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Abstract

In this paper, we study meta learning for sup-
port (i.e., the set of non-zero entries) recovery
in high-dimensional precision matrix estimation
where we reduce the sufficient sample complex-
ity in a novel task with the information learned
from other auxiliary tasks. In our setup, each
task has a different random true precision matrix,
each with a possibly different support. We as-
sume that the union of the supports of all the true
precision matrices (i.e., the true support union) is
small in size. We propose to pool all the sam-
ples from different tasks, and improperly esti-
mate a single precision matrix by minimizing
the ¢1-regularized log-determinant Bregman di-
vergence. We show that with high probability, the
support of the improperly estimated single pre-
cision matrix is equal to the true support union,
provided a sufficient number of samples per task
n € O((log N)/K), for N-dimensional vectors
and K tasks. That is, one requires less samples
per task when more tasks are available. We prove
a matching information-theoretic lower bound
for the necessary number of samples, which is
n € Q((log N)/K), and thus, our algorithm is
minimax optimal. Then for the novel task, we
prove that the minimization of the ¢;-regularized
log-determinant Bregman divergence with the ad-
ditional constraint that the support is a subset of
the estimated support union could reduce the suf-
ficient sample complexity of successful support
recovery to O(log(|Sor|)) where | S| is the num-
ber of off-diagonal elements in the support union
and is much less than N for sparse matrices. We
also prove a matching information-theoretic lower
bound of Q(log(|Sos|)) for the necessary number
of samples.
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1. Introduction

Precision (or inverse covariance) matrix estimation is an
important problem in high-dimensional statistical learning
(Wang et al., 2016) with great application in time series
(Chen et al., 2013), principal component analysis (Fan et al.,
2016), probabilistic graphical models (Meinshausen et al.,
2006), etc. For example, in Gaussian graphical models
where we model the variables in a graph as a zero-mean
multivariate Gaussian random vector, the set of off-diagonal
non-zero entries of the precision matrix corresponds exactly
to the set of edges of the graph (Ravikumar et al., 2011).
For this reason, estimating the precision matrix to recover
its support set, which is the set of non-zero entries, is the
common strategy of structure learning in Gaussian graphical
models. An estimate of the precision matrix is called sign-
consistent if it has the same support and sign of entries with
respect to the true matrix.

However, the learner faces several challenges in preci-
sion matrix estimation. The first challenge is the high-
dimensionality of the data. The dimension of the data, IV,
could be much higher than the sample size n, and thus
the empirical sample covariance and its inverse will be-
have badly (Johnstone, 2001). Secondly, unlike in Gaussian
graphical models, the data may not follow multivariate Gaus-
sian distribution. The third challenge is the heterogeneity of
the data. There could be limited samples from the distribu-
tion of interest but a large amount of samples from multiple
multivariate distributions with different precision matrices.

For the first two challenges, we assume the precision matri-
ces are sparse and consider a general class of distributions,
i.e., multivariate sub-Gaussian distributions later described
in Definition 1. The class of sub-Gaussian variates (Buldy-
gin & Kozachenko, 1980) includes for instance Gaussian
variables, any bounded random variable (e.g. Bernoulli,
multinomial, uniform), any random variable with strictly
log-concave density, and any finite mixture of sub-Gaussian
variables. Then we address the high-dimension challenge by
using /; -regularized log-determinant Bregman divergence
minimization (Ravikumar et al., 2011), which is also the #; -
regularized maximum likelihood estimator for multivariate
Gaussian distributions (Yuan & Lin, 2007).
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For the challenge of heterogeneity, prior works have consid-
ered a multi-task learning problem where the learner treats
each different distribution as a task with a related precision
matrix and solves each and every task simultaneously. Sup-
pose there are K tasks and n samples with dimension N
per task. When there is only one task () = 1), Ravikumar
et al. (Ravikumar et al., 2011) proved that n € O(log N)
is sufficient for the sign-consistency of ¢;-regularized log-
determinant Bregman divergence minimization with mul-
tivariate sub-Gaussian data. When K > 1, Honorio et
al. (Honorio et al., 2012) proposed the ¢; ,-regularized
log-determinant Bregman divergence minimization to es-
timate the precision matrices of all tasks and proved that
n € O(log K + log N) is sufficient for the correct sup-
port union recovery with high probability. Guo et al. (Guo
et al., 2011) introduced a different regularized maximum
likelihood estimation to learn all precision matrices and
proved n € O((Nlog N)/K) is sufficient for the correct
support recovery of the precision matrix in each task with
high probability. Ma and Michailidis (Ma & Michailidis,
2016) proposed a joint estimation method consisting of a
group Lasso regularized neighborhood selection step and a
maximum likelihood step. They proved that their method
recovers the support of the precision matrix in each task
with high probability if n € O(K + log N). There are also
several algorithms for the multi-task problem but without
theoretical guarantees for the consistency of their estimates
(Mohan et al., 2014; Chiquet et al., 2011).

