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Abstract
In this paper we consider the problem of learn-
ing an ✏-optimal policy for a discounted Markov
Decision Process (MDP). Given an MDP with S
states, A actions, the discount factor � P p0, 1q,
and an approximation threshold ✏ ° 0, we pro-
vide a model-free algorithm to learn an ✏-optimal
policy with sample complexity Õp SA lnp1{pq

✏2p1´�q5.5 q 1

and success probability p1´pq. For small enough
✏, we show an improved algorithm with sample
complexity ÕpSA lnp1{pq

✏2p1´�q3 q. While the first bound
improves upon all known model-free algorithms
and model-based ones with tight dependence on
S, our second algorithm beats all known sample
complexity bounds and matches the information
theoretic lower bound up to logarithmic factors.

1. Introduction
Reinforcement learning (RL) (Burnetas & Katehakis, 1997)
studies the problem of how to make sequential decisions to
learn and act in unknown environments (which is usually
modeled by a Markov Decision Process (MDP)) and max-
imize the collected rewards. There are mainly two types
of algorithms to approach the RL problems: model-based
algorithms and model-free algorithms. Model-based RL al-
gorithms keep explicit description of the learned model and
make decisions based on this model. In contrast, model-free
algorithms only maintain a group of value functions instead
of the complete model of the system dynamics. Due to their
space- and time-efficiency, model-free RL algorithms have
been getting popular in a wide range of practical tasks (e.g.,
DQN (Mnih et al., 2015), TRPO (Schulman et al., 2015),
and A3C (Mnih et al., 2016)).
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In RL theory, model-free algorithms are explicitly defined
to be the ones whose space complexity is always sublinear
relative to the space required to store the MDP parameters
(Jin et al., 2018). For tabular MDPs (i.e., MDPs with finite
number of states and actions, usually denoted by S and
A respectively), this requires that the space complexity to
be opS2Aq. Motivated by the empirical effectiveness of
model-free algorithms, the intriguing question of whether
model-free algorithms can be rigorously proved to perform
as well as the model-based ones has attracted much attention
and been studied in the settings such as regret minimization
for episodic MDPs (Azar et al., 2017; Jin et al., 2018; Zhang
et al., 2020)).

In this work, we study the PROBABLY-APPROXIMATELY-
CORRECT-RL (PAC-RL) problem, i.e., to designing an
algorithm for learning an approximately optimal policy. We
will focus on designing the model-free algorithms, and un-
der the model of discounted tabular MDPs with a discount
factor �. The RL algorithm runs for infinitely many time
steps. At each time step t, the RL agent learns a policy ⇡t

based on the information collected before time t, observes
the current state st, makes an action at “ ⇡tpstq, receives
the reward rt and transits to the next state st`1 according
to the underlying environments. The goal of the agent is to
learn the policy ⇡t at each time t so as to maximize the �-

discounted accumulative reward V ⇡tpstq. More concretely,
we wish to minimize the sample complexity for the agent to
learn an ✏-optimal policy, which is defined to be the number
of time steps that V ⇡tpstq † V ˚pstq ´ ✏, where V ˚ is the
optimal discounted accumulative reward that starts with st,
and the formal definitions of both V ⇡ and V ˚ can be found
in Section 2.

The PAC-RL addresses the important problem about how
many trials are required to learn a good policy. We also note
that in the PAC-RL definition, the exploration at each time
step has to align with the learned policy (i.e., at “ ⇡tpstq).
This is stronger than the usual PAC learning definition in
other online learning settings such as multi-armed bandits
(see, e.g., (Even-Dar et al., 2006)) and PAC-RL with a
simulator (see Section 1.2), where the exploration actions
can be arbitrary and may incur a large regret compared to
the optimum.



Model-Free RL: from Clipped Pseudo-Regret to Sample Complexity

Quite a few algorithms have been proposed over the past
nearly two decades for the PAC-RL problem. For model-
based algorithms, MoRmax (Szita & Szepesvari, 2010)
achieves the ÕpSA lnp1{pq

✏2p1´�q6 q sample complexity, and UCRL-

� (Lattimore & Hutter, 2012) achieves ÕpS
2
A lnp1{pq

✏2p1´�q3 q. It is
also worthwhile to mention that R-max (Brafman & Ten-
nenholtz, 2003) was designed for learning the more general
stochastic games and achieves the ÕpS

2
A lnp1{pq

✏3p1´�q6 q sample
complexity in our setting (as analyzed in (Kakade, 2003)).
Unfortunately, none of these algorithms matches the in-
formation theoretical lower bound ⌦p SA

✏2p1´�q3 q proved by
(Lattimore & Hutter, 2012). On the model-free side, known
bounds are even less optimal – the delayed Q-learning al-
gorithm proposed by (Strehl et al., 2006) achieves the sam-
ple complexity of ÕpSA lnp1{pq

✏4p1´�q8 q, and recent work (Dong

et al., 2019) made an improvement to ÕpSA lnp1{pq
✏2p1´�q7 q via a

more carefully designed Q-learning variant. Besides the
results above, (Pazis et al., 2016) provided Õ

´
S

2
A

✏2p1´�q4
¯

sample complexity. However, their algorithm consumes
Õp SA

✏2p1´�q4 q space cost and Õ
´

SA
2

✏2p1´�q4
¯

computational
cost each step, which is far beyond the cost of both model-
based and model-free algorithms when ✏ is small.

1.1. Our Results

We design a model-free algorithm that achieves asymptoti-
cally optimal sample complexity, as follows.

Theorem 1. By the model-free algorithm UCB-
MULTISTAGE-ADVANTAGE, for any discounted MDP

with S states, A actions, and the discount factor �,

any approximation threshold ✏ P p0, p1´�q14
S2A2 q and fail-

ure probability parameter p, with probability p1 ´ pq,

the sample complexity to learn an ✏-optimal policy

with UCB-MULTISTAGE-ADVANTAGE is bounded by

ÕpSA lnp1{pq
✏2p1´�q3 q.

