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A. Proof of Lemma 1
Define SN++ := {A ∈ RN×N |A � 0}. We first prove the following result:
Lemma 2. For `(Ω) defined in (4), if Ω ∈ SN++, then `(Ω) is strictly convex.

Proof. The gradient of `(Ω) is:

∇` (Ω) =

K∑
k=1

T (k)
(

Σ̂(k) − Ω−1
)

(17)

The Hessian of `(Ω) is:
∇2` (Ω) = TΓ (Ω)

where Γ (Ω) = Ω−1 ⊗ Ω−1 ∈ RN2×N2

.

Since Ω ∈ SN++, we have Ω � 0 and thus Ω−1 � 0. According to Theorem 4.2.12 in (Horn et al., 1994), any eigenvalue of
Γ (Ω) = Ω−1 ⊗ Ω−1 is the product of two eigenvalues of Ω−1, hence positive. Therefore,

Γ (Ω) � 0

∇2` (Ω) � 0

`(Ω) is strictly convex.

Now consider `(Ω)+λ‖Ω‖1. Since λ > 0, by Lemma 2, we know `(Ω)+λ‖Ω‖1 is strictly convex for Ω ∈ SN++. Therefore,
the problem in (5) is strict convex and has a unique solution Ω̂.

For Ω̂(K+1) in (6), we have
∇`(K+1)(Ω) = Σ̂(K+1) − Ω−1

and
∇2`(K+1)(Ω) = Γ(Ω) = Ω−1 ⊗ Ω−1

Thus according to the proof of Lemma 2, we know `(K+1)(Ω) is strictly convex. Then `(K+1)(Ω) + λ‖Ω‖1 is strictly
convex for λ > 0 on SN++. Notice that the constraints supp(Ω) ⊆ supp(Ω̂) and diag(Ω) = diag(Ω̂) in (6) can be expressed
as Ωij = 0 for (i, j) /∈ S and Ωii = Ω̂ii for i ∈ {1, . . . , n}. Therefore the constraints are linear. Furthermore, (6) is strictly
convex for λ > 0 on SN++.

B. Proof of Theorem 1
Our proof follows the primal-dual witness approach (Ravikumar et al., 2011) which uses Karush-Kuhn Tucker conditions
(from optimization) together with concentration inequalities (from statistical learning theory).

B.1. Preliminaries

Before the formal proof, we first introduce two inequalities with respect to the matrix `∞-operator-norm |||·|||∞:
Lemma 3. For a pair of matrices A ∈ Rm×n, B ∈ Rn×p and a vector x ∈ Rn, we have:

‖Ax‖∞ ≤ |||A|||∞‖x‖∞ (18)

|||AB|||∞ ≤ |||A|||∞|||B|||∞ (19)
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Proof. Note that

‖Ax‖∞ = max
1≤i≤m

|〈ai, x〉|

≤ max
1≤i≤m

‖ai‖1‖x‖∞

= |||A|||∞‖x‖∞

where ai is the vector corresponding to the i-th row of A and 〈·, ·〉 is the inner product. Similarly, we have

‖AB‖∞ = max
1≤i≤m

‖aiB‖1

= max
1≤i≤m

q∑
k=1

∣∣∣ n∑
j=1

AijBjk

∣∣∣
≤ max

1≤i≤m

n∑
j=1

|Aij |
q∑

k=1

|Bjk|

≤ max
1≤i≤m

n∑
j=1

|Aij | max
1≤l≤n

q∑
k=1

|Blk|

= max
1≤i≤m

n∑
j=1

|Aij ||||B|||∞

= |||A|||∞|||B|||∞

Then we prove Theorem 1 with the five steps in the primal-dual witness approach.

B.2. Step 1

Let (ΩS , 0) denote the N × N matrix such that ΩSc = 0. For any Ω = (ΩS , 0) ∈ SN++, we need to verify that[
∇2` ((ΩS , 0))

]
SS
� 0.

According to Lemma 2, since (ΩS , 0) ∈ SN++, we have

∇2` ((ΩS , 0)) � 0 (20)

Denote the vectorization of a matrix A with vec(A) or
−→
A . We use |S| to denote the number of elements in S. Then we have[

∇2` ((ΩS , 0))
]
SS
∈ R|S|×|S|. For ∀x ∈ R|S|, v 6= 0, there exists a matrix A ∈ RN×N , A 6= 0, such that

−→
AS = x. Thus

we have

xT [∇2` ((ΩS , 0))
]
SS
x =

[−→
AS

]T [
∇2` ((ΩS , 0))

]
SS

−→
AS

=
[−−−−→
(AS , 0)

]T
∇2` ((ΩS , 0))

−−−−→
(AS , 0)

> 0

where the inequality follows from (20). Hence
[
∇2` ((ΩS , 0))

]
SS
� 0. Thus the step 1 in primal-dual witness is verified.

B.3. Step 2

Construct the primal variable Ω̃ by making Ω̃Sc = 0 and solving the restricted problem:

Ω̃S = arg min
(ΩS ,0)∈SN

++

` ((ΩS , 0)) + λ‖ΩS‖1 (21)
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B.4. Step 3

Choose the dual variable Z̃ in order to fulfill the complementary slackness condition of (5):
Z̃ij = 1, if Ω̃ij > 0

Z̃ij = −1, if Ω̃ij < 0

Z̃ij ∈ [−1, 1], if Ω̃ij = 0

(22)

Therefore we have
‖Z̃‖∞ ≤ 1 (23)

B.5. Step 4

Z̃ is the subgradient of ‖Ω̃‖1. Solve for the dual variable Z̃Sc in order that (Ω̃, Z̃) fulfills the stationarity condition of (5):[
∇`
((

Ω̃S , 0
))]

S
+ λZ̃S = 0 (24)

[
∇`
((

Ω̃S , 0
))]

Sc
+ λZ̃Sc = 0 (25)

B.6. Step 5

Now we need to verify that the dual variable solved by Step 4 satisfied the strict dual feasibility condition:

‖Z̃Sc‖∞ < 1 (26)

which, according to the stationarity condition, is equivalent to

1

λ
‖
[
∇`
((

Ω̃S , 0
))]

Sc
‖∞ < 1 (27)

This is the crucial part in the primal-dual witness approach. If we can show the strict dual feasibility condition holds, we can
claim that the solution in (21) is equal to the solution in (5), i.e., Ω̃ = Ω̂. Thus we will have

supp
(

Ω̂
)

= supp
(

Ω̃
)
⊆ S = supp

(
Ω̄
)

B.7. Proof of the Strict Dual Feasibility Condition

Plug the gradient of loss function (17) in the stationarity condition of (5), we have

K∑
k=1

T (k)
(

Σ̂(k) − Ω̃−1
)

+ λZ̃ = 0 (28)

Define Σ̄ = Ω̄−1, W (k) := Σ̂(k) − Σ̄, Ψ := Ω̃− Ω̄, R(Ψ) := Ω̃−1 − Σ̄ + Ω̄−1ΨΩ̄−1. Then we can rewrite (28) as∑
k

T (k)W (k) + T
(
Ω̄−1ΨΩ̄−1 −R(Ψ)

)
+ λZ̃ = 0 (29)

From vectorization of product of matrices, we have:

−−−−−−−→
Ω̄−1ΨΩ̄−1 = Γ̄

−→
Ψ (30)

where Γ̄ := Ω̄−1 ⊗ Ω̄−1. Then vectorize both sides of (29) and we can get:

T
(

Γ̄SS
−→
ΨS −

−→
RS

)
+

K∑
k=1

T (k)
−−−→
W

(k)
S + λ

−→̃
ZS = 0 (31)



Meta Learning for Support Recovery in High-dimensional Precision Matrix Estimation

T
(

Γ̄ScS
−→
ΨS −

−−→
RSc

)
+

K∑
k=1

T (k)
−−−→
W

(k)
Sc + λ

−−→
Z̃Sc = 0 (32)

where we write R(Ψ) as R for simplicity. By solving (31) for
−→
ΨS , we get:

−→
ΨS =

1

T
Γ̄−1
SS

(
T
−→
RS −

K∑
k=1

T (k)
−−−→
W

(k)
S − λ

−→̃
ZS

)
(33)

where we write (Γ̄SS)−1 as Γ̄−1
SS for simplicity. Plug (33) in (32) to solve for

−−→
Z̃Sc :

−−→
Z̃Sc = − 1

λ
T Γ̄ScS

−→
ΨS +

1

λ
T
−−→
RSc − 1

λ

K∑
k=1

T (k)
−−−→
W

(k)
Sc

= − 1

λ
Γ̄ScSΓ̄−1

SS

(
T
−→
RS −

K∑
k=1

T (k)
−−−→
W

(k)
S − λ

−→̃
ZS

)
+

1

λ
T
−−→
RSc − 1

λ

K∑
k=1

T (k)
−−−→
W

(k)
Sc

= − 1

λ
Γ̄ScSΓ̄−1

SS

(
T
−→
RS −

K∑
k=1

T (k)
−−−→
W

(k)
S

)
+ Γ̄ScSΓ̄−1

SS

−→̃
ZS +

1

λ

(
T
−−→
RSc −

K∑
k=1

T (k)
−−−→
W

(k)
Sc

)

According to (18) and the expression above, we have:

‖
−−→
Z̃Sc‖∞ ≤

1

λ
‖Γ̄ScSΓ̄−1

SS

(
T
−→
RS −

K∑
k=1

T (k)
−−−→
W

(k)
S

)
‖∞ + ‖Γ̄ScSΓ̄−1

SS

−→̃
ZS‖∞

+
1

λ

(
T‖
−−→
RSc‖∞ + ‖

K∑
k=1

T (k)
−−−→
W

(k)
S ‖∞

)

≤ 1

λ

∣∣∣∣∣∣Γ̄ScSΓ̄−1
SS

∣∣∣∣∣∣
∞

(
T‖
−→
RS‖∞ + ‖

K∑
k=1

T (k)
−−−→
W

(k)
S ‖∞

)

+
∣∣∣∣∣∣Γ̄ScSΓ̄−1

SS

∣∣∣∣∣∣
∞ +

1

λ

(
T‖
−−→
RSc‖∞ + ‖

K∑
k=1

T (k)
−−−→
W

(k)
S ‖∞

)

where we have used ‖
−→̃
ZS‖∞ ≤ 1 by (23).