In this paper, we solve the heterogeneity challenge with
meta learning where we recover the support of the precision
matrix in a novel task with the information learned from
other auxiliary tasks. Unlike previous methods, we also use
improper estimation in our meta learning method to have
better theoretical guarantees for support recovery. Specifi-
cally, instead of estimating each and every precision matrix
in the auxiliary tasks, we pool all the samples from the aux-
iliary tasks together to estimate a single “common precision
matrix” (see Definition 3) in order to recover the “support
union” (see Definition 3) of the precision matrices in those
tasks. Then we estimate the precision matrix of the novel
task with the constraint that its support is a subset of the
estimated support union and its diagonal entries are equal
to the diagonal entries of the estimated common precision
matrix. We prove that for the sign-consistency of our esti-
mates, the sufficient and necessary sample size per auxiliary
task is n € ©((log N)/K) which is much better than the
results of the aforementioned multi-task learning methods
and enables the learner to gather more tasks (instead of more
samples per task) to get a more accurate estimate since the
sample complexity is inversely proportional to K. The suf-
ficient and necessary sample complexity of the novel task
is ©(log(|Sofr|)) where |Sof| is the number of off-diagonal
elements in the support union S and |Syg| < N for sparse

graphs, which is better than the result in (Ravikumar et al.,
2011).

Moreover, to the best of our knowledge, we are the first to
introduce randomness in the precision matrices of different
tasks while previous methods assume the precision matrix
in each task to be deterministic. Our theoretical results hold
for a wide class of distributions of the precision matrices
under some conditions, which broadens the application sce-
narios of our method. The use of improper estimation in our
method is innovative for the problem of support recovery of
high-dimensional precision matrices. Our work also fills in
the blank of the theory and methodology of meta learning
in high-dimensional precision matrix estimation. Gener-
ally, meta learning aims to develop learning approaches
that could have good performance on an extensive range of
learning tasks and generalize to solve new tasks easily and
efficiently with only a few training examples (Vanschoren,
2019). Thus it is also referred to as learning to learn (Lake
et al., 2015). Current research mainly focuses on design-
ing practical meta learning algorithms, for instance, (Koch
et al., 2015; Vinyals et al., 2016; Sung et al., 2018; Santoro
et al., 2016; Munkhdalai & Yu, 2017; Finn et al., 2017).
We believe our work could provide some insights for the
theoretical understanding of meta learning.

This paper has the following four contributions. Firstly,
we propose a meta learning approach by introducing mul-
tiple auxiliary learning tasks for support recovery of high-
dimensional precision matrices with improper estimation.
Secondly, we add randomness to the precision matrices in
different learning tasks, which is a significant innovation
compared to previous methods. Thirdly, we prove that for
N-dimensional multivariate sub-Gaussian random vectors
and K auxiliary tasks with support union .S, the sufficient
sample complexity of our method is O((log N)/K) per aux-
iliary task for support union recovery and O(log(|Sof|)) for
support recovery of the novel task, which provides the theo-
retical basis for introducing more tasks for meta learning in
support recovery of precision matrices. Fourthly, we prove
information-theoretic lower bounds for the failure of support
union recovery in the auxiliary tasks and the failure of sup-
portrecovery in the novel task. We show that Q((log N)/K)
samples per auxiliary task and Q(log(|Sof|)) samples for
the novel task are necessary for the recovery success, which
proves that our meta learning method is minimax optimal.
Lastly, we conduct synthetic and real-world experiments to
validate our theory. We calculate the support union recovery
rates of our meta learning approach and multi-task learning
approaches for different sizes of samples and tasks. For
a fixed task size K, our approach achieves high support
union recovery rates when the sample size per task has the
order O((log N)/K). For a fixed sample size per task, our
method performs the best when the task size K is large.
Our meta learning approach also achieves the minimum
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log-determinant Bregman divergence in the estimation of
the precision matrices of the novel tasks in two real-world
datasets compared to multi-task learning approaches and
the graphical lasso method.

2. Preliminaries

This section introduces our mathematical models and the
meta learning problem. The important notations used in the
paper are illustrated in Table 1.

2.1. Multivariate Sub-Gaussian Distributions with
Random Precision Matrices

We first define a general class of multivariate distributions,
the multivariate sub-Gaussian distribution.

Definition 1. We say a random vector X € RY follows a
multivariate sub-Gaussian distribution with precision §) €
RN*N and parameter o if

(i) E [Xt(k)} =0, Cov(X) =% = ()", and
(ii) \/);L is a sub-Gaussian random variable with parameter
oforl <i<N.