In the theorem statement, polypS,A, 1{p1 ´ �qq stands for
a universal polynomial that is independent of the MDP. Our
UCB-MULTISTAGE-ADVANTAGE algorithm is model-free,
which uses only OpSAq space , and its time complexity
per time step is Op1q. In contrast, the model-based algo-
rithms have to consume ⌦pS2Aq space. For asymptotically
small ✏, the sample complexity of UCB-MULTISTAGE-
ADVANTAGE matches the information theoretic lower bound
of ⌦p SA

✏2p1´�q3 q up to poly-logarithmic terms, and improves
upon all known algorithms in literature, even including the
model-based ones. In Appendix A, we present a tabular
view of the comparison between our algorithms and the
previous works.

To prove Theorem 1, we make two main technical contri-
butions. The first one is a novel relation between sample

complexity and the so-called clipped pseudo-regret, which
can also be viewed as the clipped Bellman error of the
learned value function and policy at each time step. This
relation enables us to reduce the sample complexity analysis
to bounding the clipped pseudo-regret. Our second tech-
nique is a multi-stage update rule, where the visits to each
state-action pair are partitioned according to two types of
stages. An update to the Q-function is triggered only when
a stage of either type has concluded. The lengths of the two
types of stages are set by different choices of parameters
so that we can reduce the clipped pseudo-regret while still
maintaining a decent rate to learn the value function. Finally,
we also spend much technical effort to incorporate the vari-
ance reduction technique for RL via reference-advantage

decomposition introduced in the recent work (Zhang et al.,
2020).

A more detailed overview of our techniques is available in
Section 4. Since the proof of Theorem 1 is rather involved,
we will first provide a proof of the following weaker state-
ment, and defer the full proof of Theorem 1 to Appendix D.

Theorem 2. By the model-free algorithm UCB-
MULTISTAGE, for any approximation threshold

✏ P p0, 1
1´�

s and any failure probability parameter

p, with probability p1 ´ pq, the sample complexity to

learn an ✏-policy with UCB-MULTISTAGE is bounded by

Õp SA lnp1{pq
✏2p1´�q5.5 q.

We highlight that the sample complexity bound in Theo-
rem 2 holds for every possible ✏ P p0, 1

1´�
s. Although the

dependency on � becomes p1´�q´5.5, UCB-MULTISTAGE
still beats all known model-free and model-based algorithms
with tight dependence on S. The proof of Theorem 2
does not rely on the variance reduction technique based
on reference-advantage decomposition (Zhang et al., 2020),
but is sufficient to illustrate both of our main technical con-
tributions.

1.2. Additional Related Works

The PAC-RL problem has also been extensively studied
under the setting of finite-horizon episodic MDPs (Dann
& Brunskill, 2015; Dann et al., 2017; 2019), where the
sample complexity is defined as the number of episodes
in which the policy is not ✏-optimal. Assuming H is the
length of an episode, the optimal sample complexity bound
is ÕpSAH

2 lnp1{pq
✏2

q, proved by (Dann et al., 2019). Note that
the sample complexity bounds for finite-horizon episodic
MDP do not imply sample complexity bounds for infinite-
horizon discounted MDP because one ✏-optimal episode
may contain non-✏-optimal steps. Also we note that existing
algorithms for the finite-horizon case are model-based. It
is still an open problem whether model-free algorithm can
achieve near-optimal sample complexity bound for the finite-
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horizon case.

Much effort has also been made to study the PAC learning
problem for discounted infinite-horizon MDPs, with the
access to a generative model (a.k.a., a simulator). In this
problem, the agent can query the simulator to draw a sample
s1 „ P p¨|s, aq for any state-action pair ps, aq, and the goal
is to output an ✏-optimal policy (with probability p1 ´ pq)
at the end of the algorithm. This problem has been studied
in (Even-Dar & Mansour, 2003; Azar et al., 2011; Ghesh-
laghi et al., 2012; Sidford et al., 2018b;a), and (Sidford
et al., 2018a) achieves the almost tight sample complexity
ÕpSA lnp1{pq

✏2p1´�q3 q.

2. Preliminaries
A discounted Markov Decision Process is given by the five-
tuple M “ xS,A, P, r, �y, where S ˆ A is the state-action
space, P is the transition probability matrix, r is the de-
terministic reward function2 and � P p0, 1q is the discount
factor.

The RL agent interacts with the environment for infinite
number of times. At the t-th time step, the agent learns
a policy ⇡t based on the samples collected before time
t, observes st, executes at “ ⇡tpstq, receives the reward
rpst, atq, and then transits to st`1 according to P p¨|st, atq.

Given a deterministic3 stationary policy ⇡ : S Ñ A, the
value function and Q function are defined as

V ⇡psq “ E
« 8ÿ

t“1

�t´1rpst,⇡pstqq
ˇ̌
ˇs1 “ s, at “ ⇡pstqq

�

Q⇡ps, aq “ rps, aq ` �P p¨|s, aqJV ⇡ “ rps, aq ` �Ps,aV
⇡,

where we use xy to denote xJy for x and y of the same
dimension and use Ps,a to denote P p¨|s, aq for simplicity.

The optimal value function is given by V ˚psq “
sup

⇡
V ⇡psq and the optimal Q-function is defined to be

Q˚ps, aq “ rps, aq ` �Ps,aV ˚ for any ps, aq P S ˆ A.

We present below the formal definitions for sample com-
plexity and PAC-RL .

Definition 1 (✏-sample complexity). Given an algorithm

G and ✏ P p0, 1
1´�

s, the ✏-sample complexity for G is∞
t•1 I rV ˚pstq ´ V ⇡tpstq ° ✏s.

Definition 2 (p✏, pq-PAC-RL). An algorithm G is said to

be p✏, pq-PAC-RL (Probably Approximately Correct in RL)

if for any ✏ P p0, 1
1´�

s, p ° 0, with probability 1 ´ p, the

2It is easy to generalize our results to stochastic reward func-
tions.

