## Meta Learning for Support Recovery in High-dimensional Precision Matrix Estimation: Supplementary Material

## A. Proof of Lemma 1

Define $\mathcal{S}_{++}^{N}:=\left\{A \in \mathbb{R}^{N \times N} \mid A \succ 0\right\}$. We first prove the following result:
Lemma 2. For $\ell(\Omega)$ defined in (4), if $\Omega \in \mathcal{S}_{++}^{N}$, then $\ell(\Omega)$ is strictly convex.
Proof. The gradient of $\ell(\Omega)$ is:

$$
\begin{equation*}
\nabla \ell(\Omega)=\sum_{k=1}^{K} T^{(k)}\left(\hat{\Sigma}^{(k)}-\Omega^{-1}\right) \tag{17}
\end{equation*}
$$

The Hessian of $\ell(\Omega)$ is:

$$
\nabla^{2} \ell(\Omega)=T \Gamma(\Omega)
$$

where $\Gamma(\Omega)=\Omega^{-1} \otimes \Omega^{-1} \in \mathbb{R}^{N^{2} \times N^{2}}$.
Since $\Omega \in \mathcal{S}_{++}^{N}$, we have $\Omega \succ 0$ and thus $\Omega^{-1} \succ 0$. According to Theorem 4.2.12 in (Horn et al., 1994), any eigenvalue of $\Gamma(\Omega)=\Omega^{-1} \otimes \Omega^{-1}$ is the product of two eigenvalues of $\Omega^{-1}$, hence positive. Therefore,

$$
\begin{gathered}
\Gamma(\Omega) \succ 0 \\
\nabla^{2} \ell(\Omega) \succ 0
\end{gathered}
$$

$\ell(\Omega)$ is strictly convex.
Now consider $\ell(\Omega)+\lambda\|\Omega\|_{1}$. Since $\lambda>0$, by Lemma 2 , we know $\ell(\Omega)+\lambda\|\Omega\|_{1}$ is strictly convex for $\Omega \in \mathcal{S}_{++}^{N}$. Therefore, the problem in (5) is strict convex and has a unique solution $\hat{\Omega}$.
For $\hat{\Omega}^{(K+1)}$ in (6), we have

$$
\nabla \ell^{(K+1)}(\Omega)=\hat{\Sigma}^{(K+1)}-\Omega^{-1}
$$

and

$$
\nabla^{2} \ell^{(K+1)}(\Omega)=\Gamma(\Omega)=\Omega^{-1} \otimes \Omega^{-1}
$$

Thus according to the proof of Lemma 2, we know $\ell^{(K+1)}(\Omega)$ is strictly convex. Then $\ell^{(K+1)}(\Omega)+\lambda\|\Omega\|_{1}$ is strictly convex for $\lambda>0$ on $\mathcal{S}_{++}^{N}$. Notice that the constraints $\operatorname{supp}(\Omega) \subseteq \operatorname{supp}(\hat{\Omega})$ and $\operatorname{diag}(\Omega)=\operatorname{diag}(\hat{\Omega})$ in (6) can be expressed as $\Omega_{i j}=0$ for $(i, j) \notin S$ and $\Omega_{i i}=\hat{\Omega}_{i i}$ for $i \in\{1, \ldots, n\}$. Therefore the constraints are linear. Furthermore, (6) is strictly convex for $\lambda>0$ on $\mathcal{S}_{++}^{N}$.

## B. Proof of Theorem 1

Our proof follows the primal-dual witness approach (Ravikumar et al., 2011) which uses Karush-Kuhn Tucker conditions (from optimization) together with concentration inequalities (from statistical learning theory).

## B.1. Preliminaries

Before the formal proof, we first introduce two inequalities with respect to the matrix $\ell_{\infty}$-operator-norm $\|\mid \cdot\|_{\infty}$ :
Lemma 3. For a pair of matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$ and a vector $x \in \mathbb{R}^{n}$, we have:

$$
\begin{gather*}
\|A x\|_{\infty} \leq\|A\|_{\infty}\|x\|_{\infty}  \tag{18}\\
\|A B\|_{\infty} \leq\|A\|_{\infty}\|B\|_{\infty} \tag{19}
\end{gather*}
$$

Proof. Note that

$$
\begin{aligned}
\|A x\|_{\infty} & =\max _{1 \leq i \leq m}\left|\left\langle a_{i}, x\right\rangle\right| \\
& \leq \max _{1 \leq i \leq m}\left\|a_{i}\right\|_{1}\|x\|_{\infty} \\
& =\|A\|_{\infty}\|x\|_{\infty}
\end{aligned}
$$

where $a_{i}$ is the vector corresponding to the $i$-th row of $A$ and $\langle\cdot, \cdot\rangle$ is the inner product. Similarly, we have

$$
\begin{aligned}
\|A B\|_{\infty} & =\max _{1 \leq i \leq m}\left\|a_{i} B\right\|_{1} \\
& =\max _{1 \leq i \leq m} \sum_{k=1}^{q}\left|\sum_{j=1}^{n} A_{i j} B_{j k}\right| \\
& \leq \max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|A_{i j}\right| \sum_{k=1}^{q}\left|B_{j k}\right| \\
& \leq \max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|A_{i j}\right| \max _{1 \leq l \leq n} \sum_{k=1}^{q}\left|B_{l k}\right| \\
& =\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|A_{i j}\right|\|B\|_{\infty} \\
& =\|A\|_{\infty}\|B\|_{\infty}
\end{aligned}
$$

Then we prove Theorem 1 with the five steps in the primal-dual witness approach.

## B.2. Step 1

Let $\left(\Omega_{S}, 0\right)$ denote the $N \times N$ matrix such that $\Omega_{S^{c}}=0$. For any $\Omega=\left(\Omega_{S}, 0\right) \in \mathcal{S}_{++}^{N}$, we need to verify that $\left[\nabla^{2} \ell\left(\left(\Omega_{S}, 0\right)\right)\right]_{S S} \succ 0$.
According to Lemma 2 , since $\left(\Omega_{S}, 0\right) \in \mathcal{S}_{++}^{N}$, we have

$$
\begin{equation*}
\nabla^{2} \ell\left(\left(\Omega_{S}, 0\right)\right) \succ 0 \tag{20}
\end{equation*}
$$

Denote the vectorization of a matrix $A$ with $\operatorname{vec}(A)$ or $\vec{A}$. We use $|S|$ to denote the number of elements in $S$. Then we have $\left[\nabla^{2} \ell\left(\left(\Omega_{S}, 0\right)\right)\right]_{S S} \in \mathbb{R}^{|S| \times|S|}$. For $\forall x \in \mathbb{R}^{|S|}, v \neq 0$, there exists a matrix $A \in \mathbb{R}^{N \times N}, A \neq 0$, such that $\overrightarrow{A_{S}}=x$. Thus we have

$$
\begin{aligned}
x^{\mathrm{T}}\left[\nabla^{2} \ell\left(\left(\Omega_{S}, 0\right)\right)\right]_{S S} x & =\left[\overrightarrow{A_{S}}\right]^{\mathrm{T}}\left[\nabla^{2} \ell\left(\left(\Omega_{S}, 0\right)\right)\right]_{S S} \overrightarrow{A_{S}} \\
& =\left[\overrightarrow{\left(A_{S}, 0\right)}\right]^{\mathrm{T}} \nabla^{2} \ell\left(\left(\Omega_{S}, 0\right)\right) \overrightarrow{\left(A_{S}, 0\right)} \\
& >0
\end{aligned}
$$

where the inequality follows from (20). Hence $\left[\nabla^{2} \ell\left(\left(\Omega_{S}, 0\right)\right)\right]_{S S} \succ 0$. Thus the step 1 in primal-dual witness is verified.

## B.3. Step 2

Construct the primal variable $\tilde{\Omega}$ by making $\tilde{\Omega}_{S^{c}}=0$ and solving the restricted problem:

$$
\begin{equation*}
\tilde{\Omega}_{S}=\arg \min _{\left(\Omega_{S}, 0\right) \in \mathcal{S}_{++}^{N}} \ell\left(\left(\Omega_{S}, 0\right)\right)+\lambda\left\|\Omega_{S}\right\|_{1} \tag{21}
\end{equation*}
$$

## B.4. Step 3

Choose the dual variable $\tilde{Z}$ in order to fulfill the complementary slackness condition of (5):

$$
\left\{\begin{array}{l}
\tilde{Z}_{i j}=1, \text { if } \tilde{\Omega}_{i j}>0  \tag{22}\\
\tilde{Z}_{i j}=-1, \text { if } \tilde{\Omega}_{i j}<0 \\
\tilde{Z}_{i j} \in[-1,1], \text { if } \tilde{\Omega}_{i j}=0
\end{array}\right.
$$

Therefore we have

$$
\begin{equation*}
\|\tilde{Z}\|_{\infty} \leq 1 \tag{23}
\end{equation*}
$$

## B.5. Step 4

$\tilde{Z}$ is the subgradient of $\|\tilde{\Omega}\|_{1}$. Solve for the dual variable $\tilde{Z}_{S^{c}}$ in order that $(\tilde{\Omega}, \tilde{Z})$ fulfills the stationarity condition of (5):

$$
\begin{gather*}
{\left[\nabla \ell\left(\left(\tilde{\Omega}_{S}, 0\right)\right)\right]_{S}+\lambda \tilde{Z}_{S}=0}  \tag{24}\\
{\left[\nabla \ell\left(\left(\tilde{\Omega}_{S}, 0\right)\right)\right]_{S^{c}}+\lambda \tilde{Z}_{S^{c}}=0} \tag{25}
\end{gather*}
$$

## B.6. Step 5

Now we need to verify that the dual variable solved by Step 4 satisfied the strict dual feasibility condition:

$$
\begin{equation*}
\left\|\tilde{Z}_{S^{c}}\right\|_{\infty}<1 \tag{26}
\end{equation*}
$$

which, according to the stationarity condition, is equivalent to

$$
\begin{equation*}
\frac{1}{\lambda}\left\|\left[\nabla \ell\left(\left(\tilde{\Omega}_{S}, 0\right)\right)\right]_{S^{c}}\right\|_{\infty}<1 \tag{27}
\end{equation*}
$$

This is the crucial part in the primal-dual witness approach. If we can show the strict dual feasibility condition holds, we can claim that the solution in (21) is equal to the solution in (5), i.e., $\tilde{\Omega}=\hat{\Omega}$. Thus we will have

$$
\operatorname{supp}(\hat{\Omega})=\operatorname{supp}(\tilde{\Omega}) \subseteq S=\operatorname{supp}(\bar{\Omega})
$$

## B.7. Proof of the Strict Dual Feasibility Condition

Plug the gradient of loss function (17) in the stationarity condition of (5), we have

$$
\begin{equation*}
\sum_{k=1}^{K} T^{(k)}\left(\hat{\Sigma}^{(k)}-\tilde{\Omega}^{-1}\right)+\lambda \tilde{Z}=0 \tag{28}
\end{equation*}
$$

Define $\bar{\Sigma}=\bar{\Omega}^{-1}, W^{(k)}:=\hat{\Sigma}^{(k)}-\bar{\Sigma}, \Psi:=\tilde{\Omega}-\bar{\Omega}, R(\Psi):=\tilde{\Omega}^{-1}-\bar{\Sigma}+\bar{\Omega}^{-1} \Psi \bar{\Omega}^{-1}$. Then we can rewrite (28) as

$$
\begin{equation*}
\sum_{k} T^{(k)} W^{(k)}+T\left(\bar{\Omega}^{-1} \Psi \bar{\Omega}^{-1}-R(\Psi)\right)+\lambda \tilde{Z}=0 \tag{29}
\end{equation*}
$$

From vectorization of product of matrices, we have:

$$
\begin{equation*}
\overline{\bar{\Omega}^{-1} \Psi \bar{\Omega}^{-1}}=\bar{\Gamma} \vec{\Psi} \tag{30}
\end{equation*}
$$

where $\bar{\Gamma}:=\bar{\Omega}^{-1} \otimes \bar{\Omega}^{-1}$. Then vectorize both sides of (29) and we can get:

$$
\begin{equation*}
T\left(\bar{\Gamma}_{S S} \overrightarrow{\Psi_{S}}-\overrightarrow{R_{S}}\right)+\sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S}^{(k)}}+\lambda \overrightarrow{\tilde{Z}_{S}}=0 \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
T\left(\bar{\Gamma}_{S^{c} S} \overrightarrow{\Psi_{S}}-\overrightarrow{R_{S^{c}}}\right)+\sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S^{c}}^{(k)}}+\lambda \overrightarrow{\tilde{Z}_{S^{c}}}=0 \tag{32}
\end{equation*}
$$

where we write $R(\Psi)$ as $R$ for simplicity. By solving (31) for $\overrightarrow{\Psi_{S}}$, we get:

$$
\begin{equation*}
\overrightarrow{\Psi_{S}}=\frac{1}{T} \bar{\Gamma}_{S S}^{-1}\left(T \overrightarrow{R_{S}}-\sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S}^{(k)}}-\lambda \overrightarrow{\tilde{Z}_{S}}\right) \tag{33}
\end{equation*}
$$

where we write $\left(\bar{\Gamma}_{S S}\right)^{-1}$ as $\bar{\Gamma}_{S S}^{-1}$ for simplicity. Plug (33) in (32) to solve for $\overrightarrow{\tilde{Z}_{S^{c}}}$ :

$$
\begin{aligned}
\overrightarrow{\tilde{Z}_{S^{c}}} & =-\frac{1}{\lambda} T \bar{\Gamma}_{S^{c} S} \overrightarrow{\Psi_{S}}+\frac{1}{\lambda} T \overrightarrow{R_{S^{c}}}-\frac{1}{\lambda} \sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S^{c}}^{(k)}} \\
& =-\frac{1}{\lambda} \bar{\Gamma}_{S^{c} S} \bar{\Gamma}_{S S}^{-1}\left(T \overrightarrow{R_{S}}-\sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S}^{(k)}}-\lambda \overrightarrow{\tilde{Z}_{S}}\right)+\frac{1}{\lambda} T \overrightarrow{R_{S^{c}}}-\frac{1}{\lambda} \sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S^{c}}^{(k)}} \\
& =-\frac{1}{\lambda} \bar{\Gamma}_{S^{c} S} \bar{\Gamma}_{S S}^{-1}\left(T \overrightarrow{R_{S}}-\sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S}^{(k)}}\right)+\bar{\Gamma}_{S^{c} S} \bar{\Gamma}_{S S}^{-1} \overrightarrow{\tilde{Z}_{S}}+\frac{1}{\lambda}\left(T \overrightarrow{R_{S^{c}}}-\sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S^{c}}^{(k)}}\right)
\end{aligned}
$$