The definition of sub-Gaussian random variable is as follows
(Buldygin & Kozachenko, 2000):

Definition 2. A random variable X € R is called sub-
Gaussian with parameter o > 0 if

0.22

E[e”ﬂSexp( ), vAeR (1)

Obviously, Gaussian variables are sub-Gaussian and the
Gaussian graphical model is a special case of the multivari-
ate sub-Gaussian distribution.

In this paper, we consider multiple multivariate sub-
Gaussian distributions whose precision matrices are ran-
domly generated, which makes our model more reasonable
and universal compared to the deterministic setting in all
the previous works. Formally, we define the following fam-
ily of multivariate sub-Gaussian distributions with random
precision matrices:

Definition 3. Ler X{* X\, .., X)) € RN be i.i.d. ran-

dom vectors for 1 < k < K. Let Xt(jz) be the i-th entry
(k) : { (k)}
X 1 <3< N. We X
of X, for1l <1 < e say h L<tent®, 1<h<K

follows a family of random N -dimensional multivariate
sub-Gaussian distributions of size K with parameter o if

(i) Q) = Q + A® with Q, AR € RNXN Q) » 0 deter-

ministic, and A(k)7 1 <k <K, are i.i.d. random matrices
drawn from distribution P;

(ii) For some v > 0, ¢ipax € (O, )\min(Q)/Q], we have

Pa~p[Q+ A = 0, supp(A) C supp(€),
Q2+ A) Moo <7 IA[lly < emax] =1

and 8 := [[(Q) ! = Ea~pl(Q+ A) Y[l < 00;

2

(iii) E {Xt(k)]i(k)} — 0, Cov <X§k>|i(k)) — £®) for
S0 = QW) 1<t <n® 1<k <K;
are conditionally independent

v {x(¥)
(W){ b Jicicn® 1<k<k
given {QWY[C 5

x®
(v) 72
5k

eter o for1 <i < N, 1§t§n(k), 1<k <K.

conditioned on Q%) is sub-Gaussian with param-

We refer to S as the true common precision matrix and

S = supp(RQ) as the support union of the above family of
distributions.

Notice that we define the support union as S = supp({2)
instead of UX_ supp(Q(*)) which is a random subset of the
deterministic set S because we are interested on a novel task
where the support of its precision matrix is a subset of the
support of 2, i.e., S.

2.2. Problem Setting

In this paper, we focus on the problem of estimating the sup-
port of the precision matrix of a multivariate sub-Gaussian
distribution. Following the principles of meta learning, we
solve a novel task by first estimating a superset of the sup-
port of the precision matrix in the novel task from K auxil-
iary tasks.

Specifically, suppose there are n(+1) samples from a mul-
tivariate sub-Gaussian distribution with precision matrix
QUK+ for the novel task. We introduce n(*) samples for
each auxiliary task & € {1,..., K} and assume all sam-
ples in the K auxiliary tasks follow a family of random
multivariate sub-Gaussian distributions with common preci-
sion matrix 2 specified in Definition 3. Our meta learning
method aims to recover the support union S = supp(Q)
with the K auxiliary tasks and use S to assist in recov-
ering S+ .= supp(QE+D) with the assumption that
S(K +1) C S.

3. Our Novel Improper Estimation Method

As illustrated in Section 2.2, in the first step of our method,
we recover the support union .S of the K auxiliary tasks by
estimating the true common precision matrix €. To be spe-
cific, we pool all samples from the K tasks together and es-
timate (2 by minimizing the ¢;-regularized log-determinant
Bregman divergence between the estimate and €); i.e., we
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Table 1. Notations used in the paper

Notation Description

sign(x) The sign of x € R, i.e., sign(x) = z/|z| if x # 0; sign(x) =0ifz =0

lal| o The ¢o,-norm of vector @ € R, i.e., max?"_; |a;|

lall1 The ¢1-norm of vector a € R™, i.e., > |a|

1A oo The {oo-norm of matrix A € R™*™, i.e., maxi<i<m,i<j<n |4ij]

lA]1 The {1-norm of matrix A € R™ " i.e., 371 ;<. 1<j<p [4Aij]

1Al o The £, -operator-norm of matrix A € R™*", i.e., maxi<i<m Y. j—; |Aij]

Amin(A) The minimum eigenvalue of matrix A € R™*"

Amax (A) The maximum eigenvalue of matrix A € R™*™

1Al The ¢5-operator-norm of matrix A € R™*™ i.e., \/ Amax(ATA)

A=0 The matrix A is symmetric and positive-definite.

det(A) The determinant of matrix A € R™*"

supp(A) The support set of matrix A € R™*", i.e., {(4, j)|Ai; # 0}

diag(A) The vector consisting of the diagonal entries of matrix A € R"*", i.e., [A11, A2a, ..., Apn]T
|S] The number of elements in the set S

Soft The set of off-diagonal elements in the set S, i.e., {(i,7) : (4,7) € S,i # j}