Therefore under Assumption 1, we have:

‖Z̃Sc‖∞ = ‖
−−→
Z̃Sc‖∞ ≤

2− α
λ

(
T‖
−→
R‖∞ + ‖

K∑
k=1

T (k)
−−−→
W (k)‖∞

)
+ 1− α

If we can bound the two terms: T‖
−→
R‖∞, ‖

∑K
k=1 T

(k)
−−−→
W (k)‖∞ ≤ αλ

8 , then we will have:

‖Z̃Sc‖∞ ≤ 1− α

2
< 1

From all the reasoning so far, we have the following Lemma:

Lemma 4. If we have T‖
−−−→
R(Ψ)‖∞, ‖

∑K
k=1 T

(k)
−−−→
W (k)‖∞ ≤ αλ

8 , then

‖Z̃Sc‖∞ < 1,

i.e., the strict-dual feasibility condition is fulfilled.
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Thus the key step is to bound T‖
−→
R‖∞ and ‖

∑K
k=1 T

(k)
−−−→
W (k)‖∞ by αλ

8 . We will first consider T‖
−→
R‖∞.

We have the following Lemma in (Ravikumar et al., 2011) (Lemma 5):

Lemma 5. For any ρ ∈ RN×N , If we have ‖ρ‖∞ ≤ 1
3κΣ̄d, then the matrix J(ρ) :=

∑∞
k=0(−1)k(Ω̄−1ρ)k will satisfy∣∣∣∣∣∣JT

∣∣∣∣∣∣
∞ ≤

3
2 and the matrix R(ρ) := (Ω̄ + ρ)−1 − Ω̄−1 + Ω̄−1ρΩ̄−1 will satisfy:

R(ρ) = Ω̄−1ρΩ̄−1ρJ(ρ)Ω̄−1 (34)

and
‖R(ρ)‖∞ ≤

3

2
d‖ρ‖2∞κ3

Σ̄ (35)

Here κΣ̄ :=
∣∣∣∣∣∣Σ̄∣∣∣∣∣∣∞ =

∣∣∣∣∣∣Ω̄−1
∣∣∣∣∣∣
∞, d := max1≤i≤N #

{
j : 1 ≤ j ≤ N, Ω̄ij 6= 0

}
.

For R(ρ) defined in the above Lemma, we vectorize R(ρ)S and then we have

−−−→
R(ρ)S =vec

([
(Ω̄ + ρ)−1 − Ω̄−1

]
S

)
+ vec

(
[Ω̄−1ρΩ̄−1]S

)
=vec

([
(Ω̄ + ρ)−1]S − [Ω̄−1

]
S

)
+ Γ̄SS

−→ρS
(36)

where the first line follows from the definition of R(ρ) in Lemma 5 and the second line follows from (30)

Define κΓ̄ :=
∣∣∣∣∣∣Γ̄−1

SS

∣∣∣∣∣∣
∞. For Ω ∈ RN×N , define the subgradient of (21) as G(ΩS), i.e., G(ΩS) := −T [Ω−1]S +∑K

k=1 T
(k)Σ̂

(k)
S + λZ̃S . Since we have proved in Step 1 that ` is strictly convex, Ω̃S is the only solution of the restricted

problem of (21). Therefore Ω̃S is the only solution that satisfies the stationary condition G(ΩS) = 0.

Next for ρ ∈ RN×N , define F (−→ρS) = − 1
T Γ̄−1

SS

−→
G(Ω̄S + ρS) +−→ρS . Then:

F (−→ρS) = −→ρS ⇔ G(Ω̄S + ρS) = 0⇔ Ω̄S + ρS = Ω̃S

Thus the fixed point of F (·) is ΨS = Ω̃S − Ω̄S and it is unique.

Now define r := 2κΓ̄

(
λ
T + ‖

∑K
k=1

T (k)

T W (k)‖∞
)

. Suppose r ≤ min
{

1
3κΣ̄d

, 1
3κ3

Σ̄
κΓ̄d

}
. Define the `∞ radius-r ball

B(r) := {ρS : ‖ρS‖∞ ≤ r}. For ∀ρS ∈ B(r), define ρ = (ρS , 0), i.e., [ρ]S = ρS and [ρ]Sc = 0. We have:

G(Ω̄S + ρS) = T
(
−[(Ω̄ + ρ)−1]S + [Ω̄−1]S

)
+

K∑
k=1

T (k)W
(k)
S + λZ̃S

Then,

F (−→ρS) =− 1

T
Γ̄−1
SSvec

(
T
(
−[(Ω̄ + ρ)−1]S + [Ω̄−1]S

)
+

K∑
k=1

T (k)W
(k)
S + λZ̃S

)
+−→ρS

=Γ̄−1
SS

{
vec
(
[(Ω̄ + ρ)−1]S − [Ω̄−1]S

)
+ Γ̄SS

−→ρS
}
− 1

T
Γ̄−1
SSvec

(
K∑
k=1

T (k)W
(k)
S + λZ̃S

)

= Γ̄−1
SS

−−−→
R(ρ)S︸ ︷︷ ︸
V1

− 1

T
Γ̄−1
SS

(
K∑
k=1

T (k)
−−−→
W

(k)
S + λ

−→̃
ZS

)
︸ ︷︷ ︸

V2

(37)

where the third line follows from (36). For V2 defined above we have:

‖V2‖∞ ≤
∣∣∣∣∣∣Γ̄−1

SS

∣∣∣∣∣∣
∞‖

λ

T

−→̃
ZS +

K∑
k=1

T (k)

T
W (k)‖∞

≤κΓ̄

(
λ

T
+ ‖

K∑
k=1

T (k)

T
W (k)‖∞

)
=
r

2
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where the first inequality follows from (18), the second inequality follows from (23) and the third line follows from the
definition of r.

For V1 defined in (37) we have:
‖V1‖∞ ≤

∣∣∣∣∣∣Γ̄−1
SS

∣∣∣∣∣∣
∞‖R(ρ)S‖∞

≤ κΓ̄‖R(ρ)‖∞

≤ κΓ̄

(
3

2
dκ3

Σ̄

)
‖ρ‖2∞

≤ 3

2
dκ3

Σ̄κΓ̄r
2

≤ r

2

(38)

where the first inequality is due to (18) and the second inequality is due to Lemma 5 and ‖ρ‖∞ = ‖ρS‖∞ ≤ r.

Thus ‖F (−→ρS)‖∞ ≤ r, F (−→ρS) ∈ B(r), which indicates F (B(r)) ⊂ B(r). By Brouwer’s fixed point theorem (see e.g.,
(Ortega & Rheinboldt, 2000)), there exists some fixed point of F (·) in B(r). We have proved that the fixed point of F (·) is
ΨS and it is unique, therefore ΨS ∈ B(r), i.e., ‖Ψ‖∞ = ‖ΨS‖∞ ≤ r. Thus by Lemma 5, ‖R(Ψ)‖∞ ≤ 3

2d‖Ψ‖
2
∞κ

3
Σ̄

.

From all the reasoning so far, we have the following Lemma:

Lemma 6. If r = 2κΓ̄

(
λ
T + ‖

∑K
k=1

T (k)

T W (k)‖∞
)
≤ min

{
1

3κΣ̄d
, 1

3κ3
Σ̄
κΓ̄d

}
, then

‖Ψ‖∞ ≤ r

and
‖R(Ψ)‖∞ ≤

3

2
d‖Ψ‖2∞κ3

Σ̄

If ‖
∑K
k=1

T (k)

T W (k)‖∞ ≤ ξ with ξ > 0, then choosing λ = 8Tξ
α , we will have

‖
K∑
k=1

T (k)W (k)‖∞ ≤
αλ

8

as well as

r = 2κΓ̄

(
λ

T
+ ‖

K∑
k=1

T (k)

T
W (k)‖∞

)
≤ 2κΓ̄

(
8

α
+ 1

)
ξ

For ξ ≤ δ∗ := α2

2κΓ̄(α+8)2 min
{

1
3κΣ̄d

, 1
3κ3

Σ̄
κΓ̄d

}
, we have r ≤ min

{
1

3κΣ̄d
, 1

3κ3
Σ̄
κΓ̄d

}
. Thus according to Lemma 6, we have

‖Ψ‖∞ = ‖ΨS‖∞ ≤ r ≤ 2κΓ̄

(
8

α
+ 1

)
ξ

Therefore,

‖R(Ψ)‖∞ ≤
3

2
d‖Ψ‖2∞κ3

Σ̄

≤ 6dκ3
Σ̄κ

2
Γ̄

(
8

α
+ 1

)2

δ2

=

(
6dκ3

Σ̄κ
2
Γ̄

(
8

α
+ 1

)2

ξ

)
αλ

8T

≤ αλ

8T

Then by Lemma 4, ‖Z̃Sc‖∞ < 1 and the strict dual feasibility condition is fulfilled. According to the primal-dual witness
approach, supp(Ω̂) = supp(Ω̃) ⊆ supp

(
Ω̄
)
.