3In this work, we mainly consider deterministic policies since
the optimal value function can be achieved by a deterministic
policy.

sample complexity of G is bounded by some polynomial in

pS,A, 1
✏
, 1
1´�

, lnp 1
p

qq.

When ✏ and p are clear in the context, we simply write p✏, pq-
PAC-RL and ✏-sample complexity as PAC-RL and sample
complexity respectively. The goal is to propose an PAC-RL
algorithm to minimize the sample complexity.

3. The UCB-MULTISTAGE Algorithm
In this section, we introduce the UCB-MULTISTAGE
algorithm. The algorithm takes S,A, �, ✏, sets H “
maxt lnp8{pp1´�q✏qq

lnp1{�q , 1
1´�

u and B “
?
H . Throughout the

paper, we set ◆ “ lnp2{pq. The algorithm is described in
Algorithm 1. For each state-action pair ps, aq, the samples
are partitioned into consecutive stages. When a stage is
filled, we update Qps, aq and V psq according to the sam-
ples in the stage via the usual value iteration method. The
most interesting aspect about our method is that two types
of stages, namely the type-I and type-II stages, are intro-
duced. More concretely, the length of the j-th type-I stage
is roughly ěj « Hp1 ` 1{Hqj{B and the length of the j-th
type-II stage is roughly ēj « Hp1 ` 1{Hqj .

We note that the recent work (Zhang et al., 2020) designed
a (single-)stage-based model-free RL algorithm for regret
minimization. Our type-II stage is similar to their work, and
its goal is to make sure that the value function is learned
at a decent rate. In contrast, our type-I stage is new: it is
shorter than the type-II stage, so that triggers more frequent
updates and helps to reduce the difference between the value
functions learned in neighboring type-I stages. The hyper-
parameter B is used to adjust the frequency of type-I updates
(i.e., updates triggered by type-I stage). The two types of
stages work together to reduce the clipped pseudo-regret,
and therefore achieve low sample complexity.

The precise definition of the stages. Let d1 “ H ,
dj`1 “ tp1 ` 1

H
qdju for all j • 1. The sizes of the j-

th type-I and type-II stage are given by ěj “ drj{Bs and
ēj “ dj respectively.

Let N0 “ c1 ¨ S
3
AH

5 lnp4H2
S{✏q◆

✏2
for some large enough

constant c1. We stop updating Qps, aq if the number of
visits to ps, aq is greater than N0, since the value functions
will be sufficiently learned by that time.

Therefore, the time steps when an update is triggered by
the type-I and type-II stages are respectively given by
Ľ “ t∞j

i“1 ěi|1 § j § J̌u and L̄ “ t∞j

i“1 ēi|1 §
j § J̄u, where J̌ “ maxtj|∞j´1

i“1 ěi § N0u and J̄ “
maxtj|∞j´1

i“1 ēi § N0u . Without loss of generality, we
assume that

∞
J̌

i“1 ěi “ N0.
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The statistics. We maintain the following statistics during
the algorithm: for each ps, aq, we use Nps, aq, Ňps, aq, and
N̄ps, aq to respectively denote the total visit number, the
visit number in the current type-I stage and the visit number
in the current type-II stage of ps, aq. We also maintain
µ̌ps, aq and µ̄ps, aq, which are respectively the accumulators
for state values V ps1q (where s1 is the next state observed
after ps, aq) during the current type-I and type-II stages.

We also remark that throughout the paper we will use ‘ ˇ’
to denote the quantities related to the type-I stage, and use
‘¯’ to denote the quantities related to the type-II stage.

Algorithm 1 UCB-MULTISTAGE

Initialize: @ps, aq P S ˆ A: Qps, aq – 1
1´�

,
Nps, aq, Ňps, aq, N̄ps, aq, µ̌ps, aq, µ̄ps, aq – 0;
for t “ 1, 2, 3, . . . do

Observe st;
Take action at “ argmaxa Qpst, aq and observe st`1;
\\ Maintain the statistics

ps, a, s1q – pst, at, st`1q;
n :“ Nps, aq – Nps, aq ` 1;
ň :“ Ňps, aq – Ňps, aq ` 1;
µ̌ :“ µ̌ps, aq – µ̌ps, aq ` V ps1q;
n̄ :“ N̄ps, aq – N̄ps, aq ` 1;
µ̄ :“ µ̄ps, aq – µ̄ps, aq ` V ps1q;
\\ Update triggered by a type-I stage

if n P Ľ then

b̌ – mint2
a
H2◆{ň, 1{p1 ´ �qu; (1)

Qps, aq – mintrps, aq ` �
`
µ̌{ň

˘
` b̌, Qps, aqu;

(2)

Ňps, aq – 0;

µ̌ps, aq – 0;

V psq – max
a

Qps, aq;

end if
\\ Update triggered by a type-II stage

if n P L̄ then

b̄ – mint2
a
H2◆{n̄, 1{p1 ´ �qu;

Qps, aq – mintrps, aq ` �
`
µ̄{n̄

˘
` b̄, Qps, aqu;

(3)

N̄ps, aq – 0;

µ̄ps, aq – 0;

V psq – max
a

Qps, aq;

end if
end for

4. Technical Overview
Both of the algorithms introduced in this paper are variants
of Q-learning, where the optimistic value function V and the
Q-function are maintained. For each time t, we use Vt and
Qt to denote the corresponding functions at the beginning
of the time step. The learned policy ⇡t will always be the
greedy policy based on Qt, i.e., ⇡tpsq “ argmaxa Qtps, aq
for all s P S. Below we explain the main techniques used
in UCB-MULTISTAGE as well as UCB-MULTISTAGE-
ADVANTAGE.