According to (18) and the expression above, we have:

$$
\begin{aligned}
\left\|\overrightarrow{\tilde{Z}_{S^{c}}}\right\|_{\infty} \leq & \frac{1}{\lambda}\left\|\bar{\Gamma}_{S^{c} S} \bar{\Gamma}_{S S}^{-1}\left(T \overrightarrow{R_{S}}-\sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S}^{(k)}}\right)\right\|_{\infty}+\left\|\bar{\Gamma}_{S^{c} S} \bar{\Gamma}_{S S}^{-1} \overrightarrow{\tilde{Z}_{S}}\right\|_{\infty} \\
& +\frac{1}{\lambda}\left(T\left\|\overrightarrow{R_{S^{c}}}\right\|_{\infty}+\left\|\sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S}^{(k)}}\right\|_{\infty}\right) \\
\leq & \frac{1}{\lambda}\left\|\bar{\Gamma}_{S^{c} S} \bar{\Gamma}_{S S}^{-1}\right\|_{\infty}\left(T\left\|\overrightarrow{R_{S}}\right\|_{\infty}+\left\|\sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S}^{(k)}}\right\|_{\infty}\right) \\
& +\left\|\bar{\Gamma}_{S^{c} S} \bar{\Gamma}_{S S}^{-1}\right\|_{\infty}+\frac{1}{\lambda}\left(T\left\|\overrightarrow{R_{S^{c}}}\right\|_{\infty}+\left\|\sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S}^{(k)}}\right\|_{\infty}\right)
\end{aligned}
$$

where we have used $\left\|\overrightarrow{\tilde{Z}_{S}}\right\|_{\infty} \leq 1$ by (23).
Therefore under Assumption 1, we have:

$$
\left\|\tilde{Z}_{S^{c}}\right\|_{\infty}=\left\|\overrightarrow{\tilde{Z}_{S^{c}}}\right\|_{\infty} \leq \frac{2-\alpha}{\lambda}\left(T\|\vec{R}\|_{\infty}+\left\|\sum_{k=1}^{K} T^{(k)} \overrightarrow{W^{(k)}}\right\|_{\infty}\right)+1-\alpha
$$

If we can bound the two terms: $T\|\vec{R}\|_{\infty},\left\|\sum_{k=1}^{K} T^{(k)} \overrightarrow{W^{(k)}}\right\|_{\infty} \leq \frac{\alpha \lambda}{8}$, then we will have:

$$
\left\|\tilde{Z}_{S^{c}}\right\|_{\infty} \leq 1-\frac{\alpha}{2}<1
$$

From all the reasoning so far, we have the following Lemma:
Lemma 4. If we have $T\|\overrightarrow{R(\Psi)}\|_{\infty},\left\|\sum_{k=1}^{K} T^{(k)} \overrightarrow{W^{(k)}}\right\|_{\infty} \leq \frac{\alpha \lambda}{8}$, then

$$
\left\|\tilde{Z}_{S^{c}}\right\|_{\infty}<1,
$$

i.e., the strict-dual feasibility condition is fulfilled.

Thus the key step is to bound $T\|\vec{R}\|_{\infty}$ and $\left\|\sum_{k=1}^{K} T^{(k)} \overrightarrow{W^{(k)}}\right\|_{\infty}$ by $\frac{\alpha \lambda}{8}$. We will first consider $T\|\vec{R}\|_{\infty}$.
We have the following Lemma in (Ravikumar et al., 2011) (Lemma 5):
Lemma 5. For any $\rho \in \mathbb{R}^{N \times N}$, If we have $\|\rho\|_{\infty} \leq \frac{1}{3} \kappa_{\bar{\Sigma}}$ d, then the matrix $J(\rho):=\sum_{k=0}^{\infty}(-1)^{k}\left(\bar{\Omega}^{-1} \rho\right)^{k}$ will satisfy $\left\|\left\|J^{T}\right\|_{\infty} \leq \frac{3}{2}\right.$ and the matrix $R(\rho):=(\bar{\Omega}+\rho)^{-1}-\overline{\bar{\Omega}}^{-1}+\bar{\Omega}^{-1} \rho \bar{\Omega}^{-1}$ will satisfy:

$$
\begin{equation*}
R(\rho)=\bar{\Omega}^{-1} \rho \bar{\Omega}^{-1} \rho J(\rho) \bar{\Omega}^{-1} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\|R(\rho)\|_{\infty} \leq \frac{3}{2} d\|\rho\|_{\infty}^{2} \kappa_{\Sigma}^{3} \tag{35}
\end{equation*}
$$

Here $\kappa_{\bar{\Sigma}}:=\left|\left\|\bar{\Sigma}\left|\left\|_{\infty}=\right\|\right| \bar{\Omega}^{-1}\right\|_{\infty}, d:=\max _{1 \leq i \leq N} \#\left\{j: 1 \leq j \leq N, \bar{\Omega}_{i j} \neq 0\right\}\right.$.
For $R(\rho)$ defined in the above Lemma, we vectorize $R(\rho)_{S}$ and then we have

$$
\begin{align*}
\overrightarrow{R(\rho)_{S}} & =\operatorname{vec}\left(\left[(\bar{\Omega}+\rho)^{-1}-\bar{\Omega}^{-1}\right]_{S}\right)+\operatorname{vec}\left(\left[\bar{\Omega}^{-1} \rho \bar{\Omega}^{-1}\right]_{S}\right)  \tag{36}\\
& =\operatorname{vec}\left(\left[(\bar{\Omega}+\rho)^{-1}\right]_{S}-\left[\bar{\Omega}^{-1}\right]_{S}\right)+\bar{\Gamma}_{S S} \overrightarrow{\rho_{S}}
\end{align*}
$$

where the first line follows from the definition of $R(\rho)$ in Lemma 5 and the second line follows from (30)
Define $\kappa_{\bar{\Gamma}}:=\left\|\bar{\Gamma}_{S S}^{-1}\right\| \|_{\infty}$. For $\Omega \in \mathbb{R}^{N \times N}$, define the subgradient of (21) as $G\left(\Omega_{S}\right)$, i.e., $G\left(\Omega_{S}\right):=-T\left[\Omega^{-1}\right]_{S}+$ $\sum_{k=1}^{K} T^{(k)} \hat{\Sigma}_{S}^{(k)}+\lambda \tilde{Z}_{S}$. Since we have proved in Step 1 that $\ell$ is strictly convex, $\tilde{\Omega}_{S}$ is the only solution of the restricted problem of (21). Therefore $\tilde{\Omega}_{S}$ is the only solution that satisfies the stationary condition $G\left(\Omega_{S}\right)=0$.
Next for $\rho \in \mathbb{R}^{N \times N}$, define $F\left(\overrightarrow{\rho_{S}}\right)=-\frac{1}{T} \bar{\Gamma}_{S S}^{-1} \vec{G}\left(\bar{\Omega}_{S}+\rho_{S}\right)+\overrightarrow{\rho_{S}}$. Then:

$$
F\left(\overrightarrow{\rho_{S}}\right)=\overrightarrow{\rho_{S}} \Leftrightarrow G\left(\bar{\Omega}_{S}+\rho_{S}\right)=0 \Leftrightarrow \bar{\Omega}_{S}+\rho_{S}=\tilde{\Omega}_{S}
$$

Thus the fixed point of $F(\cdot)$ is $\Psi_{S}=\tilde{\Omega}_{S}-\bar{\Omega}_{S}$ and it is unique.
Now define $r:=2 \kappa_{\bar{\Gamma}}\left(\frac{\lambda}{T}+\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty}\right)$. Suppose $r \leq \min \left\{\frac{1}{3 \kappa_{\bar{\Sigma}} d}, \frac{1}{3 \kappa_{\bar{\Sigma}}^{3} \kappa_{\bar{\Gamma}} d}\right\}$. Define the $\ell_{\infty}$ radius- $r$ ball $\mathbb{B}(r):=\left\{\rho_{S}:\left\|\rho_{S}\right\|_{\infty} \leq r\right\}$. For $\forall \rho_{S} \in \mathbb{B}(r)$, define $\rho=\left(\rho_{S}, 0\right)$, i.e., $[\rho]_{S}=\rho_{S}$ and $[\rho]_{S^{c}}=0$. We have:

$$
G\left(\bar{\Omega}_{S}+\rho_{S}\right)=T\left(-\left[(\bar{\Omega}+\rho)^{-1}\right]_{S}+\left[\bar{\Omega}^{-1}\right]_{S}\right)+\sum_{k=1}^{K} T^{(k)} W_{S}^{(k)}+\lambda \tilde{Z}_{S}
$$

Then,

$$
\begin{align*}
F\left(\overrightarrow{\rho_{S}}\right) & =-\frac{1}{T} \bar{\Gamma}_{S S}^{-1} \operatorname{vec}\left(T\left(-\left[(\bar{\Omega}+\rho)^{-1}\right]_{S}+\left[\bar{\Omega}^{-1}\right]_{S}\right)+\sum_{k=1}^{K} T^{(k)} W_{S}^{(k)}+\lambda \tilde{Z}_{S}\right)+\overrightarrow{\rho_{S}} \\
& =\bar{\Gamma}_{S S}^{-1}\left\{\operatorname{vec}\left(\left[(\bar{\Omega}+\rho)^{-1}\right]_{S}-\left[\bar{\Omega}^{-1}\right]_{S}\right)+\bar{\Gamma}_{S S} \overrightarrow{\rho_{S}}\right\}-\frac{1}{T} \bar{\Gamma}_{S S}^{-1} \operatorname{vec}\left(\sum_{k=1}^{K} T^{(k)} W_{S}^{(k)}+\lambda \tilde{Z}_{S}\right)  \tag{37}\\
& =\underbrace{\bar{\Gamma}_{S S}^{-1} \overrightarrow{R(\rho)_{S}}}_{V_{1}}-\underbrace{\frac{1}{T} \bar{\Gamma}_{S S}^{-1}\left(\sum_{k=1}^{K} T^{(k)} \overrightarrow{W_{S}^{(k)}}+\lambda \overrightarrow{\tilde{Z}_{S}}\right)}_{V_{2}}
\end{align*}
$$

where the third line follows from (36). For $V_{2}$ defined above we have:

$$
\begin{aligned}
\left\|V_{2}\right\|_{\infty} & \leq\left\|\bar{\Gamma}_{S S}^{-1}\right\|_{\infty}\left\|\frac{\lambda}{T} \vec{Z}_{S}+\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \\
& \leq \kappa_{\bar{\Gamma}}\left(\frac{\lambda}{T}+\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty}\right) \\
& =\frac{r}{2}
\end{aligned}
$$

where the first inequality follows from (18), the second inequality follows from (23) and the third line follows from the definition of $r$.

For $V_{1}$ defined in (37) we have:

$$
\begin{align*}
\left\|V_{1}\right\|_{\infty} & \leq\left\|\bar{\Gamma}_{S S}^{-1}\right\|\left\|_{\infty}\right\| R(\rho)_{S} \|_{\infty} \\
& \leq \kappa_{\bar{\Gamma}}\|R(\rho)\|_{\infty} \\
& \leq \kappa_{\bar{\Gamma}}\left(\frac{3}{2} d \kappa_{\bar{\Sigma}}^{3}\right)\|\rho\|_{\infty}^{2}  \tag{38}\\
& \leq \frac{3}{2} d \kappa_{\bar{\Sigma}}^{3} \kappa_{\bar{\Gamma}} r^{2} \\
& \leq \frac{r}{2}
\end{align*}
$$

where the first inequality is due to (18) and the second inequality is due to Lemma 5 and $\|\rho\|_{\infty}=\left\|\rho_{S}\right\|_{\infty} \leq r$.
Thus $\left\|F\left(\overrightarrow{\rho_{S}}\right)\right\|_{\infty} \leq r, F\left(\overrightarrow{\rho_{S}}\right) \in \mathbb{B}(r)$, which indicates $F(\mathbb{B}(r)) \subset \mathbb{B}(r)$. By Brouwer's fixed point theorem (see e.g., (Ortega \& Rheinboldt, 2000)), there exists some fixed point of $F(\cdot)$ in $\mathbb{B}(r)$. We have proved that the fixed point of $F(\cdot)$ is $\Psi_{S}$ and it is unique, therefore $\Psi_{S} \in \mathbb{B}(r)$, i.e., $\|\Psi\|_{\infty}=\left\|\Psi_{S}\right\|_{\infty} \leq r$. Thus by Lemma $5,\|R(\Psi)\|_{\infty} \leq \frac{3}{2} d\|\Psi\|_{\infty}^{2} \kappa_{\bar{\Sigma}}^{3}$.
From all the reasoning so far, we have the following Lemma:
Lemma 6. If $r=2 \kappa_{\bar{\Gamma}}\left(\frac{\lambda}{T}+\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty}\right) \leq \min \left\{\frac{1}{3 \kappa_{\bar{\Sigma}} d}, \frac{1}{3 \kappa_{\bar{\Sigma}}^{3} \kappa_{\bar{\Gamma}} d}\right\}$, then

$$
\|\Psi\|_{\infty} \leq r
$$

and

$$
\|R(\Psi)\|_{\infty} \leq \frac{3}{2} d\|\Psi\|_{\infty}^{2} \kappa_{\bar{\Sigma}}^{3}
$$

If $\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq \xi$ with $\xi>0$, then choosing $\lambda=\frac{8 T \xi}{\alpha}$, we will have

$$
\left\|\sum_{k=1}^{K} T^{(k)} W^{(k)}\right\|_{\infty} \leq \frac{\alpha \lambda}{8}
$$

as well as

$$
r=2 \kappa_{\bar{\Gamma}}\left(\frac{\lambda}{T}+\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty}\right) \leq 2 \kappa_{\bar{\Gamma}}\left(\frac{8}{\alpha}+1\right) \xi
$$

For $\xi \leq \delta^{*}:=\frac{\alpha^{2}}{2 \kappa_{\bar{\Gamma}}(\alpha+8)^{2}} \min \left\{\frac{1}{3 \kappa_{\bar{\Sigma}} d}, \frac{1}{3 \kappa_{\bar{\Sigma}}^{3} \kappa_{\bar{\Gamma}} d}\right\}$, we have $r \leq \min \left\{\frac{1}{3 \kappa_{\bar{\Sigma} d}}, \frac{1}{3 \kappa_{\bar{\Sigma}}^{3} \kappa_{\bar{\Gamma}} d}\right\}$. Thus according to Lemma 6, we have

$$
\|\Psi\|_{\infty}=\left\|\Psi_{S}\right\|_{\infty} \leq r \leq 2 \kappa_{\bar{\Gamma}}\left(\frac{8}{\alpha}+1\right) \xi
$$

Therefore,

$$
\begin{aligned}
\|R(\Psi)\|_{\infty} \leq & \frac{3}{2} d\|\Psi\|_{\infty}^{2} \kappa_{\bar{\Sigma}}^{3} \\
& \leq 6 d \kappa_{\bar{\Sigma}}^{3} \kappa_{\bar{\Gamma}}^{2}\left(\frac{8}{\alpha}+1\right)^{2} \delta^{2} \\
= & \left(6 d \kappa_{\bar{\Sigma}}^{3} \kappa_{\bar{\Gamma}}^{2}\left(\frac{8}{\alpha}+1\right)^{2} \xi\right) \frac{\alpha \lambda}{8 T} \\
& \leq \frac{\alpha \lambda}{8 T}
\end{aligned}
$$

Then by Lemma $4,\left\|\tilde{Z}_{S^{c}}\right\|_{\infty}<1$ and the strict dual feasibility condition is fulfilled. According to the primal-dual witness approach, $\operatorname{supp}(\hat{\Omega})=\operatorname{supp}(\tilde{\Omega}) \subseteq \operatorname{supp}(\bar{\Omega})$.
From all the reasoning so far, we can state the following lemma.