From all the reasoning so far, we can state the following lemma.
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Lemma 7. If ‖
∑K
k=1

T (k)

T W (k)‖∞ ≤ ξ with ξ ∈ (0, δ∗], then choosing λ = 8Tξ
α , we have Ω̂ = Ω̃, supp(Ω̂) ⊆ supp

(
Ω̄
)

and

‖Ω̂− Ω̄‖∞ = ‖Ψ‖∞ ≤ 2κΓ̄

(
8

α
+ 1

)
ξ

For the next step, we need to prove the tail condition of
∑K
k=1

T (k)

T W (k), that is, for ξ > 0, ‖
∑K
k=1

T (k)

T W (k)‖∞ ≤ ξ with
high probability.

B.8. Proof of the Tail Condition

Note that for k = 1, . . . ,K,

W (k) = Σ̂(k) − Σ̄ = Σ̂(k) − Σ̄(k) + Σ̄(k) − Σ̄ = Σ̂(k) − Σ̄(k) +
(

Ω̄ + ∆(k)
)−1

− Σ̄ (39)

Here {∆(k)}Kk=1 are i.i.d. random matrices following the distribution P specified in Definition 3. To achieve the tail
condition of

∑K
k=1

T (k)

T W (k), we can bound the random terms with respect to {∆(k)}Kk=1 and the random terms with
respect to the empirical sample covariance matrices {Σ̂(k)}Kk=1 separately.

We have assumed that the sample size is the same for all tasks, i.e., there are n samples for each of the K tasks and
T (k)/T = 1/K. For the sample covariance matrices, we have the following lemma:

Lemma 8. For {X(k)
t }1≤t≤n,1≤k≤K following a family of random N -dimensional multivariate sub-Gaussian distributions

of size K with parameter σ described in Definition 3, we have

P

[∣∣∣∣∣
K∑
k=1

1

K

(
Σ̂

(k)
ij − Σ̄

(k)
ij

)∣∣∣∣∣ > ν

]
≤ exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}
(40)

and

P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > ν

]
≤ 2N(N + 1) exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}
(41)

for Σ̂(k) = 1
n

∑n
t=1X

(k)
t (X

(k)
t )T, 1 ≤ i, j ≤ N , and 0 ≤ ν ≤ 8

(
1 + 4σ2

)
γ.

The proof of this lemma is in Section G.

For {∆(1)}Kk=1, we have the following lemma

Lemma 9. For {∆(k)}Kk=1 in a family of random N -dimensional multivariate sub-Gaussian distributions of size K with
parameter σ described in Definition 3, define

H(∆(1), . . . ,∆(K)) :=
1

K

K∑
k=1

Σ̄(k) =
1

K

K∑
k=1

(
Ω̄ + ∆(k)

)−1

(42)

Then we have

P [|||H − E[H]|||2 > t] ≤ 2N exp

{
−λ

4
minKt

2

128c2max

}
(43)

for t ≥ 0 and λmin = λmin(Ω̄).

The proof of this lemma is in Section H.

Our goal is to find a probability upper bound for ‖
∑K
k=1

T (k)

T W (k)‖∞ > ξ with 0 < ξ ≤ δ∗. According to (39) and the
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condition β ≤ δ∗/2, we have

‖
K∑
k=1

T (k)

T
W (k)‖∞ =‖

K∑
k=1

1

K
W (k)‖∞

≤‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ + ‖ 1

K

K∑
k=1

Σ̄(k) − Σ̄‖∞

=‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ + ‖H − E[H] + E[H]− Σ̄‖∞

=‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ + |||H − E[H]|||2 + ‖E[H]− Σ̄‖∞

≤‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ + |||H − E[H]|||2 + β

(44)

where we have used the property that |||A|||2 ≥ ‖A‖∞ for any matrix A (see e.g., (Horn & Johnson, 2012)).

Now for δ ∈ (0, δ∗/2], consider
ξ = δ + δ∗/2 (45)

then 0 < ξ ≤ δ∗, δ + τ ≤ ξ and λ = 8Tξ
α = 8δ+4δ∗

α .

According to the condition β ≤ δ∗/2, we know that δ∗/2− β ≥ 0. Set t = δ∗/2− β in (43). Then,

P [|||H − E[H]|||2 > δ∗/2− β] ≤ 2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
)

(46)

By (44) and (45), we have{
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ ≤ δ and |||H − E[H]|||2 ≤

δ∗

2
− β

}
⇒

{
‖
K∑
k=1

T (k)

T
W (k)‖∞ ≤ ξ

}

and thus

P

[
‖
K∑
k=1

T (k)

T
W (k)‖∞ ≤ ξ

]
≥ P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ ≤ δ and |||H − E[H]|||2 ≤

δ∗

2
− β

]

= 1− P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > δ or |||H − E[H]|||2 >

δ∗

2
− β

]

≥ 1−

(
P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > δ

]
+ P

[
|||H − E[H]|||2 >

δ∗

2
− β

])

= 1− P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > δ

]
− 2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
)

(47)

where we have applied (46) for the last step.

When 0 < δ < 8
(
1 + 4σ2

)
γ, we can let ν = δ in (41) to get

P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > δ

]
≤ 1− 2N(N + 1) exp

{
− nKδ2

128 (1 + 4σ2)
2
γ2

}
(48)
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When δ ≥ 8
(
1 + 4σ2

)
γ, we set ν = 8

(
1 + 4σ2

)
γ in (41) to get

P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > δ

]
≤P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > 8

(
1 + 4σ2

)
γ

]

≤2N(N + 1) exp

{
−
nK(8

(
1 + 4σ2

)
γ)2

128 (1 + 4σ2)
2
γ2

}

=2N(N + 1) exp

{
−nK

2

}
(49)

Consider the maximum value of the two upper bounds in (48) and (49). We can get

P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > δ

]
≤max

{
2N(N + 1) exp

{
− nKδ2

128 (1 + 4σ2)
2
γ2

}
, 2N(N + 1) exp

{
−nK

2

}}

=2N(N + 1) exp

(
−nK

2
min

{
δ2

64 (1 + 4σ2)
2
γ2
, 1

})
(50)

According to (47) and (50), we have

P

[
‖
K∑
k=1

T (k)

T
W (k)‖∞ ≤ ξ

]
≥ 1−P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > δ

]
− 2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
)

≥ 1−2N(N + 1) exp

(
−nK

2
min

{
δ2

64 (1 + 4σ2)
2
γ2
, 1

})

−2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
) (51)

Namely, with probability at least

1− 2N(N + 1) exp

(
−nK

2
min

{
δ2

64 (1 + 4σ2)
2
γ2
, 1

})
− 2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
)

we have ‖
∑K
k=1

T (k)

T W (k)‖∞ ≤ ξ ≤ δ∗, supp(Ω̂) ⊆ supp
(
Ω̄
)

and according to Lemma 7, we have

‖Ω̂− Ω̄‖∞ = ‖∆‖∞ ≤ 2κΓ̄

(
8

α
+ 1

)
ξ = κΓ̄

(
8

α
+ 1

)
(2δ + δ∗)

which completes our proof of Theorem 1.

C. Proof of Theorem 2
We have the following lemma as a sufficient condition for the sign-consistency of (5).

Lemma 10. For ξ ∈ (0, δ∗], if

‖
K∑
k=1

T (k)

T
W (k)‖∞ ≤ xi (52)

and
ωmin

2
≥ 2κΓ̄

(
8

α
+ 1

)
ξ (53)

where ωmin := min(i,j)∈S |Ω̄ij |, then the estimate Ω̂ of (5) is sign-consistent.
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The proof is in Section I.

In the remaining part of the proof, we assume that the condition β ≤ δ†/2 stated in Theorem 2 is satisfied. We will consider
two cases for different ωmin > 0.

Case (i). If

ωmin ≥
2α

8 + α
min

{
1

3κΣ̄d
,

1

3κ3
Σ̄
κΓ̄d

}
(54)

then
0 < δ† = δ∗

and
ωmin

2
≥ 2κΓ̄

(
8

α
+ 1

)
δ∗

Thus for ξ = δ∗, (53) holds. Then according to (51), with probability at least

1− 2N(N + 1) exp

(
−nK

2
min

{
(δ∗/2)2

64 (1 + 4σ2)
2
γ2
, 1

})
− 2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
)

= 1− 2N(N + 1) exp

(
−nK

2
min

{
(δ†)2

256 (1 + 4σ2)
2
γ2
, 1

})
− 2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
)

we have ‖
∑K
k=1

T (k)

T W (k)‖∞ ≤ δ∗ and thus by Lemma 10, we have that (5) is sign-consistent.