Reducing Sample Complexity to Bounding the Clipped
Pseudo-Regret. For any time t, define the pseudo-regret

vector �t to be the vector such that for any s P S ,

�tpsq “ Vtpsq ´ prps,⇡tpsqq ` �Ps,⇡tpsqVtq.

We now outline our first technical idea that the sample com-
plexity can be bounded by the total clipped pseudo-regret,
approximately in the form of (5) (up to a ✏´1 factor and an
additive error term).

Note that �t can also be viewed as the Bellman error vector
of the value function Vt and the policy ⇡t. Let P⇡t

be the
transition matrix such that P⇡t

psq “ Ps,⇡tpsq for any s P S .
By Bellman equation we have that

Vt ´ V ⇡t

“ �P⇡t
pVt ´ V ⇡tq ` �t

“ p�P⇡q2pVt ´ V ⇡tq ` �P⇡t
�t ` �t

“ . . .

“
8ÿ

i“0

p�P⇡t
qi�t.

Define clippx, yq “ xI rx • ys for x, y P R and

clippx, yq “ rclippx1, yq, . . . , clippxn, yqsJ

for x “ rx1, . . . , xnsJ P Rn.

Therefore, if Vtpstq ´ V ⇡tpstq ° ✏, then for some constant
M ° 1,

1J
st

8ÿ

i“0

p�P⇡t
qiclipp�t,

✏p1 ´ �q
M

q

• 1J
st

8ÿ

i“0

p�P⇡t
qi

ˆ
�t ´ ✏p1 ´ �q

M

˙

“ 1J
st

8ÿ

i“0

p�P⇡t
qi�t ´ 1

1 ´ �
¨ ✏p1 ´ �q

M

“ Vtpstq ´ V ⇡tpstq ´ ✏

M

° pM ´ 1q✏
M

,
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where 1st
is the unit vector with the only non-zero entry at

st and the first inequality is by the fact clippx, yq • x ´ y
for x, y • 0. For any H “ ⇥plnppp1 ´ �q✏q´1q{p1 ´ �qq,
it then follows that

I rVtpstq ´ V ⇡tpstq ° ✏s ✏

§ O

˜
1J
st

H´1ÿ

i“0

p�P⇡t
qiclipp�t, ✏p1 ´ �q{Mq

¸
. (4)

We now sum up (4) over all time steps t. If we can carefully
design the algorithm so that ⇡t, Vt (and therefore �t) do
not change frequently, we have ⇡t “ ⇡t`i and �t “ �t`i

for small enough i and most t, and therefore we can upper
bound

∞
t•1 I rVtpstq ´ V ⇡tpstq ° ✏s ✏ by the order of

ÿ

t•1

1J
st

H´1ÿ

i“0

p�P⇡t`i
qiclipp�t`i, ✏p1 ´ �q{Mq

§
ÿ

t•1

1J
st

H´1ÿ

i“0

pP⇡t`i
qiclipp�t`i, ✏p1 ´ �q{Mq

« OpHq ¨
ÿ

t•1

clipp�tpstq, ✏p1 ´ �q{Mq, (5)

where the approximation (5) also uses the assumption
that ⇡t “ ⇡t`i and �t “ �t`i hold for most t and
i. In Lemma 5, we formalize this intuition and show
that if we set M “ 8Hp1 ´ �q, the sample complexity∞

t•1 I rVtpstq ´ V ⇡tpstq ° ✏s can be upper bounded by
OpH{✏q ¨ ∞

t•1 clipp�tpstq, ✏p1 ´ �q{Mq (plus an additive
error), and therefore we only need to upper bound the total
clipped pseudo-regret.

The Multi-Stage Update Rule. As stated before, the de-
sign of type-I stage is our main technical contribution. To
better explain the intuition and motivate the type-I stage, let
us consider a fixed state-action pair ps, aq. Suppose at time
step pt´1q, ps, aq is visited and the visit number reaches the
end of a type-I stage, then the following update is triggered:

Qtps, aq – mintrps, aq ` b̌ ` �

ň

ňÿ

i“1

V
ľi

ps
ľi`1q, Qt´1ps, aqu,

where ň is the number of samples in this stage, ľi is time
of the i-th sample in the stage, and b̌ denotes the explo-
ration bonus. Thanks to the update rule, Vt and Qt are
non-increasing in t. By concentration inequalities and the

proper design of b̌, we get

Qtps, aq

§ rps, aq ` 2b̌ ` Ps,ap�
ň

ňÿ

i“1

V
ľi

q

§ rps, aq ` 2b̌ ` �Ps,aVt ` �Ps,a

˜
1

ň

ňÿ

i“1

V
ľi

´ Vt

¸

(6)

§ rps, aq ` 2b̌ ` �Ps,aVt ` �Ps,apVt ´ V
t
q, (7)

where t “ mini ľi is the start time of the stage and t is the
start time of the next stage. Let a “ ⇡tpsq. By the definition
of �tpsq and optimism of Vt, when Qtps, aq ´ Q˚ps, aq †
✏p1 ´ �q{M , we have that

clipp�tpsq, ✏p1 ´ �q{Mq
§ clippQtps, aq ´ Q˚ps, aq, ✏p1 ´ �q{Mq “ 0 (8)

In the case Qtps, aq ´ Q˚ps, aq • ✏p1 ´ �q{M , with an
averaging argument we have that

clipp�tpsq, ✏p1 ´ �q{Mq
§ clipp2b̌ ` �Ps,apVt ´ V

t
q, ✏p1 ´ �q{Mq

§ 2clipp2b̌, ✏p1 ´ �q{p2Mqq
` Op�q ¨ Ps,aclippVt ´ V

t
, ✏p1 ´ �q{p2Mqq. (9)

On the benefit of type-II stages, Ntps, aq • N0 implies
Qtps, aq ´Q˚ps, aq † ✏p1´ �q{M . So it suffices to bound

IrNtps, aq † N0sPs,aclippVt ´ V
t
, ✏p1 ´ �q{p2Mqq

` IrNtps, aq † N0sclipp2b̌, ✏p1 ´ �q{Mq (10)

.