Lemma 7. If $\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq \xi$ with $\xi \in\left(0, \delta^{*}\right]$, then choosing $\lambda=\frac{8 T \xi}{\alpha}$, we have $\hat{\Omega}=\tilde{\Omega}$, $\operatorname{supp}(\hat{\Omega}) \subseteq \operatorname{supp}(\bar{\Omega})$ and

$$
\|\hat{\Omega}-\bar{\Omega}\|_{\infty}=\|\Psi\|_{\infty} \leq 2 \kappa_{\bar{\Gamma}}\left(\frac{8}{\alpha}+1\right) \xi
$$

For the next step, we need to prove the tail condition of $\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}$, that is, for $\xi>0,\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq \xi$ with high probability.

## B.8. Proof of the Tail Condition

Note that for $k=1, \ldots, K$,

$$
\begin{equation*}
W^{(k)}=\hat{\Sigma}^{(k)}-\bar{\Sigma}=\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}+\bar{\Sigma}^{(k)}-\bar{\Sigma}=\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}+\left(\bar{\Omega}+\Delta^{(k)}\right)^{-1}-\bar{\Sigma} \tag{39}
\end{equation*}
$$

Here $\left\{\Delta^{(k)}\right\}_{k=1}^{K}$ are i.i.d. random matrices following the distribution $P$ specified in Definition 3. To achieve the tail condition of $\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}$, we can bound the random terms with respect to $\left\{\Delta^{(k)}\right\}_{k=1}^{K}$ and the random terms with respect to the empirical sample covariance matrices $\left\{\hat{\Sigma}^{(k)}\right\}_{k=1}^{K}$ separately.
We have assumed that the sample size is the same for all tasks, i.e., there are $n$ samples for each of the $K$ tasks and $T^{(k)} / T=1 / K$. For the sample covariance matrices, we have the following lemma:
Lemma 8. For $\left\{X_{t}^{(k)}\right\}_{1 \leq t \leq n, 1 \leq k \leq K}$ following a family of random $N$-dimensional multivariate sub-Gaussian distributions of size $K$ with parameter $\sigma$ described in Definition 3, we have

$$
\begin{equation*}
\mathbb{P}\left[\left|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}_{i j}^{(k)}-\bar{\Sigma}_{i j}^{(k)}\right)\right|>\nu\right] \leq \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\nu\right] \leq 2 N(N+1) \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\} \tag{41}
\end{equation*}
$$

for $\hat{\Sigma}^{(k)}=\frac{1}{n} \sum_{t=1}^{n} X_{t}^{(k)}\left(X_{t}^{(k)}\right)^{T}, 1 \leq i, j \leq N$, and $0 \leq \nu \leq 8\left(1+4 \sigma^{2}\right) \gamma$.
The proof of this lemma is in Section G.
For $\left\{\Delta^{(1)}\right\}_{k=1}^{K}$, we have the following lemma
Lemma 9. For $\left\{\Delta^{(k)}\right\}_{k=1}^{K}$ in a family of random $N$-dimensional multivariate sub-Gaussian distributions of size $K$ with parameter $\sigma$ described in Definition 3, define

$$
\begin{equation*}
H\left(\Delta^{(1)}, \ldots, \Delta^{(K)}\right):=\frac{1}{K} \sum_{k=1}^{K} \bar{\Sigma}^{(k)}=\frac{1}{K} \sum_{k=1}^{K}\left(\bar{\Omega}+\Delta^{(k)}\right)^{-1} \tag{42}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\mathbb{P}\left[\left\|\|-\mathbb{E}[H]\|_{2}>t\right] \leq 2 N \exp \left\{-\frac{\lambda_{\min }^{4} K t^{2}}{128 c_{\max }^{2}}\right\}\right. \tag{43}
\end{equation*}
$$

for $t \geq 0$ and $\lambda_{\min }=\lambda_{\min }(\bar{\Omega})$.
The proof of this lemma is in Section H.
Our goal is to find a probability upper bound for $\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty}>\xi$ with $0<\xi \leq \delta^{*}$. According to (39) and the
condition $\beta \leq \delta^{*} / 2$, we have

$$
\begin{align*}
\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} & =\left\|\sum_{k=1}^{K} \frac{1}{K} W^{(k)}\right\|_{\infty} \\
& \leq\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}+\left\|\frac{1}{K} \sum_{k=1}^{K} \bar{\Sigma}^{(k)}-\bar{\Sigma}\right\|_{\infty} \\
& =\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}+\|H-\mathbb{E}[H]+\mathbb{E}[H]-\bar{\Sigma}\|_{\infty}  \tag{44}\\
& =\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}+\|H-\mathbb{E}[H]\|_{2}+\|\mathbb{E}[H]-\bar{\Sigma}\|_{\infty} \\
& \leq\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}+\|H-\mathbb{E}[H]\|_{2}+\beta
\end{align*}
$$

where we have used the property that $\|A\|_{2} \geq\|A\|_{\infty}$ for any matrix $A$ (see e.g., (Horn \& Johnson, 2012)).
Now for $\delta \in\left(0, \delta^{*} / 2\right.$ ], consider

$$
\begin{equation*}
\xi=\delta+\delta^{*} / 2 \tag{45}
\end{equation*}
$$

then $0<\xi \leq \delta^{*}, \delta+\tau \leq \xi$ and $\lambda=\frac{8 T \xi}{\alpha}=\frac{8 \delta+4 \delta^{*}}{\alpha}$.
According to the condition $\beta \leq \delta^{*} / 2$, we know that $\delta^{*} / 2-\beta \geq 0$. Set $t=\delta^{*} / 2-\beta$ in (43). Then,

$$
\begin{equation*}
\mathbb{P}\left[\|\mid H-\mathbb{E}[H]\|_{2}>\delta^{*} / 2-\beta\right] \leq 2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right) \tag{46}
\end{equation*}
$$

By (44) and (45), we have

$$
\left\{\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty} \leq \delta \text { and }\|H-\mathbb{E}[H]\|_{2} \leq \frac{\delta^{*}}{2}-\beta\right\} \Rightarrow\left\{\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq \xi\right\}
$$

and thus

$$
\begin{align*}
\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq \xi\right] & \geq \mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty} \leq \delta \text { and }\|H-\mathbb{E}[H]\|_{2} \leq \frac{\delta^{*}}{2}-\beta\right] \\
& =1-\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\delta \text { or }\|H-\mathbb{E}[H]\|_{2}>\frac{\delta^{*}}{2}-\beta\right] \\
& \geq 1-\left(\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\delta\right]+\mathbb{P}\left[\|H-\mathbb{E}[H]\|_{2}>\frac{\delta^{*}}{2}-\beta\right]\right)  \tag{47}\\
& =1-\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\delta\right]-2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right)
\end{align*}
$$

where we have applied (46) for the last step.
When $0<\delta<8\left(1+4 \sigma^{2}\right) \gamma$, we can let $\nu=\delta$ in (41) to get

$$
\begin{equation*}
\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\delta\right] \leq 1-2 N(N+1) \exp \left\{-\frac{n K \delta^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\} \tag{48}
\end{equation*}
$$

When $\delta \geq 8\left(1+4 \sigma^{2}\right) \gamma$, we set $\nu=8\left(1+4 \sigma^{2}\right) \gamma$ in (41) to get

$$
\begin{align*}
\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\delta\right] & \leq \mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>8\left(1+4 \sigma^{2}\right) \gamma\right] \\
& \leq 2 N(N+1) \exp \left\{-\frac{n K\left(8\left(1+4 \sigma^{2}\right) \gamma\right)^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\}  \tag{49}\\
& =2 N(N+1) \exp \left\{-\frac{n K}{2}\right\}
\end{align*}
$$

Consider the maximum value of the two upper bounds in (48) and (49). We can get

$$
\begin{align*}
\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\delta\right] & \leq \max \left\{2 N(N+1) \exp \left\{-\frac{n K \delta^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\}, 2 N(N+1) \exp \left\{-\frac{n K}{2}\right\}\right\} \\
& =2 N(N+1) \exp \left(-\frac{n K}{2} \min \left\{\frac{\delta^{2}}{64\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}, 1\right\}\right) \tag{50}
\end{align*}
$$

According to (47) and (50), we have

$$
\begin{align*}
\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq \xi\right] \geq & 1-\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\delta\right]-2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right) \\
\geq & 1-2 N(N+1) \exp \left(-\frac{n K}{2} \min \left\{\frac{\delta^{2}}{64\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}, 1\right\}\right)  \tag{51}\\
& -2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right)
\end{align*}
$$

Namely, with probability at least

$$
1-2 N(N+1) \exp \left(-\frac{n K}{2} \min \left\{\frac{\delta^{2}}{64\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}, 1\right\}\right)-2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right)
$$

we have $\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq \xi \leq \delta^{*}, \operatorname{supp}(\hat{\Omega}) \subseteq \operatorname{supp}(\bar{\Omega})$ and according to Lemma 7, we have

$$
\|\hat{\Omega}-\bar{\Omega}\|_{\infty}=\|\Delta\|_{\infty} \leq 2 \kappa_{\bar{\Gamma}}\left(\frac{8}{\alpha}+1\right) \xi=\kappa_{\bar{\Gamma}}\left(\frac{8}{\alpha}+1\right)\left(2 \delta+\delta^{*}\right)
$$

which completes our proof of Theorem 1.

## C. Proof of Theorem 2

We have the following lemma as a sufficient condition for the sign-consistency of (5).
Lemma 10. For $\xi \in\left(0, \delta^{*}\right]$, if

$$
\begin{equation*}
\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq x i \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\omega_{\min }}{2} \geq 2 \kappa_{\bar{\Gamma}}\left(\frac{8}{\alpha}+1\right) \xi \tag{53}
\end{equation*}
$$

where $\omega_{\min }:=\min _{(i, j) \in S}\left|\bar{\Omega}_{i j}\right|$, then the estimate $\hat{\Omega}$ of (5) is sign-consistent.

The proof is in Section I.
In the remaining part of the proof, we assume that the condition $\beta \leq \delta^{\dagger} / 2$ stated in Theorem 2 is satisfied. We will consider two cases for different $\omega_{\min }>0$.
Case (i). If

$$
\begin{equation*}
\omega_{\min } \geq \frac{2 \alpha}{8+\alpha} \min \left\{\frac{1}{3 \kappa_{\bar{\Sigma}} d}, \frac{1}{3 \kappa_{\bar{\Sigma}}^{3} \kappa_{\bar{\Gamma}} d}\right\} \tag{54}
\end{equation*}
$$

then

$$
0<\delta^{\dagger}=\delta^{*}
$$

and

$$
\frac{\omega_{\min }}{2} \geq 2 \kappa_{\bar{\Gamma}}\left(\frac{8}{\alpha}+1\right) \delta^{*}
$$

Thus for $\xi=\delta^{*}$, (53) holds. Then according to (51), with probability at least

$$
\begin{aligned}
& 1-2 N(N+1) \exp \left(-\frac{n K}{2} \min \left\{\frac{\left(\delta^{*} / 2\right)^{2}}{64\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}, 1\right\}\right)-2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right) \\
= & 1-2 N(N+1) \exp \left(-\frac{n K}{2} \min \left\{\frac{\left(\delta^{\dagger}\right)^{2}}{256\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}, 1\right\}\right)-2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right)
\end{aligned}
$$

we have $\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq \delta^{*}$ and thus by Lemma 10, we have that (5) is sign-consistent.
Case (ii). If

$$
\omega_{\min }<\frac{2 \alpha}{8+\alpha} \min \left\{\frac{1}{3 \kappa_{\bar{\Sigma}} d}, \frac{1}{3 \kappa_{\bar{\Sigma}}^{3} \kappa_{\bar{\Gamma}} d}\right\}
$$

then

$$
\frac{\omega_{\min }}{2}<2 \kappa_{\bar{\Gamma}}\left(\frac{8}{\alpha}+1\right) \delta^{*}
$$

and

$$
0<\delta^{\dagger}=\delta^{\prime} \leq \delta^{*}
$$

Thus

$$
\begin{equation*}
\frac{\omega_{\min }}{2} \geq 2 \kappa_{\bar{\Gamma}}\left(\frac{8}{\alpha}+1\right) \delta^{\prime} \tag{55}
\end{equation*}
$$

Now apply (51) with $\xi=\delta^{\prime}=\delta^{\dagger}$, we have

$$
\begin{aligned}
\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq \delta^{\prime}\right] \geq & 1-2 N(N+1) \exp \left(-\frac{n K}{2} \min \left\{\frac{\left(\delta^{\prime}-\delta^{*} / 2\right)^{2}}{64\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}, 1\right\}\right) \\
& -2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right) \\
\geq & 1-2 N(N+1) \exp \left(-\frac{n K}{2} \min \left\{\frac{\left(\delta^{\dagger}-\delta^{\dagger} / 2\right)^{2}}{64\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}, 1\right\}\right) \\
& -2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right) \\
= & 1-2 N(N+1) \exp \left(-\frac{n K}{2} \min \left\{\frac{\left(\delta^{\dagger}\right)^{2}}{256\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}, 1\right\}\right) \\
& -2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right)
\end{aligned}
$$

Therefore with probability at least

$$
1-2 N(N+1) \exp \left(-\frac{n K}{2} \min \left\{\frac{\left(\delta^{\dagger}\right)^{2}}{256\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}, 1\right\}\right)-2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right)
$$

we have $\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq \delta^{\prime}$ and thus by Lemma 10 , sign-consistency is guaranteed.
In conclusion, when $\tau \leq \delta^{\dagger} / 2$, with probability at least

$$
1-2 N(N+1) \exp \left(-\frac{n K}{2} \min \left\{\frac{\left(\delta^{\dagger}\right)^{2}}{256\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}, 1\right\}\right)-2 N \exp \left(-\frac{\lambda_{\min }^{4} K}{128 c_{\max }^{2}}\left(\frac{\delta^{*}}{2}-\beta\right)^{2}\right)
$$

the estimator $\hat{\Omega}$ is sign-consistent and thus $\operatorname{supp}(\hat{\Omega})=\operatorname{supp}(\bar{\Omega})$, which completes our proof of Theorem 2.