Case (ii). If

ωmin <
2α

8 + α
min

{
1

3κΣ̄d
,

1

3κ3
Σ̄
κΓ̄d

}
,

then
ωmin

2
< 2κΓ̄

(
8

α
+ 1

)
δ∗

and
0 < δ† = δ′ ≤ δ∗

Thus
ωmin

2
≥ 2κΓ̄

(
8

α
+ 1

)
δ′ (55)

Now apply (51) with ξ = δ′ = δ†, we have

P

[
‖
K∑
k=1

T (k)

T
W (k)‖∞ ≤ δ′

]
≥ 1−2N(N + 1) exp

(
−nK

2
min

{
(δ′ − δ∗/2)2

64 (1 + 4σ2)
2
γ2
, 1

})

−2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
)

≥ 1−2N(N + 1) exp

(
−nK

2
min

{
(δ† − δ†/2)2

64 (1 + 4σ2)
2
γ2
, 1

})

−2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
)

= 1−2N(N + 1) exp

(
−nK

2
min

{
(δ†)2

256 (1 + 4σ2)
2
γ2
, 1

})

−2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
)
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Therefore with probability at least

1− 2N(N + 1) exp

(
−nK

2
min

{
(δ†)2

256 (1 + 4σ2)
2
γ2
, 1

})
− 2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
)

we have ‖
∑K
k=1

T (k)

T W (k)‖∞ ≤ δ′ and thus by Lemma 10, sign-consistency is guaranteed.

In conclusion, when τ ≤ δ†/2, with probability at least

1− 2N(N + 1) exp

(
−nK

2
min

{
(δ†)2

256(1 + 4σ2)2γ2
, 1

})
− 2N exp

(
− λ4

minK

128c2max

(
δ∗

2
− β

)2
)

the estimator Ω̂ is sign-consistent and thus supp(Ω̂) = supp
(
Ω̄
)
, which completes our proof of Theorem 2.

D. Proof of Theorem 3
For ∀Q ∈ [−1/(2d), 1/(2d)]N×N , let Ω(E) := I + Q � mat(E) for E ∈ E where E is the set of all possible values of
E generated according to Theorem 3 and mat(E) ∈ {0, 1}N×N is defined as follows: mat(E)ij = 1 if (i, j) ∈ E and
mat(E)ij = 0 if (i, j) /∈ E for ∀E ∈ E . Then we know Ω(E) is real and symmetric. Thus its eigenvalues are real. By
Gershgorin circle theorem (Golub & Van Loan, 2012), for any eigenvalue λ of Ω(E), λ lies in one of the Gershgorin circles,
i.e., |λ − Ω(E)jj | ≤

∑
l 6=j |Ω(E)jl| holds for some j. Since mat(E)jj = 0 and |Qjl| ≤ 1

2d for 1 ≤ l ≤ N , we have
Ω(E)jj = 1 and

∑
l 6=j |Ω(E)jl| ≤ d · 1

2d = 1
2 . Thus λ ∈

[
1
2 ,

3
2

]
and Ω(E) is positive definite. Thus, we have constructed a

multiple Gaussian graphical model. Now consider Ω(E)−1. Because any eigenvalue µ of [Ω(E)]−1 is the reciprocal of an
eigenvalue of Ω(E), we have |µ| ∈

[
2
3 , 2
]
.

Use λ1(A) to denote the largest eigenvalue of matrix A. for E,E′ ∈ E , according to Theorem H.1.d. in (Marshall et al.,
2010), we have

λ1(Ω(E′)Ω(E)−1) ≤ λ1(Ω(E′))λ1(Ω(E)−1) ≤ 3

2
· 2 = 3

which gives us
tr
(
Ω(E′)Ω(E)−1

)
≤ Nλ1(Ω(E′)Ω(E)−1) ≤ 3N (56)

For Q = {Q(k)}Kk=1, we know that there is a bijection between E and the set of all circular permutations of nodes
V = {1, ..., N}. Thus |E|, i.e., the size of E , is the total number of circular permutations of N elements, which is
CE := (N − 1)!/2. Since E is uniformly distributed on E , the entropy of E given Q is H(E|Q) = logCE .

Consider a family of N -dimensional random multivariate Gaussian distributions of size K with covariance matrices
{Σ̄(k)}Kk=1 generated according to Theorem 3. We use X := {X(k)

t }1≤t≤n,1≤k≤K to denote the collection of n samples
from each of the K distributions. Then for the mutual information I(X;E|Q). We have the following bound:

I(X;E|Q) ≤ 1

C2
E

∑
E

∑
E′

KL(PX|E,Q‖PX|E′,Q)

=
1

C2
E

∑
E

∑
E′

K∑
k=1

n∑
t=1

KL(P
X

(k)
t |E,Q(k)‖PX(k)

t |E′,Q(k))

=
n

C2
E

∑
E

∑
E′

K∑
k=1

1

2

[
tr
(

(I +Q(k) �mat(E′))(I +Q(k) �mat(E))−1
)

−N + log
det(I +Q(k) �mat(E))

det(I +Q(k) �mat(E′))

]
(57)

Since the summation is taken over all (E,E′) pairs, the log term cancels with each other. For the trace term, by (56), we
have

tr
(

(I +Q(k) �mat(E′))(I +Q(k) �mat(E))−1
)
≤ 3N (58)
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for 1 ≤ k ≤ K and E,E′ ∈ E . Putting (58) back to (57) gives

I(X;E|Q) ≤ n

C2
E

∑
E

∑
E′

K∑
k=1

1

2
(3N −N) = nNK (59)

For any estimate Ŝ of S, define Ê = {(i, j) : (i, j) ∈ Ŝ, i 6= j}. Since E ⊆ S, we have P{S 6= Ŝ} ≥ P{E 6= Ê}. Then by
applying Theorem 1 in (Ghoshal & Honorio, 2017), we get

P{S 6= Ŝ} ≥ P{E 6= Ê}

≥ 1− I(X;S|Q) + log 2

H(S|Q)

≥ 1− nNK + log 2

log[(N − 1)!/2]

For log((N − 1)!), we have:

log((N − 1)!) =

N−1∑
i=1

log i

≥
∫ N−1

1

log xdx

= (N − 1) log(N − 1)−N + 2

= (N − 1) logN + (N − 1) log
N − 1

N
+ 2−N

Since

(N − 1) log
N − 1

N
+ 2 = 2− (N − 1) log

(
1 +

1

N − 1

)
≥ 2− 1 > 0

we have
log((N − 1)!) ≥ (N − 1) logN −N = N logN −N − logN

log((N − 1)!/2) = log((N − 1)!)− log 2 ≥ N logN −N − log 2N

For N ≥ 5, N logN −N − log 2N > 0, thus we have

P{S 6= Ŝ} ≥ 1− nNK + log 2

log[(N − 1)!/2]
≥ 1− nNK + log 2

N logN −N − log 2N

which completes our proof of Theorem 3.

E. Proof of Theorem 4
By assumption, we have successfully recovered the true support union in the first step, i.e., supp(Ω̂) = S. Since there are
constraints that supp(Ω) ⊆ supp(Ω̂) = S and diag(Ω) = diag(Ω̂) in (6), we have

`(K+1)(Ω) = 〈Σ̂(K+1),Ω〉 − log det (Ω)

= 〈Σ̂(K+1),S ,Ω〉 − log det (Ω)
(60)

where Σ̂(K+1),S :=
(

Σ̂
(K+1)
S , 0

)
. Then the Lagrangian of the problem (6) is

`(K+1)(Ω) + λ‖Ω‖1 + 〈µ,Ω〉+ 〈ν, diag(Ω− Ω̂)〉 (61)

where µ ∈ RN×N , ν ∈ RN are the Lagrange multipliers satisfying µS = 0. Here we set µ = Σ̄(K+1),Sc

= (Σ̄
(K+1)
Sc , 0)

and ν = diag(Σ̄(K+1) − Σ̂(K+1)) in (61). Define W (K+1) := Σ̄(K+1),Soff − Σ̂(K+1),Soff . With the primal-dual witness
approach, we can get the following lemma similar to Lemma 7.
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Lemma 11. Under Assumption 2, if ‖W (K+1)‖∞ ≤ ξ with ξ ∈ (0, δ(K+1),∗], then choosing λ = 8ξ
α(K+1) , we have

supp(Ω̂(K+1)) ⊆ supp
(
Ω̄(K+1)

)
and

‖Ω̂(K+1) − Ω̄(K+1)‖∞ ≤ 2κΓ̄(K+1)

(
8

α(K+1)
+ 1

)
ξ (62)

The proof is in Section J.

By the definition of W (K+1), we know that W (K+1)
Sc

off
= 0 and W (K+1)

Soff
= [Σ̂(K+1) − Σ̄(K+1)]Soff . Thus ‖W (K+1)‖∞ =

‖[Σ̂(K+1) − Σ̄(K+1)]Soff‖∞. Since we have assumed ‖Σ̄(K+1)‖∞ ≤ γ(K+1), according to Lemma 8 and the proof of (50),
we have

P
[
‖W (K+1)‖∞ ≤ δ(K+1),†

]
=P
[
‖Σ̂(K+1) − Σ̄(K+1)‖∞ ≤ δ(K+1),†

]
≤1− 2|Soff| exp

(
−n

(K+1)

2
min

{
(δ(K+1),†)2

64(1 + 4σ2)2(γ(K+1))2
, 1

}) (63)

because Soff is symmetric.