We now discuss how to deal with the two terms and how the
parameter B affects the bounds.

Bounding the first term of (10). We first focus on the sec-
ond term (IrNtpst, atq † N0sPs,aclippVt ´ V

t
, ✏p1 ´

�q{p2Mqq) in (10). For each j, let tj “ tjps, aq be the
start time of the j-th stage of ps, aq. The total contribution
of the second term in (10) is bounded by the order of
ÿ

s,a

ÿ

j

ějPs,aclip
`
pVtj´1ps,aq ´ Vtj`1ps,aqq, ✏p1 ´ �q{p2Mq

˘
.

(11)

Thanks to the updates triggered by the type-II stages, Vt

converges to V ˚ at a rate that is independent of B. Increas-
ing B will shorten the length of the type-I stages, making
Vtj´1ps,aq closer to Vtj`1ps,aq, and reduce the magnitude of
(11). In Lemma 8, we formalize this intuition and show
that when M “ 8Hp1 ´ �q, (11) can be upper bounded
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by ÕpSAH5 lnp1{pq{p✏Bqq. Therefore, choosing a large
enough B will eliminate the H factors in the numerator.

Bounding the second term of (10). On the other hand, how-
ever, a larger B means smaller number of samples in the
type-I stages, leads to a bigger estimation variance, and
therefore forces us to choose a greater exploration bonus
b̌. We have to choose B “ ⇥p

?
Hq to achieve the optimal

balance between the two terms in (10).

To utilize the full power of our multi-stage update rule,
we would like to set B “ ⇥pH3q. However, the second
term in (10) becomes much bigger. In the next subsection,
we discuss how to deal with this problem via the variance
reduction method, which leads to the asymptotically near-
optimal bound in Theorem 1.

Variance Reduction via Reference-Advantage De-
composition. This technique is only used in UCB-
MULTISTAGE-ADVANTAGE and the proof of Theorem 1,
which is deferred to Appendix D due to space constraints.
We explain the technique as follows.

As discussed above, when B is set large, we suffer bigger
estimation variance, as fewer samples are allowed in the
type-I stages. In model-free regret minimization tasks, sim-
ilar problem arises where the algorithm (e.g., (Jin et al.,
2018)) can only use the recent tiny fraction of the samples
and incurs sub-optimal dependency on the episode length.
Recent work (Zhang et al., 2020) resolves this problem via
the reference-advantage decomposition technique.

The high-level idea is that, assuming we have a �-accurate
estimation of V ˚, namely the reference value function V ref ,
such that }V ref ´ V ˚}8 § �, we only need to use the
samples to estimate the difference V ref´V ˚, which is called
the advantage. Therefore, the estimation error (incurred in
places such as (6)) will be much smaller when � is small.
Choosing � “ 1{

?
B, and together with the Bernstein-type

exploration bonus (see, e.g., (Azar et al., 2017; Jin et al.,
2018)), we are able to bound the total contribution of the
first term in (9) 4 by ÕpSA{p✏p1 ´ �q2q, which (together
with the H factor in (5)) aligns with the p1 ´ �q´3 factor
in the bound of Theorem 1. The discussion till now is
based on the access of the reference value function V ref .
In reality, however, we need to learn the reference value
function on the fly. This will incur an additive warm-up
cost that polynomially depends on 1{�. However, since � is
independent of ✏, the extra cost is only a lower-order term.

4More precisely, we refer to the total contribution related to
the exploration bonus, which is actually in a different form from
the first term in (9). This is because b̌ has to be re-designed using
the Bernstein-type exploration bonus technique and evolves to a
more complex expression. Please refer to Appendix D for more
explanation.

5. Analysis of Sample Complexity
In this section, we prove Theorem 2 for UCB-
MULTISTAGE. We start with a few notations: we use
Ntps, aq, Ňtps, aq,N̄tps, aq, Qtps, aq, Vtpsq to denote re-
spectively the values of Nps, aq, Ňps, aq, N̄ps, aq, Qps, aq,
V psq before the t-th time step. Let ňtps, aq, µ̌tps, aq
and b̌tps, aq be the values of ňps, aq, µ̌ps, aq and b̌ps, aq
(respectively) in the latest type-I update of Qps, aq be-
fore the t-th time step. In other words, ňtps, aq is
the length of the type-I stage immediately before the
current type-I stage with respect to ps, aq; b̌tps, aq “
mint2

a
H2◆{ňtps, aq, 1{p1 ´ �qu; and

µ̌tps, aq “
ňtps,aqÿ

i“1

V
ľt,ips,aqps

ľt,ips.aq`1q, (12)

where ľt,ips, aq is the time step of the i-th visit among the
ňtps, aq visits mentioned above. When t belongs to the first
type-I stage of ps, aq, we define ňtps, aq “ 0, µ̌tps, aq “ 0,
and b̌tps, aq “ 1{p1 ´ �q.

Given ps, aq and a time step t such that pst, atq “ ps, aq,
we use jtps, aq to denote the index of the type-I which (the
beginning of) the t-th time step belongs to with respect to
ps, aq. For 1 § j § J̌ , we use ⇢pj, s, aq to denote the start
time of the j-th type-I with respect to ps, aq. Besides, we de-
fine ⇢pJ̌ ` 1, s, aq to be the time t such that Ntps, aq “ N0.
We also define ⇢

t
ps, aq :“ ⇢pjtps, aq ´ 1, s, aq if jtps, aq •

2 and 0 otherwise, and ⇢
t
ps, aq :“ ⇢pjtps, aq ` 1, s, aq.