## D. Proof of Theorem 3

For $\forall Q \in[-1 /(2 d), 1 /(2 d)]^{N \times N}$, let $\Omega(E):=I+Q \odot \operatorname{mat}(E)$ for $E \in \mathcal{E}$ where $\mathcal{E}$ is the set of all possible values of $E$ generated according to Theorem 3 and $\operatorname{mat}(E) \in\{0,1\}^{N \times N}$ is defined as follows: $\operatorname{mat}(E)_{i j}=1$ if $(i, j) \in E$ and $\operatorname{mat}(E)_{i j}=0$ if $(i, j) \notin E$ for $\forall E \in \mathcal{E}$. Then we know $\Omega(E)$ is real and symmetric. Thus its eigenvalues are real. By Gershgorin circle theorem (Golub \& Van Loan, 2012), for any eigenvalue $\lambda$ of $\Omega(E), \lambda$ lies in one of the Gershgorin circles, i.e., $\left|\lambda-\Omega(E)_{j j}\right| \leq \sum_{l \neq j}\left|\Omega(E)_{j l}\right|$ holds for some $j$. Since $\operatorname{mat}(E)_{j j}=0$ and $\left|Q_{j l}\right| \leq \frac{1}{2 d}$ for $1 \leq l \leq N$, we have $\Omega(E)_{j j}=1$ and $\sum_{l \neq j}\left|\Omega(E)_{j l}\right| \leq d \cdot \frac{1}{2 d}=\frac{1}{2}$. Thus $\lambda \in\left[\frac{1}{2}, \frac{3}{2}\right]$ and $\Omega(E)$ is positive definite. Thus, we have constructed a multiple Gaussian graphical model. Now consider $\Omega(E)^{-1}$. Because any eigenvalue $\mu$ of $[\Omega(E)]^{-1}$ is the reciprocal of an eigenvalue of $\Omega(E)$, we have $|\mu| \in\left[\frac{2}{3}, 2\right]$.
Use $\lambda_{1}(A)$ to denote the largest eigenvalue of matrix $A$. for $E, E^{\prime} \in \mathcal{E}$, according to Theorem H.1.d. in (Marshall et al., 2010), we have

$$
\lambda_{1}\left(\Omega\left(E^{\prime}\right) \Omega(E)^{-1}\right) \leq \lambda_{1}\left(\Omega\left(E^{\prime}\right)\right) \lambda_{1}\left(\Omega(E)^{-1}\right) \leq \frac{3}{2} \cdot 2=3
$$

which gives us

$$
\begin{equation*}
\operatorname{tr}\left(\Omega\left(E^{\prime}\right) \Omega(E)^{-1}\right) \leq N \lambda_{1}\left(\Omega\left(E^{\prime}\right) \Omega(E)^{-1}\right) \leq 3 N \tag{56}
\end{equation*}
$$

For $\mathbf{Q}=\left\{Q^{(k)}\right\}_{k=1}^{K}$, we know that there is a bijection between $\mathcal{E}$ and the set of all circular permutations of nodes $V=\{1, \ldots, N\}$. Thus $|\mathcal{E}|$, i.e., the size of $\mathcal{E}$, is the total number of circular permutations of $N$ elements, which is $C_{E}:=(N-1)!/ 2$. Since $E$ is uniformly distributed on $\mathcal{E}$, the entropy of $E$ given $\mathbf{Q}$ is $H(E \mid \mathbf{Q})=\log C_{E}$.
Consider a family of $N$-dimensional random multivariate Gaussian distributions of size $K$ with covariance matrices $\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}$ generated according to Theorem 3. We use $\mathbf{X}:=\left\{X_{t}^{(k)}\right\}_{1 \leq t \leq n, 1 \leq k \leq K}$ to denote the collection of $n$ samples from each of the $K$ distributions. Then for the mutual information $\mathbb{I}(\mathbf{X} ; E \mid \mathbf{Q})$. We have the following bound:

$$
\begin{align*}
\mathbb{I}(\mathbf{X} ; E \mid \mathbf{Q}) \leq & \frac{1}{C_{E}^{2}} \sum_{E} \sum_{E^{\prime}} \mathbb{K} \mathbb{L}\left(P_{\mathbf{X} \mid E, \mathbf{Q}} \| P_{\mathbf{X} \mid E^{\prime}, \mathbf{Q}}\right) \\
= & \frac{1}{C_{E}^{2}} \sum_{E} \sum_{E^{\prime}} \sum_{k=1}^{K} \sum_{t=1}^{n} \mathbb{K} \mathbb{L}\left(P_{X_{t}^{(k)} \mid E, Q^{(k)}} \| P_{X_{t}^{(k)} \mid E^{\prime}, Q^{(k)}}\right)  \tag{57}\\
= & \frac{n}{C_{E}^{2}} \sum_{E} \sum_{E^{\prime}} \sum_{k=1}^{K} \frac{1}{2}\left[\operatorname{tr}\left(\left(I+Q^{(k)} \odot \operatorname{mat}\left(E^{\prime}\right)\right)\left(I+Q^{(k)} \odot \operatorname{mat}(E)\right)^{-1}\right)\right. \\
& \left.-N+\log \frac{\operatorname{det}\left(I+Q^{(k)} \odot \operatorname{mat}(E)\right)}{\operatorname{det}\left(I+Q^{(k)} \odot \operatorname{mat}\left(E^{\prime}\right)\right)}\right]
\end{align*}
$$

Since the summation is taken over all $\left(E, E^{\prime}\right)$ pairs, the log term cancels with each other. For the trace term, by (56), we have

$$
\begin{equation*}
\operatorname{tr}\left(\left(I+Q^{(k)} \odot \operatorname{mat}\left(E^{\prime}\right)\right)\left(I+Q^{(k)} \odot \operatorname{mat}(E)\right)^{-1}\right) \leq 3 N \tag{58}
\end{equation*}
$$

for $1 \leq k \leq K$ and $E, E^{\prime} \in \mathcal{E}$. Putting (58) back to (57) gives

$$
\begin{equation*}
\mathbb{I}(\mathbf{X} ; E \mid \mathbf{Q}) \leq \frac{n}{C_{E}^{2}} \sum_{E} \sum_{E^{\prime}} \sum_{k=1}^{K} \frac{1}{2}(3 N-N)=n N K \tag{59}
\end{equation*}
$$

For any estimate $\hat{S}$ of $S$, define $\hat{E}=\{(i, j):(i, j) \in \hat{S}, i \neq j\}$. Since $E \subseteq S$, we have $\mathbb{P}\{S \neq \hat{S}\} \geq \mathbb{P}\{E \neq \hat{E}\}$. Then by applying Theorem 1 in (Ghoshal \& Honorio, 2017), we get

$$
\begin{aligned}
\mathbb{P}\{S \neq \hat{S}\} & \geq \mathbb{P}\{E \neq \hat{E}\} \\
& \geq 1-\frac{\mathbb{I}(\mathbf{X} ; S \mid \mathbf{Q})+\log 2}{H(S \mid \mathbf{Q})} \\
& \geq 1-\frac{n N K+\log 2}{\log [(N-1)!/ 2]}
\end{aligned}
$$

For $\log ((N-1)!)$, we have:

$$
\begin{aligned}
\log ((N-1)!) & =\sum_{i=1}^{N-1} \log i \\
& \geq \int_{1}^{N-1} \log x d x \\
& =(N-1) \log (N-1)-N+2 \\
& =(N-1) \log N+(N-1) \log \frac{N-1}{N}+2-N
\end{aligned}
$$

Since

$$
(N-1) \log \frac{N-1}{N}+2=2-(N-1) \log \left(1+\frac{1}{N-1}\right) \geq 2-1>0
$$

we have

$$
\begin{gathered}
\log ((N-1)!) \geq(N-1) \log N-N=N \log N-N-\log N \\
\log ((N-1)!/ 2)=\log ((N-1)!)-\log 2 \geq N \log N-N-\log 2 N
\end{gathered}
$$

For $N \geq 5, N \log N-N-\log 2 N>0$, thus we have

$$
\mathbb{P}\{S \neq \hat{S}\} \geq 1-\frac{n N K+\log 2}{\log [(N-1)!/ 2]} \geq 1-\frac{n N K+\log 2}{N \log N-N-\log 2 N}
$$

which completes our proof of Theorem 3.

## E. Proof of Theorem 4

By assumption, we have successfully recovered the true support union in the first step, i.e., $\operatorname{supp}(\hat{\Omega})=S$. Since there are constraints that $\operatorname{supp}(\Omega) \subseteq \operatorname{supp}(\hat{\Omega})=S$ and $\operatorname{diag}(\Omega)=\operatorname{diag}(\hat{\Omega})$ in (6), we have

$$
\begin{align*}
\ell^{(K+1)}(\Omega) & =\left\langle\hat{\Sigma}^{(K+1)}, \Omega\right\rangle-\log \operatorname{det}(\Omega) \\
& =\left\langle\hat{\Sigma}^{(K+1), S}, \Omega\right\rangle-\log \operatorname{det}(\Omega) \tag{60}
\end{align*}
$$

where $\hat{\Sigma}^{(K+1), S}:=\left(\hat{\Sigma}_{S}^{(K+1)}, 0\right)$. Then the Lagrangian of the problem (6) is

$$
\begin{equation*}
\ell^{(K+1)}(\Omega)+\lambda\|\Omega\|_{1}+\langle\mu, \Omega\rangle+\langle\nu, \operatorname{diag}(\Omega-\hat{\Omega})\rangle \tag{61}
\end{equation*}
$$

where $\mu \in \mathbb{R}^{N \times N}, \nu \in \mathbb{R}^{N}$ are the Lagrange multipliers satisfying $\mu_{S}=0$. Here we set $\mu=\bar{\Sigma}^{(K+1), S^{c}}=\left(\bar{\Sigma}_{S^{c}}^{(K+1)}, 0\right)$ and $\nu=\operatorname{diag}\left(\bar{\Sigma}^{(K+1)}-\hat{\Sigma}^{(K+1)}\right)$ in (61). Define $W^{(K+1)}:=\bar{\Sigma}^{(K+1), S_{\text {off }}}-\hat{\Sigma}^{(K+1), S_{\text {off }} \text {. With the primal-dual witness }}$ approach, we can get the following lemma similar to Lemma 7.

Lemma 11. Under Assumption 2, if $\left\|W^{(K+1)}\right\|_{\infty} \leq \xi$ with $\xi \in\left(0, \delta^{(K+1), *], ~ t h e n ~ c h o o s i n g ~} \lambda=\frac{8 \xi}{\alpha^{(K+1)}}\right.$, we have $\operatorname{supp}\left(\hat{\Omega}^{(K+1)}\right) \subseteq \operatorname{supp}\left(\bar{\Omega}^{(K+1)}\right)$ and

$$
\begin{equation*}
\left\|\hat{\Omega}^{(K+1)}-\bar{\Omega}^{(K+1)}\right\|_{\infty} \leq 2 \kappa_{\bar{\Gamma}^{(K+1)}}\left(\frac{8}{\alpha^{(K+1)}}+1\right) \xi \tag{62}
\end{equation*}
$$

The proof is in Section J.
By the definition of $W^{(K+1)}$, we know that $W_{S_{\text {off }}^{c}}^{(K+1)}=0$ and $W_{S_{\text {off }}}^{(K+1)}=\left[\hat{\Sigma}^{(K+1)}-\bar{\Sigma}^{(K+1)}\right]_{S_{\text {off }}}$. Thus $\left\|W^{(K+1)}\right\|_{\infty}=$ $\left\|\left[\hat{\Sigma}^{(K+1)}-\bar{\Sigma}^{(K+1)}\right]_{S_{\text {off }}}\right\|_{\infty}$. Since we have assumed $\left\|\bar{\Sigma}^{(K+1)}\right\|_{\infty} \leq \gamma^{(K+1)}$, according to Lemma 8 and the proof of (50), we have

$$
\begin{align*}
\mathbb{P}\left[\left\|W^{(K+1)}\right\|_{\infty} \leq \delta^{(K+1), \dagger}\right] & =\mathbb{P}\left[\left\|\hat{\Sigma}^{(K+1)}-\bar{\Sigma}^{(K+1)}\right\|_{\infty} \leq \delta^{(K+1), \dagger}\right] \\
& \leq 1-2\left|S_{\text {off }}\right| \exp \left(-\frac{n^{(K+1)}}{2} \min \left\{\frac{\left(\delta^{(K+1), \dagger}\right)^{2}}{64\left(1+4 \sigma^{2}\right)^{2}\left(\gamma^{(K+1)}\right)^{2}}, 1\right\}\right) \tag{63}
\end{align*}
$$

because $S_{\text {off }}$ is symmetric.
Similar to Lemma 10, we have the following lemma for the sign-consistency of $\hat{\Omega}^{(K+1)}$ in (6).
Lemma 12. For $\xi \in\left(0, \delta^{(K+1), *}\right]$, if

$$
\begin{equation*}
\left\|W^{(K+1)}\right\|_{\infty} \leq \xi \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\omega_{\min }^{(K+1)}}{2} \geq 2 \kappa_{\bar{\Gamma}^{(K+1)}}\left(\frac{8}{\alpha^{(K+1)}}+1\right) \xi \tag{65}
\end{equation*}
$$

where $\omega_{\min }:=\min _{(i, j) \in S}\left|\bar{\Omega}_{i j}\right|$, then the estimate $\hat{\Omega}^{(K+1)}$ in (6) is sign-consistent.
The proof is in Section K. Similar to the proof of Theorem 2, we consider two cases of $\omega_{\min }^{(K+1)}$.
Case (i). If

$$
\begin{equation*}
\omega_{\min }^{(K+1)} \geq \frac{2 \alpha^{(K+1)}}{8+\alpha^{(K+1)}} \min \left\{\frac{1}{3 \kappa_{\bar{\Sigma}^{(K+1)}} d^{(K+1)}}, \frac{1}{3 \kappa_{\bar{\Sigma}^{(K+1)}}^{3} \kappa_{\bar{\Gamma}^{(K+1)}} d^{(K+1)}}\right\} \tag{66}
\end{equation*}
$$

then

$$
0<\delta^{(K+1), \dagger}=\delta^{(K+1), *}
$$

and

$$
\frac{\omega_{\min }^{(K+1)}}{2} \geq 2 \kappa_{\bar{\Gamma}^{(K+1)}}\left(\frac{8}{\alpha^{(K+1)}}+1\right) \delta^{(K+1), *}
$$