Ag The sub-matrix composed by the entries according to the set S of A € R™*™, i.e., (A(i, j)) (i.d)es
(A,B) eR The Frobenius inner product of A, B € R™*" i.e., ) icp 1<, Aij Bij

A®BeR™™ The Hadamard product of A, B € R™*",i.e., [A® B|;; = A;;Bi;

A® B e RmPxnd

[A ® B]SIS2

The Kronecker product of A € R™*", B € RP¥Y e, [A ® Bl wy = [A®
Blp(i-1)tk.q(i-1)+1 = Aij Br
The sub-matrix composed by the entries according to the set S1 x S of the matrix AQ B € R™P*"4

for A € R™*" B € RPXY je., ([A &® B](i’j)v(k’l))(i,j)eSl,(k,l)ESQ

solve the following optimization problem with regulariza-
tion constant A > 0:

K
Q= argmin Y T® (log det () — <i<k>,9>) Al
-0 .
(3)

- *) T
where ©*) = 1 Z?Zkl x® (Xt(k)> is the empirical

sample covariance and 7*) is proportional to the number of
samples n*) for task k. Define the following loss function:

K
() =3 1® (@(k),m ~ log det (Q)) )
k=1

Then we can rewrite (3) as

Q) = argmin (4(Q) + A||Q1) o)
Q-0

For clarity of exposition, we assume the number of samples
per auxiliary task is the same, i.e., n(*) = n, T(F) = 1/K
for 1 < k < K in our analysis. In addition, we do not
assume nX 1) = p. Notice that (5) is an improper estima-
tion because we estimate a single precision matrix with data
from different distributions. This will enable us to recover
the support union with the most efficient sample size per
task (see Section 4.2.1).

For the second step, suppose that we have successfully re-
covered the true support union S in the first step. Then
for a novel task, i.e., the (K + 1)-th task, since we have
assumed the support S5+1) of its precision matrix QUE+D
is also a subset of the support union S, we propose the fol-
lowing constrained ¢; -regularized log-determinant Bregman
divergence minimization for QE+D),

QEFD — arg min £5TD(Q) + Q|1

Q>0
s.t. supp(€2) C supp(Q), diag(Q) = diag(Q2).
(6)
where ((KHD(Q) = (2EFD Q) — logdet (Q),

- nE+D) (K K+D\T .
NEHD = sy XD (Xt( + )> is the

empirical sample covariance and {1 is obtained in (5). Note
that (6) is also an improper estimation because of the con-
straint diag(€2) = diag(2). For our target of support recov-
ery and sign-consistency, there is no need to estimate the
diagonal entries of the precision matrix since they are al-
ways positive. Hence, we introduce this constraint to reduce
the sample complexity by only focusing on estimating the
off-diagonal entries (see Section 4.2.2).
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4. Theoretical Results

In this section, we formally state our assumptions and theo-
retical results.

4.1. Assumptions

Our theoretical results require an assumption on the true
common precision matrix  which is called mutual inco-
herence or irrepresentability condition in (Ravikumar et al.,
2011). The Hessian of the loss function (4) when Q = € is

V2 (Q) =TT (7

where T := S°1  T®) and ' := V2 log det(Q) = 0~ ' @
Q-1 € R¥’*N”_ The mutual incoherence assumption is as
follows:

Assumption 1. There exists some o € (0,1] such that
[ITses0ss) ], <1-a
We should notice that H|1;Sc5(f‘gs)’1moo =
max,ese |[Tus(Tss)t[1.  Thus this assumption in
fact places restrictions on the influence of non-support
terms indexed by S¢, on the support-based terms indexed
by S (Ravikumar et al., 2011).

We also require the mutual incoherence assumption for the
precision matrix Q5+ in the novel task:

Assumption 2. There exists o5+1) € (0, 1] such that

K+1) K+1 _
H‘FES(K+1> S(K+1>(F(5(K+1)>S(K+1)) IHLO <1- oK+
®)
where T(E+1) .= (QUE+D) =1 @ (QE+1))=1

For T' and T¥*1) | our analysis keeps explicit track of

the quantities kp H|(fss)‘1H|oo and Kpki) =
K+1) -1

T

To relate the two norms || - [ and [|-[|.., we de-

fine the degree of a matrix as the maximal size
of the supports of its row vectors. The degree of
Q is d = maX1<l<N|{] 1<]<NQ”#0}‘
and the degree of QEFD js E+D =

maxi<i<n H] 1< < NS 20}

We call ¥ := Q! the true common covariflnce matrix and
denote its ,-operator-norm by ks 1= |HE|HOO Similarly
Q(K +1) ) -1

for the covariance matrix S5+ = ( in the

novel task, we define rs(xi1) := |||S(K+1)|Hoo

In order to bound [[I1£]]], in our proof, we define Apiy =

Amin (£2).