Similar to Lemma 10, we have the following lemma for the sign-consistency of Ω̂(K+1) in (6).

Lemma 12. For ξ ∈ (0, δ(K+1),∗], if
‖W (K+1)‖∞ ≤ ξ (64)

and
ω

(K+1)
min

2
≥ 2κΓ̄(K+1)

(
8

α(K+1)
+ 1

)
ξ (65)

where ωmin := min(i,j)∈S |Ω̄ij |, then the estimate Ω̂(K+1) in (6) is sign-consistent.

The proof is in Section K. Similar to the proof of Theorem 2, we consider two cases of ω(K+1)
min .

Case (i). If

ω
(K+1)
min ≥ 2α(K+1)

8 + α(K+1)
min

{
1

3κΣ̄(K+1)d(K+1)
,

1

3κ3
Σ̄(K+1)κΓ̄(K+1)d(K+1)

}
(66)

then
0 < δ(K+1),† = δ(K+1),∗

and
ω

(K+1)
min

2
≥ 2κΓ̄(K+1)

(
8

α(K+1)
+ 1

)
δ(K+1),∗

Thus for ξ = δ(K+1),∗, (65) holds. Then according to (63), with probability at least

1− 2|Soff| exp

(
−n

(K+1)

2
min

{
(δ(K+1),†)2

64(1 + 4σ2)2(γ(K+1))2
, 1

})
we have ‖W (K+1)‖∞ ≤ δ = δ(K+1),∗ and thus by Lemma 12, we have that (6) is sign-consistent.

Case (ii). If

ω
(K+1)
min <

2α(K+1)

8 + α(K+1)
min

{
1

3κΣ̄(K+1)d(K+1)
,

1

3κ3
Σ̄(K+1)κΓ̄(K+1)d(K+1)

}
then

ω
(K+1)
min

2
< 2κΓ̄(K+1)

(
8

α(K+1)
+ 1

)
δ(K+1),∗

and
0 < δ(K+1),† = δ(K+1),′ ≤ δ(K+1),∗
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Then

ω
(K+1)
min

2
≥ 2κΓ̄(K+1)

(
8

α(K+1)
+ 1

)
δ(K+1),′ (67)

For ξ = δ(K+1),′ = δ(K+1),†, (65) holds. Now according to (63), with probability at least

1− 2|Soff| exp

(
−n

(K+1)

2
min

{
(δ(K+1),†)2

64(1 + 4σ2)2(γ(K+1))2
, 1

})

we have ‖W (K+1)‖∞ ≤ δ(K+1),′ = δ(K+1),† and thus by Lemma 12, sign-consistency is guaranteed.

In conclusion, with probability at least

1− 2|Soff| exp

(
−n

(K+1)

2
min

{
(δ(K+1),†)2

64(1 + 4σ2)2(γ(K+1))2
, 1

})

the estimator Ω̂(K+1) is sign-consistent and thus supp(Ω̂(K+1)) = supp
(
Ω̄(K+1)

)
, which completes our proof of Theorem

4.

F. Proof of Theorem 5
For ∀Q ∈ [−1/(N log s), 1/(N log s)]N×N , E(K+1) ∈ E , we know Ω(E(K+1)) = I + Q � mat(E(K+1)) is real and
symmetric, where mat(·) ∈ {0, 1}N×N is defined in the proof of Theorem 3. Thus its eigenvalues are real. By Gershgorin
circle theorem (Golub & Van Loan, 2012), for any eigenvalue λ of Ω(E(K+1)), λ lies in one of the Gershgorin circles,
i.e., |λ − Ω(E(K+1))jj | ≤

∑
l 6=j |Ω(E(K+1))jl| holds for some j. Since mat(E(K+1))jj = 0 and |Qjl| ≤ 1/(N log s)

for 1 ≤ l ≤ N , we have Ω(E(K+1))jj = 1. Meanwhile, there are at most s/2 non-zero elements in any row of
mat(E(K+1)) because |E(K+1)| ≤ s and mat(E(K+1)) is symmetric. Thus

∑
l 6=j |Ω(E)jl| ≤ s

2N log s . Then we have

λ ∈
[
1− s

2N log s , 1 + s
2N log s

]
and Ω(E(K+1)) is positive definite. Thus, we have constructed a Gaussian graphical model.

Now consider Ω(E(K+1))−1. Because any eigenvalue µ of Ω(E(K+1))−1 is the reciprocal of an eigenvalue of Ω(E(K+1)),
we have |µ| ≤ 1/(1− s

2N log s ).

For any E(K+1), Ẽ(K+1) ∈ E , according to Theorem H.1.d. in (Marshall et al., 2010), we have

λ1(Ω(Ẽ(K+1))Ω(E(K+1))−1) ≤ λ1(Ω(Ẽ(K+1)))λ1(Ω(E(K+1))−1) ≤
1 + s

2N log s

1− s
2N log s

which gives us

tr
(

Ω(Ẽ(K+1))Ω(E(K+1))−1
)
≤ Nλ1(Ω(Ẽ(K+1))Ω(E(K+1))−1) ≤ N

1 + s
2N log s

1− s
2N log s

(68)

According to the definition of E , we know that |E| = 2s/2. Since E(K+1) is uniformly distributed on E , the entropy of
E(K+1) given Q is

H(E(K+1)|Q) = log |E| ≥ s

2
log 2 (69)

Now let X := {Xt}1≤t≤n be the samples from a N -dimensional multivariate Gaussian distribution with covariance Σ̄
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generated according to Theorem 5. For the mutual information I(X;E(K+1)|Q), we have the following bound:

I(X;E(K+1)|Q) ≤ 1

|E|2
∑

E(K+1)

∑
Ẽ(K+1)

KL(PX|E(K+1),Q‖PX|Ẽ(K+1),Q)

=
1

|E|2
∑

E(K+1)

∑
Ẽ(K+1)

n∑
t=1

KL(PXt|E(K+1),Q‖PXt|Ẽ(K+1),Q)

=
n

|E|2
∑

E(K+1)

∑
Ẽ(K+1)

1

2

[
tr
(

(I +Q�mat(Ẽ(K+1)))(I +Q�mat(E(K+1)))−1
)

−N + log
det(I +Q�mat(E(K+1)))

det(I +Q�mat(Ẽ(K+1)))

]
(70)

Since the summation is taken over all (E(K+1), Ẽ(K+1)) pairs, the log term cancels with each other. For the trace term, by
(68), we have

tr
(

(I +Q�mat(Ẽ(K+1)))(I +Q�mat(E(K+1)))−1
)
≤ N

1 + s
2N log s

1− s
2N log s

(71)

for E(K+1), Ẽ(K+1) ∈ E . Putting (71) back to (70) gives

I(X;E(K+1)|Q) ≤ n

|E|2
∑

E(K+1)

∑
Ẽ(K+1)

1

2

(
N

1 + s
2N log s

1− s
2N log s

−N

)

=
ns

2 log s

1

1− s
2N log s

≤ 2ns

log s

(72)

According to our assumption that 4 ≤ s ≤ N .

Define Ê(K+1) := {(i, j) ∈ Ŝ(K+1) : i 6= j}. By applying Theorem 1 in (Ghoshal & Honorio, 2017), we get

P{S(K+1) 6= Ŝ(K+1)} ≥P{E(K+1) 6= Ê(K+1)}

≥1− I(X;E(K+1)|Q) + log 2

H(E(K+1)|Q)

≥1−
2ns
log s + log 2

log |E|

=1−
2ns
log s + log 2

s
2 log 2

=1− 4n

(log 2)(log s)
− 2

s

where the third inequality is by (72).

G. Proof of Lemma 8
We first prove the following lemma showing that (40) and (41) hold for deterministic covariance matrices {Σ(k)}Kk=1.

Lemma 13. For K deterministic matrices {Σ̄(k)}Kk=1 and γ ≥ ‖Σ̄(k)‖∞ for 1 ≤ k ≤ K, consider the samples
{X(k)

t }1≤t≤n,1≤k≤K ⊆ RN satisfying the following conditions:

(i) E
[
X

(k)
t

]
= 0, Cov

(
X

(k)
t

)
= Σ̄(k) for 1 ≤ t ≤ n, 1 ≤ k ≤ K;

(ii)
{
X

(k)
t

}
1≤t≤n, 1≤k≤K

are independent;
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(iii)
X

(k)
t,i√
Σ̄

(k)
ii

is sub-Gaussian with parameter σ for 1 ≤ i ≤ N, 1 ≤ t ≤ n, 1 ≤ k ≤ K.

Then for the empirical sample covariance matrices {Σ̂(k)}Kk=1, (40) and (41) hold for 1 ≤ i, j ≤ N and 0 ≤ ν ≤
8
(
1 + 4σ2

)
γ.