Thus for $\xi=\delta^{(K+1), *}$, (65) holds. Then according to (63), with probability at least

$$
1-2\left|S_{\text {off }}\right| \exp \left(-\frac{n^{(K+1)}}{2} \min \left\{\frac{\left(\delta^{(K+1), \dagger}\right)^{2}}{64\left(1+4 \sigma^{2}\right)^{2}\left(\gamma^{(K+1)}\right)^{2}}, 1\right\}\right)
$$

we have $\left\|W^{(K+1)}\right\|_{\infty} \leq \delta=\delta^{(K+1), *}$ and thus by Lemma 12, we have that (6) is sign-consistent.
Case (ii). If

$$
\omega_{\min }^{(K+1)}<\frac{2 \alpha^{(K+1)}}{8+\alpha^{(K+1)}} \min \left\{\frac{1}{3 \kappa_{\bar{\Sigma}^{(K+1)}} d^{(K+1)}}, \frac{1}{3 \kappa_{\bar{\Sigma}^{(K+1)}}^{3} \kappa_{\bar{\Gamma}^{(K+1)}} d^{(K+1)}}\right\}
$$

then

$$
\frac{\omega_{\min }^{(K+1)}}{2}<2 \kappa_{\bar{\Gamma}^{(K+1)}}\left(\frac{8}{\alpha^{(K+1)}}+1\right) \delta^{(K+1), *}
$$

and

$$
0<\delta^{(K+1), \dagger}=\delta^{(K+1), \prime} \leq \delta^{(K+1), *}
$$

Then

$$
\begin{equation*}
\frac{\omega_{\min }^{(K+1)}}{2} \geq 2 \kappa_{\bar{\Gamma}^{(K+1)}}\left(\frac{8}{\alpha^{(K+1)}}+1\right) \delta^{(K+1), \prime} \tag{67}
\end{equation*}
$$

For $\xi=\delta^{(K+1), \prime}=\delta^{(K+1), \dagger}$, (65) holds. Now according to (63), with probability at least

$$
1-2\left|S_{\text {off }}\right| \exp \left(-\frac{n^{(K+1)}}{2} \min \left\{\frac{\left(\delta^{(K+1), \dagger}\right)^{2}}{64\left(1+4 \sigma^{2}\right)^{2}\left(\gamma^{(K+1)}\right)^{2}}, 1\right\}\right)
$$

we have $\left\|W^{(K+1)}\right\|_{\infty} \leq \delta^{(K+1), \prime}=\delta^{(K+1), \dagger}$ and thus by Lemma 12 , sign-consistency is guaranteed. In conclusion, with probability at least

$$
1-2\left|S_{\text {off }}\right| \exp \left(-\frac{n^{(K+1)}}{2} \min \left\{\frac{\left(\delta^{(K+1), \dagger}\right)^{2}}{64\left(1+4 \sigma^{2}\right)^{2}\left(\gamma^{(K+1)}\right)^{2}}, 1\right\}\right)
$$

the estimator $\hat{\Omega}^{(K+1)}$ is sign-consistent and thus $\operatorname{supp}\left(\hat{\Omega}^{(K+1)}\right)=\operatorname{supp}\left(\bar{\Omega}^{(K+1)}\right)$, which completes our proof of Theorem 4.

## F. Proof of Theorem 5

For $\forall Q \in[-1 /(N \log s), 1 /(N \log s)]^{N \times N}, E^{(K+1)} \in \mathcal{E}$, we know $\Omega\left(E^{(K+1)}\right)=I+Q \odot \operatorname{mat}\left(E^{(K+1)}\right)$ is real and symmetric, where $\operatorname{mat}(\cdot) \in\{0,1\}^{N \times N}$ is defined in the proof of Theorem 3. Thus its eigenvalues are real. By Gershgorin circle theorem (Golub \& Van Loan, 2012), for any eigenvalue $\lambda$ of $\Omega\left(E^{(K+1)}\right), \lambda$ lies in one of the Gershgorin circles, i.e., $\left|\lambda-\Omega\left(E^{(K+1)}\right)_{j j}\right| \leq \sum_{l \neq j}\left|\Omega\left(E^{(K+1)}\right)_{j l}\right|$ holds for some $j$. Since $\operatorname{mat}\left(E^{(K+1)}\right)_{j j}=0$ and $\left|Q_{j l}\right| \leq 1 /(N \log s)$ for $1 \leq l \leq N$, we have $\Omega\left(E^{(K+1)}\right)_{j j}=1$. Meanwhile, there are at most $s / 2$ non-zero elements in any row of $\operatorname{mat}\left(E^{(K+1)}\right)$ because $\left|E^{(K+1)}\right| \leq s$ and $\operatorname{mat}\left(E^{(K+1)}\right)$ is symmetric. Thus $\sum_{l \neq j}\left|\Omega(E)_{j l}\right| \leq \frac{s}{2 N \log s}$. Then we have $\lambda \in\left[1-\frac{s}{2 N \log s}, 1+\frac{s}{2 N \log s}\right]$ and $\Omega\left(E^{(K+1)}\right)$ is positive definite. Thus, we have constructed a Gaussian graphical model. Now consider $\Omega\left(E^{(K+1)}\right)^{-1}$. Because any eigenvalue $\mu$ of $\Omega\left(E^{(K+1)}\right)^{-1}$ is the reciprocal of an eigenvalue of $\Omega\left(E^{(K+1)}\right)$, we have $|\mu| \leq 1 /\left(1-\frac{s}{2 N \log s}\right)$.
For any $E^{(K+1)}, \tilde{E}^{(K+1)} \in \mathcal{E}$, according to Theorem H.1.d. in (Marshall et al., 2010), we have

$$
\lambda_{1}\left(\Omega\left(\tilde{E}^{(K+1)}\right) \Omega\left(E^{(K+1)}\right)^{-1}\right) \leq \lambda_{1}\left(\Omega\left(\tilde{E}^{(K+1)}\right)\right) \lambda_{1}\left(\Omega\left(E^{(K+1)}\right)^{-1}\right) \leq \frac{1+\frac{s}{2 N \log s}}{1-\frac{s}{2 N \log s}}
$$

which gives us

$$
\begin{equation*}
\operatorname{tr}\left(\Omega\left(\tilde{E}^{(K+1)}\right) \Omega\left(E^{(K+1)}\right)^{-1}\right) \leq N \lambda_{1}\left(\Omega\left(\tilde{E}^{(K+1)}\right) \Omega\left(E^{(K+1)}\right)^{-1}\right) \leq N \frac{1+\frac{s}{2 N \log s}}{1-\frac{s}{2 N \log s}} \tag{68}
\end{equation*}
$$

According to the definition of $\mathcal{E}$, we know that $|\mathcal{E}|=2^{s / 2}$. Since $E^{(K+1)}$ is uniformly distributed on $\mathcal{E}$, the entropy of $E^{(K+1)}$ given $Q$ is

$$
\begin{equation*}
H\left(E^{(K+1)} \mid Q\right)=\log |\mathcal{E}| \geq \frac{s}{2} \log 2 \tag{69}
\end{equation*}
$$

Now let $\mathbf{X}:=\left\{X_{t}\right\}_{1 \leq t \leq n}$ be the samples from a $N$-dimensional multivariate Gaussian distribution with covariance $\bar{\Sigma}$
generated according to Theorem 5. For the mutual information $\mathbb{I}\left(\mathbf{X} ; E^{(K+1)} \mid Q\right)$, we have the following bound:

$$
\begin{align*}
\mathbb{I}\left(\mathbf{X} ; E^{(K+1)} \mid Q\right) \leq & \frac{1}{|\mathcal{E}|^{2}} \sum_{E^{(K+1)}} \sum_{\tilde{E}^{(K+1)}} \mathbb{K} \mathbb{L}\left(P_{\mathbf{X} \mid E E^{(K+1)}, Q} \| P_{\mathbf{X} \mid \tilde{E^{(K+1)}, Q}}\right) \\
= & \frac{1}{|\mathcal{E}|^{2}} \sum_{E^{(K+1)}} \sum_{\tilde{E^{(K+1)}}} \sum_{t=1}^{n} \mathbb{K} \mathbb{L}\left(P_{X_{t} \mid E^{(K+1)}, Q} \| P_{X_{t} \mid \tilde{\tilde{( }}(K+1), Q}\right)  \tag{70}\\
= & \frac{n}{|\mathcal{E}|^{2}} \sum_{E^{(K+1)}} \sum_{\tilde{E}(K+1)} \frac{1}{2}\left[\operatorname{tr}\left(\left(I+Q \odot \operatorname{mat}\left(\tilde{E}^{(K+1)}\right)\right)\left(I+Q \odot \operatorname{mat}\left(E^{(K+1)}\right)\right)^{-1}\right)\right. \\
& \left.-N+\log \frac{\operatorname{det}\left(I+Q \odot \operatorname{mat}\left(E^{(K+1)}\right)\right)}{\operatorname{det}\left(I+Q \odot \operatorname{mat}\left(\tilde{E}^{(K+1)}\right)\right)}\right]
\end{align*}
$$

Since the summation is taken over all $\left(E^{(K+1)}, \tilde{E}^{(K+1)}\right)$ pairs, the log term cancels with each other. For the trace term, by (68), we have

$$
\begin{equation*}
\operatorname{tr}\left(\left(I+Q \odot \operatorname{mat}\left(\tilde{E}^{(K+1)}\right)\right)\left(I+Q \odot \operatorname{mat}\left(E^{(K+1)}\right)\right)^{-1}\right) \leq N \frac{1+\frac{s}{2 N \log s}}{1-\frac{s}{2 N \log s}} \tag{71}
\end{equation*}
$$

for $E^{(K+1)}, \tilde{E}^{(K+1)} \in \mathcal{E}$. Putting (71) back to (70) gives

$$
\begin{align*}
\mathbb{I}\left(\mathbf{X} ; E^{(K+1)} \mid Q\right) & \leq \frac{n}{|\mathcal{E}|^{2}} \sum_{E^{(K+1)}} \sum_{\tilde{E^{(K+1)}}} \frac{1}{2}\left(N \frac{1+\frac{s}{2 N \log s}}{1-\frac{s}{2 N \log s}}-N\right) \\
& =\frac{n s}{2 \log s} \frac{1}{1-\frac{s}{2 N \log s}}  \tag{72}\\
& \leq \frac{2 n s}{\log s}
\end{align*}
$$

According to our assumption that $4 \leq s \leq N$.
Define $\hat{E}^{(K+1)}:=\left\{(i, j) \in \hat{S}^{(K+1)}: i \neq j\right\}$. By applying Theorem 1 in (Ghoshal \& Honorio, 2017), we get

$$
\begin{aligned}
\mathbb{P}\left\{S^{(K+1)} \neq \hat{S}^{(K+1)}\right\} & \geq \mathbb{P}\left\{E^{(K+1)} \neq \hat{E}^{(K+1)}\right\} \\
& \geq 1-\frac{\mathbb{I}\left(\mathbf{X} ; E^{(K+1)} \mid Q\right)+\log 2}{H\left(E^{(K+1)} \mid Q\right)} \\
& \geq 1-\frac{\frac{2 n s}{\log s}+\log 2}{\log |\mathcal{E}|} \\
& =1-\frac{\frac{2 n s}{\log s}+\log 2}{\frac{s}{2} \log 2} \\
& =1-\frac{4 n}{(\log 2)(\log s)}-\frac{2}{s}
\end{aligned}
$$

where the third inequality is by (72).

## G. Proof of Lemma 8

We first prove the following lemma showing that (40) and (41) hold for deterministic covariance matrices $\left\{\Sigma^{(k)}\right\}_{k=1}^{K}$.
Lemma 13. For $K$ deterministic matrices $\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}$ and $\gamma \geq\left\|\bar{\Sigma}^{(k)}\right\|_{\infty}$ for $1 \leq k \leq K$, consider the samples $\left\{X_{t}^{(k)}\right\}_{1 \leq t \leq n, 1 \leq k \leq K} \subseteq \mathbb{R}^{N}$ satisfying the following conditions:
(i) $\mathbb{E}\left[X_{t}^{(k)}\right]=0, \operatorname{Cov}\left(X_{t}^{(k)}\right)=\bar{\Sigma}^{(k)}$ for $1 \leq t \leq n, 1 \leq k \leq K$;
(ii) $\left\{X_{t}^{(k)}\right\}_{1 \leq t \leq n, 1 \leq k \leq K}$ are independent;
(iii) $\frac{X_{t, i}^{(k)}}{\sqrt{\Sigma_{i i}^{(k)}}}$ is sub-Gaussian with parameter $\sigma$ for $1 \leq i \leq N, 1 \leq t \leq n, 1 \leq k \leq K$.

Then for the empirical sample covariance matrices $\left\{\hat{\Sigma}^{(k)}\right\}_{k=1}^{K}$, (40) and (41) hold for $1 \leq i, j \leq N$ and $0 \leq \nu \leq$ $8\left(1+4 \sigma^{2}\right) \gamma$.