5.1. The Good Event

Let ps, aq and j be fixed. With a slight abuse of notation, we
define ľi to be the time when the i-th visit in the j-th type-I
stage of ps, aq occurs. Define b̌pjq “ mint2

b
H2◆

ěj
, 1
1´�

u
for j • 2. Define Ěpjqps, aq be the event where the inequal-
ities below hold

1

ěj

ějÿ

i“1

V ˚ps
ľi`1q ` b̌pjq • Ps,aV

˚;

ˇ̌
ˇ̌
ˇ
1

ěj

ějÿ

i“1

`
V
ľi

ps
ľi`1q ´ Ps,aVľi

˘
ˇ̌
ˇ̌
ˇ § b̌pjq.

Similarly, let l̄i be the time when the i-th visit in the j-th
type-II stage of ps, aq occurs and b̄pjq “ mint2

b
H2◆

ēj
, 1
1´�

u
for j • 1. Define Ējps, aq be the event where

1

ēj

ējÿ

i“1

V ˚ps
l̄i`1q ` b̄pjq • Ps,aV

˚;

ˇ̌
ˇ̌
ˇ
1

ēj

ējÿ

i“1

`
V
l̄i

ps
l̄i`1q ´ Ps,aVl̄i

˘
ˇ̌
ˇ̌
ˇ § b̄pjq.
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hold.

The total good event E1 is then given by

E1 “
¨

˝
£

s,a,1§j§J̌

Ěpjqps, aq
˛

‚
£

¨

˝
£

s,a,1§j1§J̄

Ēpj1qps, aq
˛

‚.

(13)

We claim that E1 happens with large probability.
Lemma 3. PrE1s • p1 ´ SAHpJ̌ ` J̄qpq.

The following statement shows that tQtu is a sequence of
non-increasing optimistic estimates of Q˚.
Proposition 4. Conditioned on the event E1, it holds that

Qtps, aq • Q˚ps, aq and Qt`1ps, aq § Qtps, aq for all

t • 1 and ps, aq.

The proofs of Lemma 3, Proposition 4 and all the lemmas
in the remaining part of this section can be found in Ap-
pendix C. Throughout the rest of this section, the analysis
will be done assuming the successful event E1.

5.2. Using Clipped Pseudo-Regret to Bound Sample
Complexity

By the update rule (2), for any t • 1 and s, letting a “
⇡tpsq, we have that

Vtpsq ´ V ⇡tpsq

§ b̌tps, aq ` �

ňtps, aq
ňtps,aqÿ

u“1

V
ľt,ups,aqps

ľt,ups,aq`1q

´ �Ps,aV
⇡t

§ 2b̌tps, aq ` �Ps,a

¨

˝ 1

ňtps, aq
ňtps,aqÿ

u“1

V
ľt,ups,aq ´ V ⇡t

˛

‚

(14)

§ 2b̌tps, aq ` �Ps,apV⇢
t
ps,aq ´ V ⇡tq (15)

“ 2b̌tps, aq ` �Ps,apV⇢
t
ps,aq ´ Vtq ` �Ps,apVt ´ V ⇡tq.

(16)

where Inequality (14) is due to the concentration inequality,
which is part of the successful event E1 defined in (41), and
Inequality (15) holds because ⇢

t
ps, aq § ľt,ups, aq for any

1 § u § ňtps, aq and the fact Vt is non-increasing in t
(Proposition 4).

On the other hand, we also have

Vtpsq ´ V ⇡tpsq
“ Qtps, aq ´ Q˚ps, aq ` Q˚ps, aq ´ Q⇡tps, aq
“ Qtps, aq ´ Q˚ps, aq ` �Ps,apV ˚ ´ V ⇡tq
§ Qtps, aq ´ Q˚ps, aq ` �Ps,apVt ´ V ⇡tq. (17)

Combining (16) and (17), we have that

Vtpsq ´ V ⇡tpsq
§ min

 
2b̌tps, aq ` �Ps,apV⇢

t
ps,aq ´ Vtq,

Qtps, aq ´ Q˚ps, aq
(

` �Ps,apVt ´ V ⇡tq.
(18)

Therefore, we have that

�tpsq “ Vtpsq ´ prps, aq ` �Ps,aVtq
“ Vtpsq ´ V ⇡tpsq ´ �Ps,apVt ´ V ⇡tq
§ min

 
2b̌tps, aq ` �Ps,apV⇢

t
ps,aq ´ Vtq,

Qtps, aq ´ Q˚ps, aq
(
. (19)

Define t by setting tpsq as the RHS of (19). Recall that
P⇡t

is the matrix such that P⇡t
psq “ Ps,⇡tpsq for any s P S .

By Bellman equation we have that

V ˚pstq ´ V ⇡tpstq § Vt ´ V ⇡t

“
8ÿ

i“0

p�P⇡t
qi�t

§
H´1ÿ

i“0

p�P⇡t
qi�t ` ✏

8
(20)

§
ÿ

s,a

p�P⇡t
qit ` ✏

8
.

By definition of tpsq, and noting that x § clippx, yq ` y
for any x, y ° 0, we further have that

V ˚pstq ´ V ⇡tpstq
§

ÿ

s,a

wtps, aq
´
min

 
2b̌tps, aq ` �Ps,apV⇢

t
ps,aq ´ Vtq,

Qtps, aq ´ Q˚ps, aq
(¯

` ✏

8
(21)

§
ÿ

s,a

wtps, aq
´
min

 
clippQtps, aq ´ Q˚ps, aq, 3✏

4H
q,

2clippb̌tps, aq, ✏

8H
q ` �Ps,aclippV⇢

t
ps,aq ´ Vt,

✏

8H
q,

(¯

`
ÿ

s,a

wtps, aqmaxt 3✏

4H
,

✏

4H
` �Ps,a1 ¨ ✏

8H
u ` ✏

8

§
ÿ

s,a

wtps, aq
´
min

 
clippQtps, aq ´ Q˚ps, aq, 3✏

4H
q,

2clippb̌tps, aq, ✏

8H
q ` �Ps,aclippV⇢

t
ps,aq ´ Vt,

✏

8H
q,

(¯

` 7✏

8
(22)

where wtps, aq “ Ir⇡tpsq “ as ¨∞H´1
i“0 1J

st
p�P⇡t

qi1s is the
expected discounted visit number of ps, aq in the next H
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steps following ⇡t; and Inequality (22) is due to an averag-
ing argument and the fact that

∞
s,a

wtps, aq § H .