Proof. First consider the element-wise tail condition. For 1 ≤ i, j ≤ N , we need to find an upper bound of the following
probability:

P

[∣∣∣ 1

nK

K∑
k=1

n∑
t=1

(
X

(k)
t,i X

(k)
t,j − Σ̄

(k)
ij

) ∣∣∣ > ν

]
(73)

Let si := max1≤k≤K Σ̄
(k)
ii , sj := max1≤k≤K Σ̄

(k)
jj , X̃(k)

t,i :=
X

(k)
t,i√
si

, X̃(k)
t,j :=

X
(k)
t,j√
sj

, ρ̃(k)
ij :=

Σ̄
(k)
ij√
sisj

. We have

(73) = P

4
∣∣∣∑
k,t

(
X̃

(k)
t,i X̃

(k)
t,j − ρ̃

(k)
ij

) ∣∣∣ > 4nKν
√
sisj


Define U (k)

t,ij := X̃
(k)
t,i + X̃

(k)
t,j , V (k)

t,ij := X̃
(k)
t,i − X̃

(k)
t,j . Then for any r ∈ R,

4
∑
k,t

(
X̃

(k)
t,i X̃

(k)
t,j − ρ̃

(k)
ij

)
=
∑
k,t

{(
U

(k)
t,ij

)2

− 2
(
r + ρ̃

(k)
ij

)}
−
∑
k,t

{(
U

(k)
t,ij

)2

− 2
(
r − ρ̃(k)

ij

)}
(74)

Thus

(73) ≤P

∣∣∣∑
k,t

{(
U

(k)
t,ij

)2

− 2
(
r + ρ̃

(k)
ij

)} ∣∣∣ > 2nKν
√
sisj


+ P

∣∣∣∑
k,t

{(
V

(k)
t,ij

)2

− 2
(
r − ρ̃(k)

ij

)} ∣∣∣ > 2nKν
√
sisj

 (75)

Now define
Z

(k)
t,ij :=

(
U

(k)
t,ij

)2

− 2
(
r + ρ̃

(k)
ij

)
Applying the inequality (a+ b)m ≤ 2m(am + bm) on Z(k)

t,ij , we have

E
[∣∣Z(k)

t,ij

∣∣m] ≤ 2m
{
E
[∣∣U (k)

t,ij

∣∣2m]+
[
2
(

1 + ρ̃
(k)
ij

)]m}
(76)

Let r(k)
i :=

√
Σ̄

(k)
ii

si
, r(k)
i :=

√
Σ̄

(k)
ii

si
, then

X̃
(k)
t,i = X̄

(k)
t,i r

(k)
i , X̃

(k)
t,j = X̄

(k)
t,j r

(k)
j

where X̄(k)
t,i :=

X
(k)
t,i√
Σ̄

(k)
ii

, X̄(k)
t,j :=

X
(k)
t,j√
Σ̄

(k)
jj

.

Assume that X̄(k)
t,i is sub-Gaussian with parameter σ for ≤ i ≤ N, 1 ≤ t ≤ n, 1 ≤ k ≤ K, and then we have

E
[
exp

(
λX̃

(k)
t,i

)]
= E

[
exp

(
λX̄

(k)
t,i r

(k)
i

)]
≤ exp

{
λ2

2
σ2
(
r

(k)
i

)2
}

which shows that X̃(k)
t,i is sub-Gaussian with parameter σr(k)

i . Then

E
[
exp

(
λU

(k)
t,ij

)]
=E

[
exp

(
λX̃

(k)
t,i

)
exp

(
λX̃

(k)
t,j

)]
≤E

[
exp

(
2λX̃

(k)
t,i

)] 1
2 E
[
exp

(
2λX̃

(k)
t,j

)] 1
2

≤ exp

{
λ2σ2

[(
r

(k)
i

)2

+
(
r

(k)
j

)2
]}
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Therefore U (k)
t,ij is sub-Gaussian with parameter σ(k)

ij := σ

√
2

[(
r

(k)
i

)2

+
(
r

(k)
j

)2
]

. Similarly, we can prove that V (k)
t,ij is

sub-Gaussian with parameter σ(k)
ij as well. Also note that σ(k)

ij ≤ σ
√

2(1 + 1) = 2σ.

As it is well-known (see e.g., Lemma 1.4 in (Buldygin & Kozachenko, 2000)), for a sub-Gaussian random variable X with
parameter σ, i.e., X that satisfies E

[
eλX

]
≤ exp

(
λ2σ2

2

)
, we have:

E [|X|s] ≤ 2
(s
e

)s/2
σs (77)

Apply this lemma on U (k)
t,ij with s = 2m, m ≥ 2 and we get

E
[∣∣U (k)

t,ij

∣∣2m] ≤ 2

(
2m

e

)m (
σ

(k)
ij

)2m

According to the inequality m! ≥
(
m
e

)m
, we have

E

[∣∣U (k)
t,ij

∣∣2m
m!

]
≤ 2m+1

(
σ

(k)
ij

)2

Plug in (76) and we have E
[∣∣Z(k)

t,ij

∣∣m]
m!


1
m

≤2
1
m


[
22m+1

(
σ

(k)
ij

)2m
] 1

m

+
4
(
r + ρ̃

(k)
ij

)
(m!)

1
m


≤ 2

1
m

4 · 2 1
m

(
σ

(k)
ij

)2

+
4
(
r + ρ̃

(k)
ij

)
(m!)

1
m

︸ ︷︷ ︸
h(m)

(78)

Note that h(m) defined above decreases with m and
∣∣ρ̃(k)
ij

∣∣ ≤ 1.

Since (74) holds for ∀r ∈ R, we can choose r =

(
r
(k)
i

)2
+
(
r
(k)
j

)2

2 . Then we have r < 1 and

Z
(k)
t,ij :=

(
U

(k)
t,ij

)2

−
((

r
(k)
i

)2

+
(
r

(k)
j

)2

+ 2ρ̃
(k)
ij

)
Thus

E
[
Z

(k)
t,ij

]
= 0

and furthermore,

sup
m≥2

E
[∣∣Z(k)

t,ij

∣∣m]
m!


1
m

≤h(2)

=8
(
σ

(k)
ij

)2

+ 4
(
r +

∣∣ρ̃(k)
ij

∣∣)
≤8

(
1 +

(
σ

(k)
ij

)2
)

≤8
(
1 + 4σ2

)
Define B := 8

(
1 + 4σ2

)
. If X is a random variable such that E [X] = 0,

(
E[|X|m]
m!

) 1
m ≤ B for m ≥ 2, then

E
[
eλX

]
= E

[ ∞∑
k=0

Xk

k!
λk

]
= 1 +

∞∑
k=1

λk
E
[
Xk
]

k!
≤ 1 +

∞∑
k=1

(λB)
k ≤ 1 +

(λB)2

1− |λ|B
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when |λ| < 1
B . Meanwhile,

1 +
(λB)2

1− |λ|B
≤ exp

{
λ2B2

1− |λ|B

}
≤ exp

(
2λ2B2

)
when |λ| ≤ 1

2B . Therefore for |λ| ≤ 1
2B ,

E
[
eλX

]
≤ exp

(
2λ2B2

)
= exp

(
λ2(2B)2

2

)
(79)

Then for Xi, 1 ≤ i ≤ n independent and satisfying E [Xi] = 0,
(

E[|Xi|m]
m!

) 1
m ≤ B when m ≥ 2, we can claim that for

0 ≤ ε ≤ 2B,

P

[∣∣∣ n∑
i=1

Xi

∣∣∣ > nε

]
≤ 2 exp

(
− nε

2

8B2

)
(80)

In fact, for 0 ≤ t ≤ 1
2B ,

P

[
n∑
i=1

Xi > nε

]
≤ P

[
et
∑n

i=1 Xi ≥ etnε
]

≤ e−tnεE
[
et
∑n

i=1 Xi

]
=

(
n∏
i=1

E
[
etXi

])
e−tnε

≤ exp
(
2nt2B2 − tnε

)
(81)

Thus choosing t = ε
4B2 ≤ 1

2B , we can get

P

[
n∑
i=1

Xi > nε

]
≤ exp

(
− nε

2

8B2

)
Similarly, we can also prove that

P

[
n∑
i=1

Xi < −nε

]
≤ exp

(
− nε

2

8B2

)
Thus

P

[∣∣∣ n∑
i=1

Xi

∣∣∣ > nε

]
= P

[
n∑
i=1

Xi > nε

]
+ P

[
n∑
i=1

Xi < −nε

]
≤ 2 exp

(
− nε

2

8B2

)

Now consider Z(k)
t,ij , 1 ≤ t ≤ n, 1 ≤ k ≤ K. These random variables are independent by our assumption and satisfy

E
[
Z

(k)
t,ij

]
= 0, supm≥2

(
E
[∣∣Z(k)

t,ij

∣∣m]
m!

