. For optimization we use momentum SGD
with learning rate 0.001, momentum 0.9 and weight decay 0.001. The batch size is 400. The hyperparameters we used in
Table 2 were: α = 0.1 for CVaR; α = 0.2, ε = 0.005 for CVaR-DORO; α = 0.25 for χ2-DRO; α = 0.25, ε = 0.01 for
χ2-DORO.

On the CivilComments-Wilds dataset, we use a pretrained BERT-base-uncased model as the classification model. For
optimization, we use AdamW with learning rate 0.00001 and weight decay 0.01. The batch size is 128. The hyperparameters
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we used in Table 2 were: α = 0.1 for CVaR; α = 0.1, ε = 0.01 for CVaR-DORO; α = 0.2 for χ2-DRO; α = 0.2, ε = 0.01
for χ2-DORO.
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