Proof. First consider the element-wise tail condition. For $1 \leq i, j \leq N$, we need to find an upper bound of the following probability:

$$
\begin{equation*}
\mathbb{P}\left[\left|\frac{1}{n K} \sum_{k=1}^{K} \sum_{t=1}^{n}\left(X_{t, i}^{(k)} X_{t, j}^{(k)}-\bar{\Sigma}_{i j}^{(k)}\right)\right|>\nu\right] \tag{73}
\end{equation*}
$$

Let $s_{i}:=\max _{1 \leq k \leq K} \bar{\Sigma}_{i i}^{(k)}, s_{j}:=\max _{1 \leq k \leq K} \bar{\Sigma}_{j j}^{(k)}, \tilde{X}_{t, i}^{(k)}:=\frac{X_{t, i}^{(k)}}{\sqrt{s_{i}}}, \tilde{X}_{t, j}^{(k)}:=\frac{X_{t, j}^{(k)}}{\sqrt{s_{j}}}, \tilde{\rho}_{i j}^{(k)}:=\frac{\bar{\Sigma}_{i j}^{(k)}}{\sqrt{s_{i} s_{j}}}$. We have

$$
(73)=\mathbb{P}\left[4\left|\sum_{k, t}\left(\tilde{X}_{t, i}^{(k)} \tilde{X}_{t, j}^{(k)}-\tilde{\rho}_{i j}^{(k)}\right)\right|>\frac{4 n K \nu}{\sqrt{s_{i} s_{j}}}\right]
$$

Define $U_{t, i j}^{(k)}:=\tilde{X}_{t, i}^{(k)}+\tilde{X}_{t, j}^{(k)}, V_{t, i j}^{(k)}:=\tilde{X}_{t, i}^{(k)}-\tilde{X}_{t, j}^{(k)}$. Then for any $r \in \mathbb{R}$,

$$
\begin{equation*}
4 \sum_{k, t}\left(\tilde{X}_{t, i}^{(k)} \tilde{X}_{t, j}^{(k)}-\tilde{\rho}_{i j}^{(k)}\right)=\sum_{k, t}\left\{\left(U_{t, i j}^{(k)}\right)^{2}-2\left(r+\tilde{\rho}_{i j}^{(k)}\right)\right\}-\sum_{k, t}\left\{\left(U_{t, i j}^{(k)}\right)^{2}-2\left(r-\tilde{\rho}_{i j}^{(k)}\right)\right\} \tag{74}
\end{equation*}
$$

Thus

$$
\begin{align*}
(73) \leq \mathbb{P} & {\left[\left|\sum_{k, t}\left\{\left(U_{t, i j}^{(k)}\right)^{2}-2\left(r+\tilde{\rho}_{i j}^{(k)}\right)\right\}\right|>\frac{2 n K \nu}{\sqrt{s_{i} s_{j}}}\right] }  \tag{75}\\
& +\mathbb{P}\left[\left|\sum_{k, t}\left\{\left(V_{t, i j}^{(k)}\right)^{2}-2\left(r-\tilde{\rho}_{i j}^{(k)}\right)\right\}\right|>\frac{2 n K \nu}{\sqrt{s_{i} s_{j}}}\right]
\end{align*}
$$

Now define

$$
Z_{t, i j}^{(k)}:=\left(U_{t, i j}^{(k)}\right)^{2}-2\left(r+\tilde{\rho}_{i j}^{(k)}\right)
$$

Applying the inequality $(a+b)^{m} \leq 2^{m}\left(a^{m}+b^{m}\right)$ on $Z_{t, i j}^{(k)}$, we have

$$
\begin{equation*}
\mathbb{E}\left[\left|Z_{t, i j}^{(k)}\right|^{m}\right] \leq 2^{m}\left\{\mathbb{E}\left[\left|U_{t, i j}^{(k)}\right|^{2 m}\right]+\left[2\left(1+\tilde{\rho}_{i j}^{(k)}\right)\right]^{m}\right\} \tag{76}
\end{equation*}
$$

Let $r_{i}^{(k)}:=\sqrt{\frac{\bar{\Sigma}_{i i}^{(k)}}{s_{i}}}, r_{i}^{(k)}:=\sqrt{\frac{\bar{\Sigma}_{i i}^{(k)}}{s_{i}}}$, then

$$
\tilde{X}_{t, i}^{(k)}=\bar{X}_{t, i}^{(k)} r_{i}^{(k)}, \quad \tilde{X}_{t, j}^{(k)}=\bar{X}_{t, j}^{(k)} r_{j}^{(k)}
$$

where $\bar{X}_{t, i}^{(k)}:=\frac{X_{t, i}^{(k)}}{\sqrt{\bar{\Sigma}_{i i}^{(k)}}}, \bar{X}_{t, j}^{(k)}:=\frac{X_{t, j}^{(k)}}{\sqrt{\bar{\Sigma}_{j j}^{(k)}}}$.
Assume that $\bar{X}_{t, i}^{(k)}$ is sub-Gaussian with parameter $\sigma$ for $\leq i \leq N, 1 \leq t \leq n, 1 \leq k \leq K$, and then we have

$$
\mathbb{E}\left[\exp \left(\lambda \tilde{X}_{t, i}^{(k)}\right)\right]=\mathbb{E}\left[\exp \left(\lambda \bar{X}_{t, i}^{(k)} r_{i}^{(k)}\right)\right] \leq \exp \left\{\frac{\lambda^{2}}{2} \sigma^{2}\left(r_{i}^{(k)}\right)^{2}\right\}
$$

which shows that $\tilde{X}_{t, i}^{(k)}$ is sub-Gaussian with parameter $\sigma r_{i}^{(k)}$. Then

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda U_{t, i j}^{(k)}\right)\right] & =\mathbb{E}\left[\exp \left(\lambda \tilde{X}_{t, i}^{(k)}\right) \exp \left(\lambda \tilde{X}_{t, j}^{(k)}\right)\right] \\
& \leq \mathbb{E}\left[\exp \left(2 \lambda \tilde{X}_{t, i}^{(k)}\right)\right]^{\frac{1}{2}} \mathbb{E}\left[\exp \left(2 \lambda \tilde{X}_{t, j}^{(k)}\right)\right]^{\frac{1}{2}} \\
& \leq \exp \left\{\lambda^{2} \sigma^{2}\left[\left(r_{i}^{(k)}\right)^{2}+\left(r_{j}^{(k)}\right)^{2}\right]\right\}
\end{aligned}
$$

Therefore $U_{t, i j}^{(k)}$ is sub-Gaussian with parameter $\sigma_{i j}^{(k)}:=\sigma \sqrt{2\left[\left(r_{i}^{(k)}\right)^{2}+\left(r_{j}^{(k)}\right)^{2}\right]}$. Similarly, we can prove that $V_{t, i j}^{(k)}$ is sub-Gaussian with parameter $\sigma_{i j}^{(k)}$ as well. Also note that $\sigma_{i j}^{(k)} \leq \sigma \sqrt{2(1+1)}=2 \sigma$.
As it is well-known (see e.g., Lemma 1.4 in (Buldygin \& Kozachenko, 2000)), for a sub-Gaussian random variable $X$ with parameter $\sigma$, i.e., $X$ that satisfies $\mathbb{E}\left[e^{\lambda X}\right] \leq \exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right)$, we have:

$$
\begin{equation*}
\mathbb{E}\left[|X|^{s}\right] \leq 2\left(\frac{s}{e}\right)^{s / 2} \sigma^{s} \tag{77}
\end{equation*}
$$

Apply this lemma on $U_{t, i j}^{(k)}$ with $s=2 m, m \geq 2$ and we get

$$
\mathbb{E}\left[\left|U_{t, i j}^{(k)}\right|^{2 m}\right] \leq 2\left(\frac{2 m}{e}\right)^{m}\left(\sigma_{i j}^{(k)}\right)^{2 m}
$$

According to the inequality $m!\geq\left(\frac{m}{e}\right)^{m}$, we have

$$
\mathbb{E}\left[\frac{\left|U_{t, i j}^{(k)}\right|^{2 m}}{m!}\right] \leq 2^{m+1}\left(\sigma_{i j}^{(k)}\right)^{2}
$$

Plug in (76) and we have

$$
\begin{align*}
\left(\frac{\mathbb{E}\left[\left|Z_{t, i j}^{(k)}\right|^{m}\right]}{m!}\right)^{\frac{1}{m}} & \leq 2^{\frac{1}{m}}\left\{\left[2^{2 m+1}\left(\sigma_{i j}^{(k)}\right)^{2 m}\right]^{\frac{1}{m}}+\frac{4\left(r+\tilde{\rho}_{i j}^{(k)}\right)}{(m!)^{\frac{1}{m}}}\right\} \\
& \leq \underbrace{2^{\frac{1}{m}}\left\{4 \cdot 2^{\frac{1}{m}}\left(\sigma_{i j}^{(k)}\right)^{2}+\frac{4\left(r+\tilde{\rho}_{i j}^{(k)}\right)}{(m!)^{\frac{1}{m}}}\right\}}_{h(m)} \tag{78}
\end{align*}
$$

Note that $h(m)$ defined above decreases with $m$ and $\left|\tilde{\rho}_{i j}^{(k)}\right| \leq 1$.
Since (74) holds for $\forall r \in \mathbb{R}$, we can choose $r=\frac{\left(r_{i}^{(k)}\right)^{2}+\left(r_{j}^{(k)}\right)^{2}}{2}$. Then we have $r<1$ and

$$
Z_{t, i j}^{(k)}:=\left(U_{t, i j}^{(k)}\right)^{2}-\left(\left(r_{i}^{(k)}\right)^{2}+\left(r_{j}^{(k)}\right)^{2}+2 \tilde{\rho}_{i j}^{(k)}\right)
$$

Thus

$$
\mathbb{E}\left[Z_{t, i j}^{(k)}\right]=0
$$

and furthermore,

$$
\begin{aligned}
\sup _{m \geq 2}\left(\frac{\mathbb{E}\left[\left|Z_{t, i j}^{(k)}\right|^{m}\right]}{m!}\right)^{\frac{1}{m}} & \leq h(2) \\
& =8\left(\sigma_{i j}^{(k)}\right)^{2}+4\left(r+\left|\tilde{\rho}_{i j}^{(k)}\right|\right) \\
& \leq 8\left(1+\left(\sigma_{i j}^{(k)}\right)^{2}\right) \\
& \leq 8\left(1+4 \sigma^{2}\right)
\end{aligned}
$$

Define $B:=8\left(1+4 \sigma^{2}\right)$. If $X$ is a random variable such that $\mathbb{E}[X]=0,\left(\frac{\mathbb{E}\left[|X|^{m}\right]}{m!}\right)^{\frac{1}{m}} \leq B$ for $m \geq 2$, then

$$
\mathbb{E}\left[e^{\lambda X}\right]=\mathbb{E}\left[\sum_{k=0}^{\infty} \frac{X^{k}}{k!} \lambda^{k}\right]=1+\sum_{k=1}^{\infty} \lambda^{k} \frac{\mathbb{E}\left[X^{k}\right]}{k!} \leq 1+\sum_{k=1}^{\infty}(\lambda B)^{k} \leq 1+\frac{(\lambda B)^{2}}{1-|\lambda| B}
$$

when $|\lambda|<\frac{1}{B}$. Meanwhile,

$$
1+\frac{(\lambda B)^{2}}{1-|\lambda| B} \leq \exp \left\{\frac{\lambda^{2} B^{2}}{1-|\lambda| B}\right\} \leq \exp \left(2 \lambda^{2} B^{2}\right)
$$

when $|\lambda| \leq \frac{1}{2 B}$. Therefore for $|\lambda| \leq \frac{1}{2 B}$,

$$
\begin{equation*}
\mathbb{E}\left[e^{\lambda X}\right] \leq \exp \left(2 \lambda^{2} B^{2}\right)=\exp \left(\frac{\lambda^{2}(2 B)^{2}}{2}\right) \tag{79}
\end{equation*}
$$

Then for $X_{i}, 1 \leq i \leq n$ independent and satisfying $\mathbb{E}\left[X_{i}\right]=0,\left(\frac{\mathbb{E}\left[\left|X_{i}\right|^{m}\right]}{m!}\right)^{\frac{1}{m}} \leq B$ when $m \geq 2$, we can claim that for $0 \leq \epsilon \leq 2 B$,

$$
\begin{equation*}
\mathbb{P}\left[\left|\sum_{i=1}^{n} X_{i}\right|>n \epsilon\right] \leq 2 \exp \left(-\frac{n \epsilon^{2}}{8 B^{2}}\right) \tag{80}
\end{equation*}
$$

In fact, for $0 \leq t \leq \frac{1}{2 B}$,

$$
\begin{align*}
\mathbb{P}\left[\sum_{i=1}^{n} X_{i}>n \epsilon\right] & \leq \mathbb{P}\left[e^{t \sum_{i=1}^{n} X_{i}} \geq e^{t n \epsilon}\right] \\
& \leq e^{-t n \epsilon} \mathbb{E}\left[e^{t \sum_{i=1}^{n} X_{i}}\right]  \tag{81}\\
& =\left(\prod_{i=1}^{n} \mathbb{E}\left[e^{t X_{i}}\right]\right) e^{-t n \epsilon} \\
& \leq \exp \left(2 n t^{2} B^{2}-t n \epsilon\right)
\end{align*}
$$

Thus choosing $t=\frac{\epsilon}{4 B^{2}} \leq \frac{1}{2 B}$, we can get

$$
\mathbb{P}\left[\sum_{i=1}^{n} X_{i}>n \epsilon\right] \leq \exp \left(-\frac{n \epsilon^{2}}{8 B^{2}}\right)
$$

Similarly, we can also prove that

$$
\mathbb{P}\left[\sum_{i=1}^{n} X_{i}<-n \epsilon\right] \leq \exp \left(-\frac{n \epsilon^{2}}{8 B^{2}}\right)
$$

Thus

$$
\mathbb{P}\left[\left|\sum_{i=1}^{n} X_{i}\right|>n \epsilon\right]=\mathbb{P}\left[\sum_{i=1}^{n} X_{i}>n \epsilon\right]+\mathbb{P}\left[\sum_{i=1}^{n} X_{i}<-n \epsilon\right] \leq 2 \exp \left(-\frac{n \epsilon^{2}}{8 B^{2}}\right)
$$

Now consider $Z_{t, i j}^{(k)}, 1 \leq t \leq n, 1 \leq k \leq K$. These random variables are independent by our assumption and satisfy $\mathbb{E}\left[Z_{t, i j}^{(k)}\right]=0, \sup _{m \geq 2}\left(\frac{\mathbb{E}\left[\left|Z_{t, i j}^{(k)}\right|^{m}\right]}{m!}\right)^{\frac{1}{m}} \leq 8\left(1+4 \sigma^{2}\right)=B$ by our proof. Then according to (80), for $0 \leq \frac{2 \nu}{\gamma} \leq 2 B$, i.e., $0 \leq \nu \leq 8\left(1+4 \sigma^{2}\right) \gamma$, we have:

$$
\begin{align*}
\mathbb{P}\left[\left|\sum_{k, t} Z_{t, i j}^{(k)}\right|>\frac{2 n K \nu}{\gamma}\right] & \leq 2 \exp \left\{-\frac{4 n K \nu^{2}}{8 B^{2} \gamma^{2}}\right\}  \tag{82}\\
& =2 \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\}
\end{align*}
$$