Let

�t :“
ÿ

s,a

wtps, aqmin
!
clippQtps, aq ´ Q˚ps, aq, 3✏

4H
q,

`
2clippb̌tps, aq, ✏

8H
q ` �Ps,aclippV⇢

t
ps,aq ´ Vt,

✏

8H
q
˘)

.

(23)

Define T “ tt • 1|�t ° 1
8✏u. By (22) we have that the

sample complexity of UCB-MULTISTAGE is bounded by
ÿ

t•1

I rV ˚pstq ´ V ⇡tpstq ° ✏s §
ÿ

t•1

I
„
�t ° 1

8
✏

⇢
“ |T |.

To bound |T |, we consider bounding
∞

tPT �t instead, since∞
tPT �t • |T |✏

8 and therefore |T | § p8{✏q ¨ ∞
tPT �t. Let

�̃t :“ min
!
clippQtpst, atq ´ Q˚pst, atq,

3✏

4H
q

2clippb̌tpst, atq,
✏

8H
q ` �Pst,at

clippV⇢
t
pst,atq ´ Vt,

✏

8H
q
)
,

(24)

If ⇡t does not change very frequently, we have the approxi-
mation that �t « ∞

H´1
i“0 �̃t`i. More formally, we prove the

following statement (see Appendix C.3 for the proof).
Lemma 5. For any K • 1, it holds that

P
” ÿ

tPT
�t • 12KH3◆ ` 24SAH4B lnpN0q,

ÿ

t•1

�̃t † 3KH2◆
ı

§ Hp.

By Lemma 5 and the discussion above, if we are able to
bound

∞
t•1 �̃t § X (for X • 3H2◆), then with high

probability, the sample complexity of UCB-MULTISTAGE
is bounded by roughly OpH{✏q ¨ X .

5.3. Bounding the Clipped Pseudo-Regret

We now turn to bound
∞

t•1 �̃t. By (24),for t such that
Ntpst, atq † N0, we have that

�̃t §
´
2clippb̌tpst, atq,

✏

8H
q

` �Pst,at
clippV⇢

t
pst,atq ´ Vt,

✏

8H
q
¯
,

(25)

and for Ntps, aq • N0, we have

�̃t §clippQtpst, atq ´ Q˚pst, atq,
3✏

4H
q. (26)

The first term in (25) is exploration bonus for the type-I
stage. For this term, we have the following lemma (see
Appendix C.4 for proof).

Lemma 6.
ÿ

t•1

clippb̌tpst, atq,
✏

8H
q § O

ˆ
SAB◆

✏p1 ´ �q4
˙
.

The exploration bonus is increasing in B because more
frequent updates implies fewer available samples in a single
update due to the limitation in model-free RL.

For the second term in (25), let ↵t “ IrNtpst, atq †
N0sPst,at

clippV⇢
t
pst,atq ´ Vt,

✏

8H q for short. On benefit
of type-II updates, we can ensure a decent convergence rate
for Qt (see Appendix C.7 for proof).
Lemma 7. Conditioned on the successful event of E1 de-

fined in (41), for any ✏1 P r✏, 1
1´�

s it holds that

8ÿ

t“1

I rVtpstq ´ V ˚pstqq • ✏1s

§
8ÿ

t“1

I rQtpst, atq ´ Q˚pst, atqq • ✏1s

§ O

˜
SAH5 lnp 4H

✏
q◆

✏21

¸
. (27)

By the basic convergence rate provided by Lemma 7, we
have that (see Appendix C.5 for proof)
Lemma 8. With probability 1 ´ p1 ` 2SAHpJ̌ ` J̄qqp, it

holds that

ÿ

t•1

↵t § O

˜
SAH5 lnp 4H

✏
q◆

✏B
` SABH3 ` SAH lnpN0q

¸
.

The term ↵t reflects the difference of the value functions
between the neighboring updates. As mentioned in Sec-
tion 4, we can reduces this term by increasing B as long as
SAH

2 lnp 4H
✏

q◆
✏B

is larger SABH3. We highlight that Lemma 7
is necessary to derive Lemma 8 even when B is large. This
is due to the nature of model-free RL algorithms: more fre-
quent updates would incur large variances (and thus greater
exploration bonuses) due to fewer available samples be-
tween updates. As a result, without type-II updates, simply
increasing B would not guarantee a decent convergence rate.
In contrast, the type-II updates use more available samples,
incurring a smaller exploration bonus, and thus guarantees
a decent convergence rate.

Moreover, by Lemma 7, we have the lemma below to bound
the term in (26) (see Appendix C.8 for proof).
Lemma 9. With probability 1´ p1` 2SAHpJ̌ ` J̄qqp, for

any t • 1 such that Ntpst, atq • N0, it holds that

clip

ˆ
Qtpst, atq ´ Q˚pst, atq,

3✏

4H

˙
“ 0.
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Combining Lemma 6, Lemma 8 and Lemma 9, and by the
definition of �̃t, we have that

Lemma 10. With probability 1 ´ p2 ` 6SAHpJ̌ ` J̄qqp,∞
t•1 �̃t is bounded by

O

˜
SABH4◆

✏
` SAH5 lnp 4H

✏
q◆

✏B
` SABH3 lnpN0q

¸
.