) 1
m

≤ 8
(
1 + 4σ2

)
= B by our proof. Then according to (80), for 0 ≤ 2ν

γ ≤ 2B, i.e.,

0 ≤ ν ≤ 8
(
1 + 4σ2

)
γ, we have:

P

∣∣∣∑
k,t

Z
(k)
t,ij

∣∣∣ > 2nKν

γ

 ≤2 exp

{
−4nKν2

8B2γ2

}

=2 exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

} (82)

Since γ ≥ max1≤k≤K ‖Σ̄(k)‖∞ = max1≤l≤N sl ≥
√
sisj for 1 ≤ i, j ≤ N , we have:

P

∣∣∣∑
k,t

Z
(k)
t,ij

∣∣∣ > 2nKν
√
sisj

 ≤ P

∣∣∣∑
k,t

Z
(k)
t,ij

∣∣∣ > 2nKν

γ

 ≤ 2 exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}
(83)
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Plug in the definition of Z(k)
t,ij , we have

P

∣∣∣∑
k,t

{(
U

(k)
t,ij

)2

− 2
(
r + ρ̃

(k)
ij

)} ∣∣∣ > 2nK
√
sisj

ν

 ≤ 2 exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}
(84)

Similarly, we can also prove that for 0 ≤ ν ≤ 8
(
1 + 4σ2

)
γ,

P

∣∣∣∑
k,t

{(
V

(k)
t,ij

)2

− 2
(
r − ρ̃(k)

ij

)} ∣∣∣ > 2nK
√
sisj

ν

 ≤ 2 exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}
(85)

Thus according to (75), we have

(73) ≤P

∣∣∣∑
k,t

{(
U

(k)
t,ij

)2

− 2
(
r + ρ̃

(k)
ij

)} ∣∣∣ > 2nKν
√
sisj


+ P

∣∣∣∑
k,t

{(
V

(k)
t,ij

)2

− 2
(
r − ρ̃(k)

ij

)} ∣∣∣ > 2nKν
√
sisj


≤4 exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}
(86)

i.e.,

P

[∣∣∣ K∑
k=1

1

K

(
Σ̂

(k)
ij − Σ̄

(k)
ij

) ∣∣∣ > ν

]
= P

[∣∣∣ 1

nK

K∑
k=1

n∑
t=1

(
X

(k)
t,i X

(k)
t,j − Σ̄

(k)
ij

) ∣∣∣ > ν

]

≤ 4 exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

} (87)

for 0 ≤ ν ≤ 8
(
1 + 4σ2

)
γ. Then consider the `∞-norm of Σ̂(k) − Σ̄(k). Since Σ̂(k), Σ̄(k) are all symmetric and N ×N ,

we have the following bound:

P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > ν

]
≤ N(N + 1)

2
P

[∣∣∣ K∑
k=1

1

K

(
Σ̂

(k)
ij − Σ̄

(k)
ij

) ∣∣∣ > ν

]

≤ 2N(N + 1) exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

} (88)

for 0 ≤ ν ≤ 8
(
1 + 4σ2

)
γ, which completes our proof of Lemma 13.

Now consider the setting when {Σ̄(k)}Kk=1 are randomly generated based on Definition 3. According to Lemma 13, we have

P

[∣∣∣∣∣
K∑
k=1

1

K

(
Σ̂

(k)
ij − Σ̄

(k)
ij

)∣∣∣∣∣ > ν
∣∣∣{Σ̄(k)}Kk=1

]
≤ exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}
(89)

P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > ν

∣∣∣{Σ̄(k)}Kk=1

]
≤ 2N(N + 1) exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}
(90)

for Σ̂(k) = 1
n

∑n
t=1X

(k)
t (X

(k)
t )T, 1 ≤ i, j ≤ N , and 0 ≤ ν ≤ 8

(
1 + 4σ2

)
γ with γ specified in (2) of the corrected

condition (ii) in Definition 3.
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Then by the law of total expectation (see e.g., (Weiss et al., 2005)), we have

P

[∣∣∣∣∣
K∑
k=1

1

K

(
Σ̂

(k)
ij − Σ̄

(k)
ij

)∣∣∣∣∣ > ν

]
=E{Σ̄(k)}Kk=1

[
P

[∣∣∣∣∣
K∑
k=1

1

K

(
Σ̂

(k)
ij − Σ̄

(k)
ij

)∣∣∣∣∣ > ν
∣∣∣{Σ̄(k)}Kk=1

]]

≤E{Σ̄(k)}Kk=1

[
exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}]

= exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}
Therefore,

P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > ν

]
=E{Σ̄(k)}Kk=1

[
P

[
‖
K∑
k=1

1

K

(
Σ̂(k) − Σ̄(k)

)
‖∞ > ν

∣∣∣{Σ̄(k)}Kk=1

]]

≤E{Σ̄(k)}Kk=1

[
2N(N + 1) exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}]

=2N(N + 1) exp

{
− nKν2

128 (1 + 4σ2)
2
γ2

}
which completes the proof of Lemma 8. Also notice that the proof above does not rely on any assumption on the distribution
of {Σ̄(k)}Kk=1. Thus, (40) and (41) hold as long as condition (iii), (iv) and (v) in Definition 3 are satisfied.

H. Proof of Lemma 9
By definition, H is a function that mapsK matrices to a symmetric matrix of dimensionN , since Ω̄(k) = Ω̄+∆(k) � 0 with
probability 1 according to condition (ii) in Definition 3. For ∀k ∈ {1, . . . ,K}, let {∆(1), . . . ,∆(k), . . . ,∆(K),∆′(k)} be an
i.i.d. family of random matrices following distribution P in Definition 3. Consider H(k)

1 = H(∆(1), . . . ,∆(k), . . . ,∆(K))

and H(k)
2 = H(∆(1), . . . ,∆′(k), . . . ,∆(K)). We have∣∣∣∣∣∣∣∣∣H(k)

1 −H(k)
2

∣∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣∣∣∣∣ 1

K
(Ω̄ + ∆′(k))−1 − (Ω̄ + ∆(k))−1

∣∣∣∣∣∣∣∣∣∣∣∣
2

=
1

K

∣∣∣∣∣∣∣∣∣(Ω̄ + ∆′(k))−1 − Ω̄−1 + Ω̄−1 − (Ω̄ + ∆(k))−1
∣∣∣∣∣∣∣∣∣

2

≤ 1

K

∣∣∣∣∣∣∣∣∣(Ω̄ + ∆′(k))−1 − Ω̄−1
∣∣∣∣∣∣∣∣∣

2
+

1

K

∣∣∣∣∣∣∣∣∣(Ω̄ + ∆(k))−1 − Ω̄−1
∣∣∣∣∣∣∣∣∣

2

(91)

Since P∆∼P [|||∆|||2 ≤ cmax ≤ λmin

2 ] = 1 with λmin = λmin(Ω̄) by (2) and since Ω̄ � 0, we have∣∣∣∣∣∣∣∣∣(Ω̄ + ∆(k))−1 − Ω̄−1
∣∣∣∣∣∣∣∣∣

2
≤ cmax

λmin(λmin − cmax)
≤ 2cmax

λ2
min

and ∣∣∣∣∣∣∣∣∣(Ω̄ + ∆′(k))−1 − Ω̄−1
∣∣∣∣∣∣∣∣∣

2
≤ cmax

λmin(λmin − cmax)
≤ 2cmax

λ2
min

according to Equation (7.2) in (El Ghaoui, 2002). Plug the above inequalities in (91) and we can get∣∣∣∣∣∣∣∣∣H(k)
1 −H(k)

2

∣∣∣∣∣∣∣∣∣
2
≤ 1

K

∣∣∣∣∣∣∣∣∣(Ω̄ + ∆′(k))−1 − Ω̄−1
∣∣∣∣∣∣∣∣∣

2
+

1

K

∣∣∣∣∣∣∣∣∣(Ω̄ + ∆(k))−1 − Ω̄−1
∣∣∣∣∣∣∣∣∣

2
≤ 4cmax

Kλ2
min

(92)

For k = 1, . . . ,K, define Ak = 4cmax

Kλ2
min
IN with IN ∈ RN×N being an identity matrix. Then by (92), we have

(H
(k)
1 −H(k)

2 )2 � A2
k
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where X � Y ⇐⇒ Y −X � 0.

Define σ2
∆ :=

∣∣∣∣∣∣∣∣∣∑K
k=1A

2
k

∣∣∣∣∣∣∣∣∣
2

=
∑K
k=1

(
4cmax

Kλ2
min

)2

=
16c2max

Kλ4
min

. Then according to Corollary 7.5 in (Tropp, 2011), we have

P [λmax(H − E[H]) > t] ≤ N exp

{
− t2

8σ2
∆

}
≤ N exp

{
−λ

4
minKt

2

128c2max

}
(93)

Consider −H(∆(1), . . . ,∆(K)). We have

((−H(k)
1 )− (−H(k)

2 ))2 � A2
k

The conditions of Corollary 7.5 in (Tropp, 2011) are also satisfied. Thus, we have

P [−λmin(H − E[H]) > t] = P [λmax((−H)− (−E[H])) > t] ≤ N exp

{
− t2

8σ2
∆

}
≤ N exp

{
−λ

4
minKt

2

128c2max

}
(94)

By (93) and (94), we have

P [|||H − E[H]|||2 > t] =P [λmax(H − E[H]) > t,−λmin(H − E[H]) > t]

≤P [λmax(H − E[H]) > t] + P [−λmin(H − E[H]) > t]

≤2N exp

{
−λ

4
minKt

2

128c2max

} (95)

which gives us (43).

I. Proof of Lemma 10
For ξ ∈ (0, δ∗], we have proved that if ‖

∑K
k=1

T (k)

T W (k)‖∞ ≤ ξ then ‖∆‖∞ ≤ 2κΓ̄

(
8
α + 1

)
ξ, Ω̃ = Ω̂ and supp(Ω̂) ⊆

supp(Ω̄).