Since $\gamma \geq \max _{1 \leq k \leq K}\left\|\bar{\Sigma}^{(k)}\right\|_{\infty}=\max _{1 \leq l \leq N} s_{l} \geq \sqrt{s_{i} s_{j}}$ for $1 \leq i, j \leq N$, we have:

$$
\begin{equation*}
\mathbb{P}\left[\left|\sum_{k, t} Z_{t, i j}^{(k)}\right|>\frac{2 n K \nu}{\sqrt{s_{i} s_{j}}}\right] \leq \mathbb{P}\left[\left|\sum_{k, t} Z_{t, i j}^{(k)}\right|>\frac{2 n K \nu}{\gamma}\right] \leq 2 \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\} \tag{83}
\end{equation*}
$$

Plug in the definition of $Z_{t, i j}^{(k)}$, we have

$$
\begin{equation*}
\mathbb{P}\left[\left|\sum_{k, t}\left\{\left(U_{t, i j}^{(k)}\right)^{2}-2\left(r+\tilde{\rho}_{i j}^{(k)}\right)\right\}\right|>\frac{2 n K}{\sqrt{s_{i} s_{j}}} \nu\right] \leq 2 \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\} \tag{84}
\end{equation*}
$$

Similarly, we can also prove that for $0 \leq \nu \leq 8\left(1+4 \sigma^{2}\right) \gamma$,

$$
\begin{equation*}
\mathbb{P}\left[\left|\sum_{k, t}\left\{\left(V_{t, i j}^{(k)}\right)^{2}-2\left(r-\tilde{\rho}_{i j}^{(k)}\right)\right\}\right|>\frac{2 n K}{\sqrt{s_{i} s_{j}}} \nu\right] \leq 2 \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\} \tag{85}
\end{equation*}
$$

Thus according to (75), we have

$$
\begin{align*}
(73) \leq & \mathbb{P}\left[\left|\sum_{k, t}\left\{\left(U_{t, i j}^{(k)}\right)^{2}-2\left(r+\tilde{\rho}_{i j}^{(k)}\right)\right\}\right|>\frac{2 n K \nu}{\sqrt{s_{i} s_{j}}}\right] \\
& +\mathbb{P}\left[\left|\sum_{k, t}\left\{\left(V_{t, i j}^{(k)}\right)^{2}-2\left(r-\tilde{\rho}_{i j}^{(k)}\right)\right\}\right|>\frac{2 n K \nu}{\sqrt{s_{i} s_{j}}}\right]  \tag{86}\\
& \leq 4 \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\}
\end{align*}
$$

i.e.,

$$
\begin{align*}
\mathbb{P}\left[\left|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}_{i j}^{(k)}-\bar{\Sigma}_{i j}^{(k)}\right)\right|>\nu\right] & =\mathbb{P}\left[\left|\frac{1}{n K} \sum_{k=1}^{K} \sum_{t=1}^{n}\left(X_{t, i}^{(k)} X_{t, j}^{(k)}-\bar{\Sigma}_{i j}^{(k)}\right)\right|>\nu\right] \\
& \leq 4 \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\} \tag{87}
\end{align*}
$$

for $0 \leq \nu \leq 8\left(1+4 \sigma^{2}\right) \gamma$. Then consider the $\ell_{\infty}$-norm of $\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}$. Since $\hat{\Sigma}^{(k)}, \bar{\Sigma}^{(k)}$ are all symmetric and $N \times N$, we have the following bound:

$$
\begin{align*}
\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\nu\right] & \leq \frac{N(N+1)}{2} \mathbb{P}\left[\left|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}_{i j}^{(k)}-\bar{\Sigma}_{i j}^{(k)}\right)\right|>\nu\right]  \tag{88}\\
& \leq 2 N(N+1) \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\}
\end{align*}
$$

for $0 \leq \nu \leq 8\left(1+4 \sigma^{2}\right) \gamma$, which completes our proof of Lemma 13 .

Now consider the setting when $\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}$ are randomly generated based on Definition 3. According to Lemma 13, we have

$$
\begin{gather*}
\mathbb{P}\left[\left.\left|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}_{i j}^{(k)}-\bar{\Sigma}_{i j}^{(k)}\right)\right|>\nu \right\rvert\,\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}\right] \leq \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\}  \tag{89}\\
\mathbb{P}\left[\left.\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\nu \right\rvert\,\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}\right] \leq 2 N(N+1) \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\} \tag{90}
\end{gather*}
$$

for $\hat{\Sigma}^{(k)}=\frac{1}{n} \sum_{t=1}^{n} X_{t}^{(k)}\left(X_{t}^{(k)}\right)^{\mathrm{T}}, 1 \leq i, j \leq N$, and $0 \leq \nu \leq 8\left(1+4 \sigma^{2}\right) \gamma$ with $\gamma$ specified in (2) of the corrected condition (ii) in Definition 3.

Then by the law of total expectation (see e.g., (Weiss et al., 2005)), we have

$$
\begin{aligned}
\mathbb{P}\left[\left|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}_{i j}^{(k)}-\bar{\Sigma}_{i j}^{(k)}\right)\right|>\nu\right] & =\mathbb{E}_{\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}}\left[\mathbb{P}\left[\left.\left|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}_{i j}^{(k)}-\bar{\Sigma}_{i j}^{(k)}\right)\right|>\nu \right\rvert\,\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}\right]\right] \\
& \leq \mathbb{E}_{\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}}\left[\exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\}\right] \\
& =\exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathbb{P}\left[\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\nu\right] & =\mathbb{E}_{\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}}\left[\mathbb{P}\left[\left.\left\|\sum_{k=1}^{K} \frac{1}{K}\left(\hat{\Sigma}^{(k)}-\bar{\Sigma}^{(k)}\right)\right\|_{\infty}>\nu \right\rvert\,\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}\right]\right] \\
& \leq \mathbb{E}_{\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}}\left[2 N(N+1) \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\}\right] \\
& =2 N(N+1) \exp \left\{-\frac{n K \nu^{2}}{128\left(1+4 \sigma^{2}\right)^{2} \gamma^{2}}\right\}
\end{aligned}
$$

which completes the proof of Lemma 8. Also notice that the proof above does not rely on any assumption on the distribution of $\left\{\bar{\Sigma}^{(k)}\right\}_{k=1}^{K}$. Thus, (40) and (41) hold as long as condition (iii), (iv) and (v) in Definition 3 are satisfied.

## H. Proof of Lemma 9

By definition, $H$ is a function that maps $K$ matrices to a symmetric matrix of dimension $N$, since $\bar{\Omega}^{(k)}=\bar{\Omega}+\Delta^{(k)} \succ 0$ with probability 1 according to condition (ii) in Definition 3. For $\forall k \in\{1, \ldots, K\}$, let $\left\{\Delta^{(1)}, \ldots, \Delta^{(k)}, \ldots, \Delta^{(K)}, \Delta^{\prime(k)}\right\}$ be an i.i.d. family of random matrices following distribution $P$ in Definition 3. Consider $H_{1}^{(k)}=H\left(\Delta^{(1)}, \ldots, \Delta^{(k)}, \ldots, \Delta^{(K)}\right)$ and $H_{2}^{(k)}=H\left(\Delta^{(1)}, \ldots, \Delta^{\prime(k)}, \ldots, \Delta^{(K)}\right)$. We have

$$
\begin{align*}
\left\|H_{1}^{(k)}-H_{2}^{(k)}\right\| \|_{2} & =\| \| \frac{1}{K}\left(\bar{\Omega}+\Delta^{\prime(k)}\right)^{-1}-\left(\bar{\Omega}+\Delta^{(k)}\right)^{-1}\| \|_{2} \\
& =\frac{1}{K}\| \|\left(\bar{\Omega}+\Delta^{\prime(k)}\right)^{-1}-\bar{\Omega}^{-1}+\bar{\Omega}^{-1}-\left(\bar{\Omega}+\Delta^{(k)}\right)^{-1}\| \|_{2}  \tag{91}\\
& \leq \frac{1}{K}\| \|\left(\bar{\Omega}+\Delta^{\prime(k)}\right)^{-1}-\bar{\Omega}^{-1}\| \|_{2}+\frac{1}{K}\| \|\left(\bar{\Omega}+\Delta^{(k)}\right)^{-1}-\bar{\Omega}^{-1}\| \|_{2}
\end{align*}
$$

Since $\mathbb{P}_{\Delta \sim P}\left[\| \| \Delta \|_{2} \leq c_{\max } \leq \frac{\lambda_{\min }}{2}\right]=1$ with $\lambda_{\min }=\lambda_{\min }(\bar{\Omega})$ by (2) and since $\bar{\Omega} \succ 0$, we have

$$
\left\|\left\|\left(\bar{\Omega}+\Delta^{(k)}\right)^{-1}-\bar{\Omega}^{-1}\right\|\right\|_{2} \leq \frac{c_{\max }}{\lambda_{\min }\left(\lambda_{\min }-c_{\max }\right)} \leq \frac{2 c_{\max }}{\lambda_{\min }^{2}}
$$

and

$$
\left\|\left\|\left(\bar{\Omega}+\Delta^{\prime(k)}\right)^{-1}-\bar{\Omega}^{-1}\right\|\right\|_{2} \leq \frac{c_{\max }}{\lambda_{\min }\left(\lambda_{\min }-c_{\max }\right)} \leq \frac{2 c_{\max }}{\lambda_{\min }^{2}}
$$

according to Equation (7.2) in (El Ghaoui, 2002). Plug the above inequalities in (91) and we can get

$$
\begin{equation*}
\left\|H_{1}^{(k)}-H_{2}^{(k)}\right\|\left\|_{2} \leq \frac{1}{K}\right\|\left\|\left(\bar{\Omega}+\Delta^{\prime(k)}\right)^{-1}-\bar{\Omega}^{-1}\right\|\left\|_{2}+\frac{1}{K}\right\|\left\|\left(\bar{\Omega}+\Delta^{(k)}\right)^{-1}-\bar{\Omega}^{-1}\right\| \|_{2} \leq \frac{4 c_{\max }}{K \lambda_{\min }^{2}} \tag{92}
\end{equation*}
$$

For $k=1, \ldots, K$, define $A_{k}=\frac{4 c_{\max }}{K \lambda_{\min }^{2}} I_{N}$ with $I_{N} \in \mathbb{R}^{N \times N}$ being an identity matrix. Then by (92), we have

$$
\left(H_{1}^{(k)}-H_{2}^{(k)}\right)^{2} \preceq A_{k}^{2}
$$

where $X \preceq Y \Longleftrightarrow Y-X \succeq 0$.
Define $\sigma_{\Delta}^{2}:=\left\|\sum_{k=1}^{K} A_{k}^{2} \mid\right\|_{2}=\sum_{k=1}^{K}\left(\frac{4 c_{\max }}{K \lambda_{\min }^{2}}\right)^{2}=\frac{16 c_{\max }^{2}}{K \lambda_{\min }^{4}}$. Then according to Corollary 7.5 in (Tropp, 2011), we have

$$
\begin{equation*}
\mathbb{P}\left[\lambda_{\max }(H-\mathbb{E}[H])>t\right] \leq N \exp \left\{-\frac{t^{2}}{8 \sigma_{\Delta}^{2}}\right\} \leq N \exp \left\{-\frac{\lambda_{\min }^{4} K t^{2}}{128 c_{\max }^{2}}\right\} \tag{93}
\end{equation*}
$$

Consider $-H\left(\Delta^{(1)}, \ldots, \Delta^{(K)}\right)$. We have

$$
\left(\left(-H_{1}^{(k)}\right)-\left(-H_{2}^{(k)}\right)\right)^{2} \preceq A_{k}^{2}
$$

The conditions of Corollary 7.5 in (Tropp, 2011) are also satisfied. Thus, we have

$$
\begin{equation*}
\mathbb{P}\left[-\lambda_{\min }(H-\mathbb{E}[H])>t\right]=\mathbb{P}\left[\lambda_{\max }((-H)-(-\mathbb{E}[H]))>t\right] \leq N \exp \left\{-\frac{t^{2}}{8 \sigma_{\Delta}^{2}}\right\} \leq N \exp \left\{-\frac{\lambda_{\min }^{4} K t^{2}}{128 c_{\max }^{2}}\right\} \tag{94}
\end{equation*}
$$

By (93) and (94), we have

$$
\begin{align*}
\mathbb{P}\left[\|H-\mathbb{E}[H]\|_{2}>t\right] & =\mathbb{P}\left[\lambda_{\max }(H-\mathbb{E}[H])>t,-\lambda_{\min }(H-\mathbb{E}[H])>t\right] \\
& \leq \mathbb{P}\left[\lambda_{\max }(H-\mathbb{E}[H])>t\right]+\mathbb{P}\left[-\lambda_{\min }(H-\mathbb{E}[H])>t\right]  \tag{95}\\
& \leq 2 N \exp \left\{-\frac{\lambda_{\min }^{4} K t^{2}}{128 c_{\max }^{2}}\right\}
\end{align*}
$$

which gives us (43).

## I. Proof of Lemma 10

For $\xi \in\left(0, \delta^{*}\right]$, we have proved that if $\left\|\sum_{k=1}^{K} \frac{T^{(k)}}{T} W^{(k)}\right\|_{\infty} \leq \xi$ then $\|\Delta\|_{\infty} \leq 2 \kappa_{\bar{\Gamma}}\left(\frac{8}{\alpha}+1\right) \xi, \tilde{\Omega}=\hat{\Omega}$ and $\operatorname{supp}(\hat{\Omega}) \subseteq$ $\operatorname{supp}(\bar{\Omega})$.