To show the sign-consistency of our estimators, we also need
to consider the minimal magnitude of non-zero entries in

I

WEFD

Qand QED e Wi = ming j)es 1], woin

ming jes |Q( ),

4.2. Main Theorems

For our meta learning method, we have

Lemma 1. For A > 0, the problem in (5) and (6) are
strictly convex and have unique solutions 0 and QU+1)
respectively.

The detailed proofs of all the lemmas, theorems and corol-
laries in the paper are in the supplementary material. We
then study the theoretical behaviors of €2 in (5) and Q(K+1)
in (6).

4.2.1. SUPPORT UNION RECOVERY

Our first theorem specifies a probability lower bound of
recovering a subset of the true support union by our esti-
mator in (5) for multiple random multivariate sub-Gaussian
distributions.

Theorem 1. For a family of N-dimensional random multi-
variate sub-Gaussian distributions of size K with parameter
o described in Definition 3 with nk) =n 1<k <K and
satisfying Assumption 1, consider the estimator Q) obtained
in (5) with T®) = 1/K and X\ = (85 4 46*) /o for § €
(0,6* /2] where §* := QHF&'ZS)Q min { Srd’ 3,{3;{?(1}. If
B < 0% /2, then with probability at least

nkK . 5?2 1
— min{ —————
2 64(1 + 402)2+2’

KXL. (6 2
_2Nexp< 282 (2—5> >

we have:

1—2N(N +1)exp (—

©))

(i) supp(2) C supp ()
(&

(ii) |0 = Qoo < rip (2 +1) (26 +6%)

Proof sketch for Theorem 1. We use the primal-dual wit-
ness approach (Ravikumar et al., 2011) to prove Theorem
1. The key step is to verify that the strict dual feasibil-
ity condition holds. Using some norm inequalities and
Brouwer’s fixed point theorem (see e.g. (Ortega & Rhein-
boldt, 2000)), we show that it suffices to bound the ran-
dom term || Zszl LW with Wk = 3(F) — 5 for
1 < k < K after some careful and involved derivation.
Then we decompose the random term into two parts as
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follows

(k)H

e
N\

k=1
| K
:||? Zg(k) S LIS > (R >1 1
k=1
1 &, _ _
<l SOSP - St ZW e
k=1
Yy Y2

Conditioning on {Z(*)}X V] can be bounded by the sub-
Gaussianity of the samples after some careful derivation.
Then by the law of total expectation we can get the term

2N(N +1)exp (—M min 1}) in (9).

Zk 1 %) We bound Y5 with the follow-

52
64(1+402)2~2>

Define H :=
ing two terms

Yy = |H — E[H] + E[H] - ¥|/o

< |E[H] - Slloe + 1~ E[H]]l,  (10)
= B+ 17 — E[H]|l,
since [E[H] — Sl = [(@7" — Eavp[@ +

A) Yl = B. Then we bound ||H —E[H]|,
with Corollary 7.5 in (Tropp, 2011) to get the term

KXL (e 2\ . )
2N exp | — o800 (7 — B) in (9). The detailed proof

is in the supplementary material.

Our proof follows the primal-dual witness approach
(Ravikumar et al., 2011). From Theorem 1, we can see
that for our method, a sample complexity of O((log N)/K)
per task is sufficient for the recovery of a subset of the true
support union.

The next theorem addresses the sign-consistency of the es-
timate (5). We say the estimator € is sign-consistent if

sign(€2;;) = sign(Qy;) for Vi,j € {1,2,..,N} (11
It is obvious that sign-consistency immediately implies the
success of support recovery.

Theorem 2. For a family of N-dimensional random multi-
variate sub-Gaussian distributions of size K with parameter
o described in Definition 3 with nk) =n 1<k<K and
satisfying Assumption 1, consider the estimator ) obtained

in (5) with T™®) = 1/K and \ = 851 Ja where

a? . 1 1
————min{ ——,
2k (o + 8)2 3ksd’ 3kikpd |’

2 1 1
8+« 3ksd’ 3K5Kpd
QWmin th .
——————, otherwise,
4(8 4+ a)kp’

If B < 61 /2, then with probability at least
nk (67)2
1-2N(N +1 ——ming ———m————,1
W+ Dexp ( 2 mm{256(1 +407)292"
KX, (6 ?
AN ( e (3 7) )
(12)

the estimator Q) is sign-consistent and thus supp(f)) =
supp (Q)

According to Theorem 2, a sample complexity of
O((log N)/K) per task is sufficient for the recovery of
the true support union by our estimator in (5).

We also prove the following information-theoretic lower
bound on the failure of support union recovery for some
family of random multivariate sub-Gaussian distributions.