Therefore if we further assume that
ωmin

2
≥ 2κΓ̄

(
8

α
+ 1

)
ξ

we will have
ωmin

2
≥ ‖∆‖∞ = ‖Ω̂− Ω̄‖∞

Then for any (i, j) ∈ Sc =
[
supp(Ω̄)

]c
, Ω̄ij = 0, we have

[
supp(Ω̄)

]c ⊆ [supp(Ω̂)
]c

and thus (i, j) ∈
[
supp(Ω̂)

]c
,

Ω̂ij = 0 = Ω̄ij

For any (i, j) ∈ S = supp(Ω̄), we have

|Ω̂ij − Ω̄ij | ≤ ‖Ω̂− Ω̄‖∞ ≤
ωmin

2
=

1

2
min

1≤k,l≤N
Ω̄kl ≤

1

2
|Ω̄ij |

⇒ −1

2
|Ω̄ij | ≤ Ω̂ij − Ω̄ij ≤

1

2
|Ω̄ij |

If Ω̄ij > 0, then

−1

2
Ω̄ij ≤ Ω̂ij − Ω̄ij

Ω̂ij ≥
1

2
Ω̄ij > 0

If Ω̄ij < 0, then

Ω̂ij − Ω̄ij ≤ −
1

2
Ω̄ij

Ω̂ij ≤
1

2
Ω̄ij < 0

In conclusion, sign(Ω̂ij) = sign(Ω̄ij) for ∀ i, j ∈ {1, 2, ..., N}. The estimate Ω̂ in (5) is sign-consistent.
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J. Proof of Lemma 11
Plug µ = Σ̄(K+1),Sc

= (Σ̄
(K+1)
Sc , 0) and ν = diag(Σ̄(K+1)− Σ̂(K+1)) in (61). We have the following optimization problem

Ω̂(K+1) = arg min
Ω∈SN

++

`(K+1)(Ω) + λ‖Ω‖1 + 〈Σ̄(K+1),Sc

,Ω〉+ 〈diag(Σ̄K+1 − Σ̂K+1), diag(Ω− Ω̂)〉

Now we can prove with the five steps in the primal-dual witness approach.

J.1. Step 1

For (ΩS(K+1) , 0) ∈ SN++, we need to verify [∇2`(K+1)(Ω)]S(K+1)S(K+1) � 0. In fact,

∇`(K+1)(Ω) = Σ̂(K+1),S − Ω−1 (96)

∇2`(K+1)(Ω) = Γ(Ω) = Ω−1 ⊗ Ω−1 (97)

For (ΩS(K+1) , 0) ∈ SN++, we have Γ((ΩS(K+1) , 0)) � 0, ∇2`(K+1)(Ω) � 0. Thus following the same steps in section B.2 ,
we can prove [∇2`(K+1)(Ω)]S(K+1)S(K+1) � 0.

J.2. Step 2

Construct the primal variable Ω̃ by making Ω̃[S(K+1)]c = 0 and solving the restricted problem:

Ω̃S(K+1) = arg min
(Ω

S(K+1) ,0)∈SN
++

`(K+1) ((ΩS(K+1) , 0)) + λ‖ΩS(K+1)‖1

+ 〈Σ̄(K+1),Sc

, (ΩS(K+1) , 0)〉+ 〈diag(Σ̄K+1 − Σ̂K+1), diag((ΩS(K+1) , 0)− Ω̂)〉
(98)

J.3. Step 3

Choose the dual variable Z̃ in order to fulfill the complementary slackness condition of (61):
Z̃ij = 1, if Ω̃ij > 0

Z̃ij = −1, if Ω̃ij < 0

Z̃ij ∈ [−1, 1], if Ω̃ij = 0

(99)

Therefore we have
‖Z̃‖∞ ≤ 1 (100)

J.4. Step 4

Z̃ is the subgradient of ‖Ω̃‖1. Solve for the dual variable Z̃[S(K+1)]c in order that (Ω̃, Z̃) fulfills the stationarity condition of
(61): [

∇`(K+1)
((

Ω̃S(K+1) , 0
))]

S(K+1)
+ λZ̃S(K+1) + INdiag(Σ̄(K+1) − Σ̂(K+1)) = 0 (101)[

∇`(K+1)
((

Ω̃S(K+1) , 0
))]

[S(K+1)]c
+ λZ̃[S(K+1)]c + Σ̄

(K+1),Sc

[S(K+1)]c
= 0 (102)

where IN ∈ RN×N is an identity matrix.

J.5. Step 5

Now we need to verify that the dual variable solved by Step 4 satisfied the strict dual feasibility condition:

‖Z̃[S(K+1)]c‖∞ < 1 (103)

If we can show the strict dual feasibility condition holds, we can claim that the solution in (98) is equal to the solution in (6),
i.e., Ω̃ = Ω̂(K+1). Thus we will have

supp
(

Ω̂(K+1)
)

= supp
(

Ω̃
)
⊆ S(K+1) = supp

(
Ω̄(K+1)

)
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J.6. Proof of the Strict Dual Feasibility Condition

Plug (96) in the stationarity condition of (6), we have

Σ̂(K+1),S − Ω̃−1 + λZ̃ + Σ̄(K+1),Sc

+ INdiag(Σ̄K+1 − Σ̂K+1) = 0 (104)

Define Ψ := Ω̃− Ω̄(K+1), R(Ψ) := Ω̃−1− Σ̄(K+1) + Σ̄(K+1)ΨΣ̄(K+1). Notice that W (K+1) = Σ̄(K+1),Soff − Σ̂(K+1),Soff .
Then we can rewrite (104) as

0 =Σ̂(K+1),S − Ω̃−1 + λZ̃ + Σ̄(K+1),Sc

+ INdiag(Σ̄K+1 − Σ̂K+1)

=Σ̂(K+1),S − (Ω̃− Σ̄(K+1) + Σ̄(K+1)ΨΣ̄(K+1))− Σ̄(K+1) + Σ̄(K+1)ΨΣ̄(K+1) + Σ̄(K+1),Sc

+ INdiag(Σ̄K+1 − Σ̂K+1) + λZ̃

=Σ̂(K+1),Soff + INdiag(Σ̂(K+1))−R(Ψ)− Σ̄(K+1),S + INdiag(Σ̄K+1 − Σ̂K+1) + λZ̃

=Σ̂(K+1),Soff − Σ̄(K+1),Soff + Σ̄(K+1)ΨΣ̄(K+1) −R(Ψ) + λZ̃

=W (K+1) + Σ̄(K+1)ΨΣ̄(K+1) −R(Ψ) + λZ̃

(105)

Now apply Lemma 7 with K = 1 and we can get Lemma 11.

K. Proof of Lemma 12
For ξ ∈ (0, δ(K+1),∗], in Lemma 11, we have proved that if ‖W (K+1)‖∞ ≤ ξ then ‖Ω̂(K+1) − Ω̄(K+1)‖∞ ≤
2κΓ̄(K+1)

(
8

α(K+1) + 1
)
ξ and supp(Ω̂(K+1)) ⊆ supp(Ω̄(K+1)).

Therefore if we further assume that
ω

(K+1)
min

2
≥ 2κΓ̄(K+1)

(
8

α(K+1)
+ 1

)
ξ

we will have
ω

(K+1)
min

2
≥ ‖Ω̂(K+1) − Ω̄(K+1)‖∞

Then for any (i, j) ∈ [S(K+1)]c =
[
supp(Ω̄(K+1))

]c
, Ω̄

(K+1)
ij = 0, we have

[
supp(Ω̄(K+1))

]c ⊆ [supp(Ω̂(K+1))
]c

and

thus (i, j) ∈
[
supp(Ω̂(K+1))

]c
, Ω̂

(K+1)
ij = 0 = Ω̄

(K+1)
ij

For any (i, j) ∈ S(K+1) = supp(Ω̄(K+1)), we have

|Ω̂(K+1)
ij − Ω̄

(K+1)
ij | ≤ ‖Ω̂(K+1) − Ω̄(K+1)‖∞ ≤

ω
(K+1)
min

2
=

1

2
min

1≤k,l≤N
Ω̄

(K+1)
kl ≤ 1

2
|Ω̄(K+1)
ij |

⇒ −1

2
|Ω̄(K+1)
ij | ≤ Ω̂

(K+1)
ij − Ω̄

(K+1)
ij ≤ 1

2
|Ω̄(K+1)
ij |

If Ω̄
(K+1)
ij > 0, then

−1

2
Ω̄

(K+1)
ij ≤ Ω̂

(K+1)
ij − Ω̄

(K+1)
ij

Ω̂
(K+1)
ij ≥ 1

2
Ω̄

(K+1)
ij > 0

If Ω̄
(K+1)
ij < 0, then

Ω̂
(K+1)
ij − Ω̄

(K+1)
ij ≤ −1

2
Ω̄

(K+1)
ij

Ω̂
(K+1)
ij ≤ 1

2
Ω̄

(K+1)
ij < 0

In conclusion, sign(Ω̂
(K+1)
ij ) = sign(Ω̄

(K+1)
ij ) for ∀ i, j ∈ {1, 2, ..., N}. The estimate Ω̂(K+1) in (6) is sign-consistent.