5.4. Putting Everything Together

Invoking Lemma 5 with K “ c2
3H2◆

´
SABH

4
◆

✏
`

SAH
5 lnp 4H

✏
q◆

✏B
` SABH3 lnpN0q

¯
• 1 for some large

enough universal constant c2, we have that conditioned on
the successful event E1,

P
«

ÿ

tPT
�t • 12KH3◆ ` 24SAH4B lnpN0q

�

§ P
«

ÿ

tPT
�t • 12KH3◆ ` 24SAH4B lnpN0q,

ÿ

t•1

�̃t † 3KH2◆

�

` P
«

ÿ

t•1

�̃t • 3KH2◆

�
(28)

§ p4SAHpJ̌ ` J̄q ` H ` 2qp, (29)

where the second term in (28) bounded due to Lemma 10.
Combining Proposition 4 with (29), we obtain that with
probability 1 ´ p8SApJ̌ ` J̄q ` pH ` 3qqp, it holds that

|T |✏
2

§
ÿ

tPT
�t

§ O

˜
SABH5◆

✏
` SAH6 lnp 4H

✏
q◆

✏B
` SAH4B lnpN0q

¸
.

(30)

Noting that B “
?
H , we conclude that the number of

✏-suboptimal steps is bounded by

O

˜
SAH5.5 lnp 4H

✏
q◆

✏2
` SAH4.5 lnpN0q

✏

¸

§ O

˜
SAH5.5 lnp 4H

✏
qplnpN0q ` ◆q

✏2

¸

for any ✏ P p0, 1
1´�

s. Noting that H “ Õp 1
1´�

q, J̌ “
OpSAH lnpN0qq and J̄ “ OpSAHB lnpN0qq, we finish
the proof of Theorem 2 by replacing p with p

8SApJ̌`J̄q`H`3
.

6. Conclusion
We design a stage-based model-free Q-learning Algorithm
UCB-MULTISTAGE-ADVANTAGE, which achieves a near-
optimal sample complexity of Õ

´
SA lnp1{pq
✏2p1´�q3

¯
for discount-

ted reinforcement leaning problem asymptotically. By ad-
justing the number of stages, we also show a non-asymptotic
sample complexity of Õ

´
SA lnp1{pq
✏2p1´�q5.5

¯
, which outperforms

all previous model-free and model-based algorithms with
tight dependence on S. We introduce a multi-stage update
rule for Q-learning algorithm, which may be useful for other
RL settings such as RL with linear function approximation.

References
Azar, M. G., Munos, R., Ghavamzadaeh, M., and Kappen,

H. J. Speedy q-learning. 2011.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In International Con-

ference on Machine Learning, pp. 263–272. PMLR, 2017.

Brafman, R. I. and Tennenholtz, M. R-MAX - A general
polynomial time algorithm for near-optimal reinforce-
ment learning. Journal of Machine Learning Research, 3
(2):213–231, 2003.

Burnetas, A. N. and Katehakis, M. N. Optimal Adaptive

Policies for Markov Decision Processes. 1997.

Dann, C. and Brunskill, E. Sample complexity of episodic
fixed-horizon reinforcement learning. In Advances in

Neural Information Processing Systems, pp. 2818–2826,
2015.

Dann, C., Lattimore, T., and Brunskill, E. Unifying PAC and
regret: Uniform PAC bounds for episodic reinforcement
learning. In Advances in Neural Information Processing

Systems 30: Annual Conference, pp. 5713–5723, 2017.

Dann, C., Li, L., Wei, W., and Brunskill, E. Policy cer-
tificates: Towards accountable reinforcement learning.
In International Conference on Machine Learning, pp.
1507–1516. PMLR, 2019.

Dong, K., Wang, Y., Chen, X., and Wang, L. Q-learning with
ucb exploration is sample efficient for infinite-horizon
mdp. arXiv preprint arXiv:1901.09311, 2019.

Even-Dar, E. and Mansour, Y. Learning rates for Q-learning.
Journal of Machine Learning Research, 5(Dec):1–25,
2003.

Even-Dar, E., Mannor, S., and Mansour, Y. Action elimina-
tion and stopping conditions for the multi-armed bandit
and reinforcement learning problems. Journal of Machine

Learning Research, 7(Jun):1079–1105, 2006.



Model-Free RL: from Clipped Pseudo-Regret to Sample Complexity

Freedman, D. A. et al. On tail probabilities for martingales.
the Annals of Probability, 3(1):100–118, 1975.

Gheshlaghi, A., Munos, R., and Kappen, H. On the sample
complexity of reinforcement learning with a generative
mode. 2012.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
Q-learning provably efficient? In Advances in Neural

Information Processing Systems, pp. 4863–4873, 2018.

Kakade, S. On the sample complexity of reinforcement

learning. PhD thesis, University of London, 2003.

Lattimore, T. and Hutter, M. Pac bounds for discounted
mdps. In International Conference on Algorithmic Learn-

ing Theory, pp. 320–334. Springer, 2012.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937, 2016.

Pazis, J., Parr, R. E., and How, J. P. Improving pac explo-
ration using the median of means. In Advances in Neural

Information Processing Systems, pp. 3898–3906, 2016.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International

conference on machine learning, pp. 1889–1897, 2015.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. Near-
optimal time and sample complexities for solving markov
decision processes with a generative model. In Advances

in Neural Information Processing Systems, pp. 5186–
5196, 2018a.

Sidford, A., Wang, M., Wu, X., and Ye, Y. Variance reduced
value iteration and faster algorithms for solving markov
decision processes. In Proceedings of the 29th Annual

ACM-SIAM Symposium on Discrete Algorithms, pp. 770–
787. SIAM, 2018b.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman,
M. L. PAC model-free reinforcement learning. In Pro-

ceedings of the 23rd International Conference on Ma-

chine learning, pp. 881–888, 2006.

Szita, I. and Szepesvari, C. Model-based reinforcement
learning with nearly tight exploration complexity bounds.
In Proceedings of the 27th International Conference on

Machine Learning, pp. 1031–1038, 2010.

Zhang, Z., Zhou, Y., and Ji, X. Almost optimal model-free
reinforcement learning via reference-advantage decom-
position. arXiv preprint arXiv:2004.10019, 2020.