Theorem 3. For some family of N-dimensional random
multivariate sub-Gaussian distributions of size K with pa-
rameter o and covariance matrices {f)(k)}ff:l, suppose
N>53%%=T+HoQW) ! for1 <k < K with
Q™ € [~1/(2d),1/(2d)|N*N symmetric, degree d € 7.+
even and H € {0,1}*N such that H is symmetric and
H;; = 1iff (i,7) € E. Thus S := EU{ (i)}, is the sup-
port union of all precision matrices. Assume E is randomly
generated in the following way:

(i) Obtain a permutation m = (71, T, ..., TN
{1,2,..., N} uniformly at random.

(ii) Let iy == for 1 < j < d/2
(iii) For i = 1, ..., N, add (m;, 1) to E for 1 < j < d/2.

Yof V. =

Thus d is the degree of the precision matrices in all tasks.
Suppose that for each of the K distributions, we have n
samples randomly drawn from them. Then for any estimate
S of S, we have

nNK + log2

P{S >1-—
{5#5k=2 Nlog N — N —log2N

13)

Proof sketch for Theorem 3. For the random set S, random
samples X = {X( h<t<ni<k<x,and Q := {QW |
we prove that the conditional entropy H (S]Q) = log((N —
1)!/2) and the conditional mutual information I(X; S|Q) <
nNK.



Meta Learning for Support Recovery in High-dimensional Precision Matrix Estimation

By the Fano’s inequality extension in (Ghoshal & Honorio,
2017), we have

A I(X;S|Q) + log2 nNK + log2
P{S#S5}>1- —
WS = T i) log(N —1)1/2
which leads to (13). The detailed proof is in the supplemen-
tary material. [

According to Theorem 3, if the sample size per distribution
isn < (logN)/(2K)—1/(2K)—(log(8N))/(2NK), then
with probability larger than 1/2, any method will fail to re-
cover the support union of the multiple random multivariate
sub-Gaussian distributions specified in Theorem 3. Thus
a sample complexity of Q((log N)/K) per task is neces-
sary for the support union recovery of the N-dimensional
multivariate sub-Gaussian distributions in K tasks, which,
combined with Theorem 2, indicates that our estimate (5)
is minimax optimal with a necessary and sufficient sample
complexity of O((log N)/K) per task.

4.2.2. SUPPORT RECOVERY FOR NOVEL TASK

For the novel task, the next theorem proves a probability
lower bound for the sign-consistency of the estimate (6).

Theorem 4. Suppose we have recovered the true support
union S of a family of N-dimensional random multivari-
ate sub-Gaussian distributions of size K with parameter o
described in Definition 3 with n® = n for k = 1, .., K.
For a novel task of multivariate sub-Gaussian distribution
with precision matrix Q5+ such that supp(QUE+1)) C §

and satisfying Assumption 2, consider the estimator QUE+D)
SE+1),1

obtained in (6) with A = %(Tl) where
(a(K+1))2 ) 1
g (@K D) 1 g)2(R+n M { T

1 }
)
3/4:%(K+1)I<Lf(z<+1>
2a(K+l)

SEFDT .=
: = (8+a(K+1))d(K+1)

if U+

min

|

. 1 1
min 173
3I€§<K+1) 3KE(K+1)/€f~(K+1)
K+1), (K+1)
Oé( )wmin

4(8 + B+ D) kpryny

IF[|ISEHD | oo < AEFY then with probability at least,

otherwise.

P (K+1)
1 —2[Syplexp | — 5

(5(K+1)7T)2
n , 1
{ 64(1 + 402)2 (y(E+1))2

(14)

the estimator Q<K+1)_ is sign-consistent and thus
supp(QUEFD) = supp (UKD,

Proof sketch for Theorem 4. We use the primal-dual wit-
ness approach. Since we have two constraints in (6), we can
consider the Lagrangian

L2 1, v) = 5D Q)4 AR+ (g, Q)+ (v, diag(2-))
15)
where 1 € RV*N 1 € RN are the Lagrange multipliers
satisfying us = 0. Here we set u = (E(SIC(H),O) G.e.,
entries of p with index in S equal 0 and entries of 1 with
index in S¢ equal corresponding entries of %) and v =
diag(SE+D) — $(K+D) in (15). Then we show that it
suffices to bound WK+ .= [S(K+D) _ K+ 5 for
the strict dual feasibility condition to hold. W (5+1) can
be bounded by the sub-Gaussianity of the samples. The
detailed proof is in the supplementary material. O

This theorem shows that n5*1) € O(log(|So])) is suffi-
cient for recovering the true support of the novel task with
our estimate (6). Therefore, the overall sufficient sample
complexity for the sign-consistency of the estimators in the
two steps of our meta learning approach is O(log(N)/K)
for each auxiliary task and O(log(|Sef|)) for the novel task,
which is much better than the results of (Ravikumar et al.,
2011), (Honorio et al., 2012), (Guo et al., 2011), and (Ma &
Michailidis, 2016), especially for large number of auxiliary
tasks K and high dimension IV, as discussed in Section 1.

We also prove the following information-theoretic lower
bound for the failure of support recovery for some random
multivariate sub-Gaussian distribution where the support set
is a subset of a known set S.