Therefore if we further assume that

$$
\frac{\omega_{\min }}{2} \geq 2 \kappa_{\bar{\Gamma}}\left(\frac{8}{\alpha}+1\right) \xi
$$

we will have

$$
\frac{\omega_{\min }}{2} \geq\|\Delta\|_{\infty}=\|\hat{\Omega}-\bar{\Omega}\|_{\infty}
$$

Then for any $(i, j) \in S^{c}=[\operatorname{supp}(\bar{\Omega})]^{c}, \bar{\Omega}_{i j}=0$, we have $[\operatorname{supp}(\bar{\Omega})]^{c} \subseteq[\operatorname{supp}(\hat{\Omega})]^{c}$ and thus $(i, j) \in[\operatorname{supp}(\hat{\Omega})]^{c}$, $\hat{\Omega}_{i j}=0=\bar{\Omega}_{i j}$
For any $(i, j) \in S=\operatorname{supp}(\bar{\Omega})$, we have

$$
\begin{aligned}
&\left|\hat{\Omega}_{i j}-\bar{\Omega}_{i j}\right| \leq\|\hat{\Omega}-\bar{\Omega}\|_{\infty} \leq \frac{\omega_{\min }}{2}=\frac{1}{2} \min _{1 \leq k, l \leq N} \bar{\Omega}_{k l} \leq \frac{1}{2}\left|\bar{\Omega}_{i j}\right| \\
& \Rightarrow-\frac{1}{2}\left|\bar{\Omega}_{i j}\right| \leq \hat{\Omega}_{i j}-\bar{\Omega}_{i j} \leq \frac{1}{2}\left|\bar{\Omega}_{i j}\right|
\end{aligned}
$$

If $\bar{\Omega}_{i j}>0$, then

$$
\begin{gathered}
-\frac{1}{2} \bar{\Omega}_{i j} \leq \hat{\Omega}_{i j}-\bar{\Omega}_{i j} \\
\hat{\Omega}_{i j} \geq \frac{1}{2} \bar{\Omega}_{i j}>0
\end{gathered}
$$

If $\bar{\Omega}_{i j}<0$, then

$$
\begin{gathered}
\hat{\Omega}_{i j}-\bar{\Omega}_{i j} \leq-\frac{1}{2} \bar{\Omega}_{i j} \\
\hat{\Omega}_{i j} \leq \frac{1}{2} \bar{\Omega}_{i j}<0
\end{gathered}
$$

In conclusion, $\operatorname{sign}\left(\hat{\Omega}_{i j}\right)=\operatorname{sign}\left(\bar{\Omega}_{i j}\right)$ for $\forall i, j \in\{1,2, \ldots, N\}$. The estimate $\hat{\Omega}$ in (5) is sign-consistent.

## J. Proof of Lemma 11

Plug $\mu=\bar{\Sigma}^{(K+1), S^{c}}=\left(\bar{\Sigma}_{S^{c}}^{(K+1)}, 0\right)$ and $\nu=\operatorname{diag}\left(\bar{\Sigma}^{(K+1)}-\hat{\Sigma}^{(K+1)}\right)$ in (61). We have the following optimization problem

$$
\hat{\Omega}^{(K+1)}=\arg \min _{\Omega \in \mathcal{S}_{++}^{N}} \ell^{(K+1)}(\Omega)+\lambda\|\Omega\|_{1}+\left\langle\bar{\Sigma}^{(K+1), S^{c}}, \Omega\right\rangle+\left\langle\operatorname{diag}\left(\bar{\Sigma}^{K+1}-\hat{\Sigma}^{K+1}\right), \operatorname{diag}(\Omega-\hat{\Omega})\right\rangle
$$

Now we can prove with the five steps in the primal-dual witness approach.

## J.1. Step 1

For $\left(\Omega_{S^{(K+1)}}, 0\right) \in \mathcal{S}_{++}^{N}$, we need to verify $\left[\nabla^{2} \ell^{(K+1)}(\Omega)\right]_{S^{(K+1)} S^{(K+1)}} \succ 0$. In fact,

$$
\begin{gather*}
\nabla \ell^{(K+1)}(\Omega)=\hat{\Sigma}^{(K+1), S}-\Omega^{-1}  \tag{96}\\
\nabla^{2} \ell^{(K+1)}(\Omega)=\Gamma(\Omega)=\Omega^{-1} \otimes \Omega^{-1} \tag{97}
\end{gather*}
$$

For $\left(\Omega_{S^{(K+1)}}, 0\right) \in \mathcal{S}_{++}^{N}$, we have $\Gamma\left(\left(\Omega_{S^{(K+1)}}, 0\right)\right) \succ 0, \nabla^{2} \ell^{(K+1)}(\Omega) \succ 0$. Thus following the same steps in section B.2, we can prove $\left[\nabla^{2} \ell^{(K+1)}(\Omega)\right]_{S^{(K+1)} S^{(K+1)}} \succ 0$.

## J.2. Step 2

Construct the primal variable $\tilde{\Omega}$ by making $\tilde{\Omega}_{\left[S^{(K+1)}\right]^{c}}=0$ and solving the restricted problem:

$$
\begin{align*}
\tilde{\Omega}_{S^{(K+1)}}= & \arg \min _{\left(\Omega_{S^{(K+1)}}, 0\right) \in \mathcal{S}_{++}^{N}} \ell^{(K+1)}\left(\left(\Omega_{S^{(K+1)}}, 0\right)\right)+\lambda\left\|\Omega_{S^{(K+1)}}\right\|_{1}  \tag{98}\\
& +\left\langle\bar{\Sigma}^{(K+1), S^{c}},\left(\Omega_{S^{(K+1)}}, 0\right)\right\rangle+\left\langle\operatorname{diag}\left(\bar{\Sigma}^{K+1}-\hat{\Sigma}^{K+1}\right), \operatorname{diag}\left(\left(\Omega_{S^{(K+1)}}, 0\right)-\hat{\Omega}\right)\right\rangle
\end{align*}
$$

## J.3. Step 3

Choose the dual variable $\tilde{Z}$ in order to fulfill the complementary slackness condition of (61):

$$
\left\{\begin{array}{l}
\tilde{Z}_{i j}=1, \text { if } \tilde{\Omega}_{i j}>0  \tag{99}\\
\tilde{Z}_{i j}=-1, \text { if } \tilde{\Omega}_{i j}<0 \\
\tilde{Z}_{i j} \in[-1,1], \text { if } \tilde{\Omega}_{i j}=0
\end{array}\right.
$$

Therefore we have

$$
\begin{equation*}
\|\tilde{Z}\|_{\infty} \leq 1 \tag{100}
\end{equation*}
$$

## J.4. Step 4

$\tilde{Z}$ is the subgradient of $\|\tilde{\Omega}\|_{1}$. Solve for the dual variable $\tilde{Z}_{\left[S^{(K+1)}\right]^{c}}$ in order that $(\tilde{\Omega}, \tilde{Z})$ fulfills the stationarity condition of (61):

$$
\begin{gather*}
{\left[\nabla \ell^{(K+1)}\left(\left(\tilde{\Omega}_{S^{(K+1)}}, 0\right)\right)\right]_{S^{(K+1)}}+\lambda \tilde{Z}_{S^{(K+1)}}+I_{N} \operatorname{diag}\left(\bar{\Sigma}^{(K+1)}-\hat{\Sigma}^{(K+1)}\right)=0}  \tag{101}\\
{\left[\nabla \ell^{(K+1)}\left(\left(\tilde{\Omega}_{S^{(K+1)}}, 0\right)\right)\right]_{\left[S^{(K+1)}\right]^{c}}+\lambda \tilde{Z}_{\left[S^{(K+1)}\right]^{c}}+\bar{\Sigma}_{\left[S^{(K+1)}\right]^{c}}^{(K+1), S^{c}}=0} \tag{102}
\end{gather*}
$$

where $I_{N} \in \mathbb{R}^{N \times N}$ is an identity matrix.

## J.5. Step 5

Now we need to verify that the dual variable solved by Step 4 satisfied the strict dual feasibility condition:

$$
\begin{equation*}
\left\|\tilde{Z}_{\left[S^{(K+1)}\right]^{c}}\right\|_{\infty}<1 \tag{103}
\end{equation*}
$$

If we can show the strict dual feasibility condition holds, we can claim that the solution in (98) is equal to the solution in (6), i.e., $\tilde{\Omega}=\hat{\Omega}^{(K+1)}$. Thus we will have

$$
\operatorname{supp}\left(\hat{\Omega}^{(K+1)}\right)=\operatorname{supp}(\tilde{\Omega}) \subseteq S^{(K+1)}=\operatorname{supp}\left(\bar{\Omega}^{(K+1)}\right)
$$

## J.6. Proof of the Strict Dual Feasibility Condition

Plug (96) in the stationarity condition of (6), we have

$$
\begin{equation*}
\hat{\Sigma}^{(K+1), S}-\tilde{\Omega}^{-1}+\lambda \tilde{Z}+\bar{\Sigma}^{(K+1), S^{c}}+I_{N} \operatorname{diag}\left(\bar{\Sigma}^{K+1}-\hat{\Sigma}^{K+1}\right)=0 \tag{104}
\end{equation*}
$$

Define $\Psi:=\tilde{\Omega}-\bar{\Omega}^{(K+1)}, R(\Psi):=\tilde{\Omega}^{-1}-\bar{\Sigma}^{(K+1)}+\bar{\Sigma}^{(K+1)} \Psi \bar{\Sigma}^{(K+1)}$. Notice that $W^{(K+1)}=\bar{\Sigma}^{(K+1), S_{\text {off }}}-\hat{\Sigma}^{(K+1), S_{\text {of }}}$. Then we can rewrite (104) as

$$
\begin{align*}
0= & \hat{\Sigma}^{(K+1), S}-\tilde{\Omega}^{-1}+\lambda \tilde{Z}+\bar{\Sigma}^{(K+1), S^{c}}+I_{N} \operatorname{diag}\left(\bar{\Sigma}^{K+1}-\hat{\Sigma}^{K+1}\right) \\
= & \hat{\Sigma}^{(K+1), S}-\left(\tilde{\Omega}-\bar{\Sigma}^{(K+1)}+\bar{\Sigma}^{(K+1)} \Psi \bar{\Sigma}^{(K+1)}\right)-\bar{\Sigma}^{(K+1)}+\bar{\Sigma}^{(K+1)} \Psi \bar{\Sigma}^{(K+1)}+\bar{\Sigma}^{(K+1), S^{c}} \\
& +I_{N} \operatorname{diag}\left(\bar{\Sigma}^{K+1}-\hat{\Sigma}^{K+1}\right)+\lambda \tilde{Z} \\
= & \hat{\Sigma}^{(K+1), S_{\text {off }}}+I_{N} \operatorname{diag}\left(\hat{\Sigma}^{(K+1)}\right)-R(\Psi)-\bar{\Sigma}^{(K+1), S}+I_{N} \operatorname{diag}\left(\bar{\Sigma}^{K+1}-\hat{\Sigma}^{K+1}\right)+\lambda \tilde{Z}  \tag{105}\\
= & \hat{\Sigma}^{(K+1), S_{\text {off }}}-\bar{\Sigma}^{(K+1), S_{\text {off }}}+\bar{\Sigma}^{(K+1)} \Psi \bar{\Sigma}^{(K+1)}-R(\Psi)+\lambda \tilde{Z} \\
= & W^{(K+1)}+\bar{\Sigma}^{(K+1)} \Psi \bar{\Sigma}^{(K+1)}-R(\Psi)+\lambda \tilde{Z}
\end{align*}
$$

Now apply Lemma 7 with $K=1$ and we can get Lemma 11.

## K. Proof of Lemma 12

For $\xi \in\left(0, \delta^{(K+1), *}\right]$, in Lemma 11, we have proved that if $\left\|W^{(K+1)}\right\|_{\infty} \leq \xi$ then $\left\|\hat{\Omega}^{(K+1)}-\bar{\Omega}^{(K+1)}\right\|_{\infty} \leq$ $2 \kappa_{\bar{\Gamma}^{(K+1)}}\left(\frac{8}{\alpha^{(K+1)}}+1\right) \xi$ and $\operatorname{supp}\left(\hat{\Omega}^{(K+1)}\right) \subseteq \operatorname{supp}\left(\bar{\Omega}^{(K+1)}\right)$.
Therefore if we further assume that

$$
\frac{\omega_{\min }^{(K+1)}}{2} \geq 2 \kappa_{\bar{\Gamma}^{(K+1)}}\left(\frac{8}{\alpha^{(K+1)}}+1\right) \xi
$$

we will have

$$
\frac{\omega_{\min }^{(K+1)}}{2} \geq\left\|\hat{\Omega}^{(K+1)}-\bar{\Omega}^{(K+1)}\right\|_{\infty}
$$

Then for any $(i, j) \in\left[S^{(K+1)}\right]^{c}=\left[\operatorname{supp}\left(\bar{\Omega}^{(K+1)}\right)\right]^{c}, \bar{\Omega}_{i j}^{(K+1)}=0$, we have $\left[\operatorname{supp}\left(\bar{\Omega}^{(K+1)}\right)\right]^{c} \subseteq\left[\operatorname{supp}\left(\hat{\Omega}^{(K+1)}\right)\right]^{c}$ and thus $(i, j) \in\left[\operatorname{supp}\left(\hat{\Omega}^{(K+1)}\right)\right]^{c}, \hat{\Omega}_{i j}^{(K+1)}=0=\bar{\Omega}_{i j}^{(K+1)}$
For any $(i, j) \in S^{(K+1)}=\operatorname{supp}\left(\bar{\Omega}^{(K+1)}\right)$, we have

$$
\begin{aligned}
&\left|\hat{\Omega}_{i j}^{(K+1)}-\bar{\Omega}_{i j}^{(K+1)}\right| \leq\left\|\hat{\Omega}^{(K+1)}-\bar{\Omega}^{(K+1)}\right\|_{\infty} \leq \frac{\omega_{\min }^{(K+1)}}{2}=\frac{1}{2} \min _{1 \leq k, l \leq N} \bar{\Omega}_{k l}^{(K+1)} \leq \frac{1}{2}\left|\bar{\Omega}_{i j}^{(K+1)}\right| \\
& \Rightarrow-\frac{1}{2}\left|\bar{\Omega}_{i j}^{(K+1)}\right| \leq \hat{\Omega}_{i j}^{(K+1)}-\bar{\Omega}_{i j}^{(K+1)} \leq \frac{1}{2}\left|\bar{\Omega}_{i j}^{(K+1)}\right|
\end{aligned}
$$

If $\bar{\Omega}_{i j}^{(K+1)}>0$, then

$$
\begin{aligned}
-\frac{1}{2} \bar{\Omega}_{i j}^{(K+1)} & \leq \hat{\Omega}_{i j}^{(K+1)}-\bar{\Omega}_{i j}^{(K+1)} \\
\hat{\Omega}_{i j}^{(K+1)} & \geq \frac{1}{2} \bar{\Omega}_{i j}^{(K+1)}>0
\end{aligned}
$$

If $\bar{\Omega}_{i j}^{(K+1)}<0$, then

$$
\begin{gathered}
\hat{\Omega}_{i j}^{(K+1)}-\bar{\Omega}_{i j}^{(K+1)} \leq-\frac{1}{2} \bar{\Omega}_{i j}^{(K+1)} \\
\hat{\Omega}_{i j}^{(K+1)} \leq \frac{1}{2} \bar{\Omega}_{i j}^{(K+1)}<0
\end{gathered}
$$

In conclusion, $\operatorname{sign}\left(\hat{\Omega}_{i j}^{(K+1)}\right)=\operatorname{sign}\left(\bar{\Omega}_{i j}^{(K+1)}\right)$ for $\forall i, j \in\{1,2, \ldots, N\}$. The estimate $\hat{\Omega}^{(K+1)}$ in (6) is sign-consistent.