Theorem 5. For n samples generated from some N -
dimensional multivariate sub-Gaussian distribution with
N > 4, suppose the true covariance matrix is Y =
(I+HoQ) twithQ € [—ﬁgs, Nl})gs]NXN symmetric
and H € {0, 1}N*¥ such that H is symmetric and H;; = 1
iff (i, j) € BEEHD, Thys SE+D .= BE+D U {(i,4) 1NV,
is the support set of the precision matrix of this distribution.
Assume EE*Y) s chosen uniformly at random from the
edge set family € := {E C Sy : (1,j) € E = (j,1) €
E} for a known edge set Syg. Define s := |So|. Assume
4 < s < N. Then for any estimate SE+1) of SEHD e
have

N 4dn 2
ProE+) 4 gy 5 4 2
{s 75 = (log2)(logs) s

(16)
Proof sketch for Theorem 5. For the random set S(K+1),
random vectors X = {X;}? ,, and @), we prove that the
conditional entropy H(S5+D|Q) = log|€| > £log2

and the conditional mutual information I(X; SE+1|Q) <

2ns
logs*

By the Fano’s inequality extension in (Ghoshal & Honorio,
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2017), we have

I(X; SE+D|Q) + log 2
H(SHH|Q)

[[D{S*(K-&-l) £ S(K+1)} >1-—

4dn 2

(log2)(logs) s
The detailed proof is in the supplementary material. O
According to Theorem 5, if n < % logs — % log s,

then P{S(K+1) £ S(K+1)Y > 1, which indicates that the
necessary sample complexity for the support recovery of the
novel task is Q(log s) = Q(log|Set|) and our estimate (6)
is minimax optimal. Therefore, our two-step meta learning
method is minimax optimal.

4.3. Computational Complexity

Several algorithms have been developed to solve the /;-
regularized log-determinant Bregman divergence minimiza-
tion (Hsieh et al., 2012; 2013; Johnson et al., 2012; Cai
etal., 2011). We have proved in Lemma 1 that the problems
in (5) and (6) are convex, which therefore can be solved in
polynomial time with respect to the dimension of the ran-
dom vector N by using interior point methods (Boyd et al.,
2004). Further, state-of-the-art methods for inverse covari-
ance estimation can potentially scale to a million variables
(Hsieh et al., 2013).

5. Validation Experiments
5.1. Synthetic Experiments

We validate our theories with synthetic experiments by re-
porting the success rate for the recovery of the support union.
We simulate Erdos-Renyi random graphs in this experiment
and compare the results of our estimator in (5) with four
multi-task learning methods. We generate Erdos-Renyi ran-
dom graphs as follows. We first generate {) by assigning
an edge with probability d/(N — 1) for each pair of nodes
(i, 7). Then for each edge (i, j), we set {2;; = j; to 1 with
probability 0.5 and to —1 otherwise. For 1 < k < K and
(i,4) € S, ng) is set to 2;; X;; with X;; ~Bernoulli(0.9).
Then we add some constant to the diagonal elements of all
the precision matrices to ensure that their minimum eigen-
value is at least 0.1.

For Figure 1, we fix the number of auxiliary tasks K = 10
and run experiments with sample size per auxiliary task
n = (Clog N)/K for C ranging from 5 to 200. We can
see that our method sucessfully recovers the true support
union with probability close to 1 when the sample size per
auxiliary task is in the order of O((log N)/K) while the
four multi-task learning methods fail. This result provides
experimental evidence for Theorem 2.

For Figure 2, we run experiments for different number of
auxiliary tasks K that ranges from 2 to 100 with the sample
size per auxiliary task n = 200(log N)/K. According to
Figure 2, for our method, the support union recovery prob-
ability increases with K and converges to 1 for K large
enough. For the four multi-task learning methods, however,
the probability decreases to 0 as K grows. The results indi-
cate that even with a small number of samples per auxiliary
task, we can get a sufficiently accurate estimate using our
meta learning method by introducing more auxiliary tasks.

[#Ours e Llinf eL12 * Coop ¢ Joint | [®Ours e Llinf eL12 e Coop * Joint |

Support recovery
Support recovery

5 10 20 50 100 200 5 10 20 50 100 200
Samples: C/K log N Samples: C/K log N

(a) Results when N = 10 (b) Results when N = 20

®Qurs ®Llinf ®L12 ® Coop ® Joint

-

Support recovery
)
«

o

5 10 20 50 100 200
Samples: C/K log N

(c) Results when N = 50

Figure 1. The success rate of support union recovery for differ-
ent sample size n = (C'log N)/K and task size K = 10. Y-
axis shows the success probability and X-axis shows the values
of C. “Ours” is our meta learning method, which we compare
against several multitask methods. “L1Inf” is the /1 ~-regularized
method (Honorio & Samaras, 2010). “L12” is the ¢; »-regularized
method (Varoquaux et al., 2010). “Coop” is the Cooperative-
LASSO method in (Chiquet et al., 2011). “Joint” is the joint
estimation method in (Guo et al., 2011).

5.2. Real-World Data Experiments

We also use our two-step meta learning method to conduct
experiments with two real-world datasets, the single-cell
gene expression dataset from (Kouno et al., 2013) and the
cancer genome atlas dataset from http://tcga-data.
nci.nih.gov/tcga/. There are multiple sub datasets
in the two datasets and we treat the estimation of the pre-
cision matrix of each sub dataset as a learning task. The
single-cell gene expression dataset contains 8 tasks. Each
task contains 120 samples and corresponds to a different
time point (O h, 1 h, 6 h, 12 h, 24 h, 48 h, 72 h, and 96 h).
Each sample has 45 features. In order to simulate a chal-
lenging scenario similar to the ones encountered on meta-
learning, we use 10 samples of each task 1 to 7 to recover the
support union and then use 10 samples of task 8 (the novel
task) to recover its precision matrix. The cancer genome
atlas dataset contains 5 tasks. Each task corresponds to a
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Table 2. Negative log-determinant Bregman divergence of the estimated precision matrices of the novel tasks in the two real-world datasets

using different methods.

Method

Single-cell gene expression dataset

Negative log-determinant Bregman divergence
Cancer genome atlas dataset

Our meta learning method

The ¢; o-regularized method (Honorio & Sama-
ras, 2010)

The /¢, >-regularized method (Varoquaux et al.,
2010)

The Cooperative-LASSO method (Chiquet et al.,
2011)

The joint estimation method (Guo et al., 2011)
The graphical lasso method (applied only on the
novel task) (Friedman et al., 2008)

-47 -109
-179 -123
-100 -117

-85 -181
-534 -150
-324 -270

®Ours ®Llinf eL12 * Coop * Joint ®Ours @ Llinf eL12 * Coop ® Joint

0.5 /

0.5

Support recovery
Support recovery

2 5 10 20 50 100 2 5 10 20 50 100
Tasks: K Tasks: K

(a) Results when N = 10 (b) Results when N = 20

e Ours ®Llinf @12 * Coop ® Joint

Support recovery
)
o

2 5 10 20 50 100
Tasks: K

(c) Results when N = 50

Figure 2. The success rate of support union recovery for different
task size K with the sample size per task n = (200log N)/K.
Y-axis shows the success probability and X-axis shows the value
of K. “Ours” is our meta learning method, which we compare
against several multitask methods. “L1Inf” is the /1 ~-regularized
method (Honorio & Samaras, 2010). “L12” is the ¢ »-regularized
method (Varoquaux et al., 2010). “Coop” is the Cooperative-
LASSO method in (Chiquet et al., 2011). “Joint” is the joint
estimation method in (Guo et al., 2011).

different type of cancer (breast invasive carcinoma, colon
adenocarcinoma, glioblastoma multiforme, lung squamous
cell carcinoma, and ovarian serous cystadenocarcinoma) and
contains 590, 174, 595, 155, and 590 samples respectively.
Each sample consists of 187 genes commonly regulated in
cancer that were identified on independent data sets by (Lu
et al., 2007). In order to simulate a challenging scenario
similar to the ones encountered on meta-learning, we use
15 samples of each task 1 to 4 to recover the support union
and then use 15 samples of task 5 (the novel task) to recover
its precision matrix. In Table 2, we report the negative log-

determinant Bregman divergence (i.e., the log-likelihood of
a multivariate Gaussian distribution) of our meta-learning
method for the novel tasks and compare it with the results
of four multi-task methods and the graphical lasso method.

According to Table 2, our method generalizes better than
the comparison methods for the two datasets since it obtains
the minimum log-determinant Bregman divergence.

6. Conclusion

We develop a meta learning approach for support recovery
in precision matrix estimation. Specifically, we pool all
the samples from K auxiliary tasks with K random pre-
cision matrices, and estimate a single precision matrix by
{1 -regularized log-determinant Bregman divergence mini-
mization to recover the support union of the auxiliary tasks.
Then we estimate the precision matrix of the novel task
with the constraint that its support set is a subset of the
support union to reduce the sufficient sample complexity.
We prove that the sample complexities of O((log N)/K)
per auxiliary task and O (log(|Sof|)) for the novel task are
sufficient for our estimators to recover the support union
and the support of the precision matrix of the novel task.
We also prove that our meta learning method is minimax
optimal. Synthetic experiments are conducted and validate
our theoretical results.

Finally, we believe that the idea of improper estimation
developed on this paper will be useful for other machine
learning problems beyond sparse precision matrix estima-
tion analyzed in this paper and sparse regression analyzed
in (Wang & Honorio, 2021).
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