
Nearly Optimal Reward-Free Reinforcement Learning

Zihan Zhang 1 Simon S. Du 2 Xiangyang Ji 1

Abstract
We study the reward-free reinforcement learn-
ing framework, which is particularly suitable for
batch reinforcement learning and scenarios where
one needs policies for multiple reward functions.
This framework has two phases: in the explo-
ration phase, the agent collects trajectories by in-
teracting with the environment without using any
reward signal; in the planning phase, the agent
needs to return a near-optimal policy for arbitrary
reward functions. We give a new efficient algo-
rithm, Staged Sampling + Truncated Planning
(SSTP), which interacts with the environment at
most O

⇣
S

2
A

✏2
poly log

�
SAH

✏

�⌘
episodes in the

exploration phase, and guarantees to output a near-
optimal policy for arbitrary reward functions in
the planning phase, where S is the size of state
space, A is the size of action space, H is the
planning horizon, and ✏ is the target accuracy
relative to the total reward. Notably, our sam-
ple complexity scales only logarithmically with
H , in contrast to all existing results which scale
polynomially with H . Furthermore, this bound
matches the minimax lower bound ⌦

⇣
S

2
A

✏2

⌘
up

to logarithmic factors. Our results rely on three
new techniques : 1) A new sufficient condition
for the dataset to plan for an ✏-suboptimal pol-
icy ; 2) A new way to plan efficiently under the
proposed condition using soft-truncated planning;
3) Constructing extended MDP to maximize the
truncated accumulative rewards efficiently.

1. Introduction
Reinforcement learning (RL) studies the problem in which
an agent aims to maximize its accumulative rewards by inter-
action with an unknown environment. A major challenge in

1Tsinghua University 2University of Washington. Correspon-
dence to: Zihan Zhang <zihan-zh17@mails.tsinghua.edu.cn>,
Simon S. Du <ssdu@cs.washington.edu>, Xiangyang Ji
<xyji@tsinghua.edu.cn>.

Proceedings of the 38 th
International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

RL is exploration for which the agent needs to strategically
visit new states to learn transition and reward information
therein. To execute efficient exploration, the agent must
follow a well-designed adaptive strategy by which the agent
is properly guided by the reward and transition information,
other than the trivial random exploration. Provably algo-
rithms have been proposed to help the agent visit new states
efficiently with a fixed reward and transition model. See
Section 2 for a review.

However, in various applications, it is necessary to re-design
the reward function to incentivize the agent to learn new de-
sired behavior (Altman, 1999; Achiam et al., 2017; Tessler
et al., 2018; Miryoosefi et al., 2019). To avoid repeatedly
invoking the learning algorithm and interacting with the
environment, it is desired to let the agent efficiently explore
the environment without the reward signal and collect data
based on which the agent can compute a near-optimal policy
for any reward function.

The main challenge of this problem is that the agent needs
to collect data that sufficiently covers the state space. This
problem was previous studied in (Brafman & Tennenholtz,
2003; Hazan et al., 2019; Du et al., 2019). Recently, Jin et al.
(2020) formalized the setting, and named it reward-free RL.
In this setting, the agent first collects a dataset by interacting
with the environment, and then is required to compute an
✏-optimal policy given any proper reward function.

Jin et al. (2020) gave a formal theoretical treatment of this
setting. They designed a method which guarantees that
by collecting O

⇣⇣
S

2
AH

3

✏2
+ S

4
AH

5

✏

⌘
poly log (SAH/✏)

⌘

episodes, the agent is able to output an ✏-optimal policy,
where S is the number of states, A is the number of actions,
and H is the planning horizon. 1 They also provided an
⌦
⇣

S
2
A

✏2

⌘
lower bound. Recently, Kaufmann et al. (2020);

Ménard et al. (2020) gave tighter sample complexity bound.
We refer the readers to table 1 for more details.

Unfortunately, it remains open what is the fundamental limit
of the sample complexity of reward-free RL. In particular,
compared to the ⌦(S

2
A

✏2
) lower bound, all existing upper

bounds have a polynomial dependence on H . The gap be-
1Because we consider reward function satisfying the total re-

ward bounded by 1 setting (instead of H in their paper) this paper,
we rescale the error ✏ to ✏H in the bound .

Nearly Optimal Reward-Free Reinforcement Learning

tween upper and lower bound can be huge for environments
with a long horizon. Conceptually, this gap represents that
we still lack understanding on whether long horizon imposes
significant hardness on reward-free RL.

1.1. Our Contribution

In this work, we break the poly (H)-dependency barrier.
We design a new algorithm, Staged Sampling + Truncated
Planning (SSTP), which enjoys the following sample com-
plexity guarantee.

Theorem 1. For any ✏, � 2 (0, 1), there exists

an algorithm (SSTP, Algorithm 1) which can com-

pute an ✏-optimal policy for any reward function

that is non-negative and totally bounded by 1, af-

ter O
��

SA

✏2

�
S + log

�
1
�

���
poly log (SAH/✏)

�
episodes

of exploration with probability 1� �.

The significance of our theorem is that we match the lower
bound of ⌦

⇣
SA(S+log 1/�)

✏2

⌘
up to logarithmic factors on

S,A,H, 1/✏. 2

Importantly, our bound only depends logarithmically on
the planning horizon H . This is an exponential improve-
ment over existing results, and demonstrates that long hori-
zon poses little additional difficulty for reward-free RL.
Furthermore, our bound only requires the reward to be to-
tally bounded (cf. Assumption 2), in contrast to uniformly
bounded (cf. Assumption 1), which is assumed in previous
works. See Section 2 for more discussions.

Remark 1. Jin et al. (2020),Kaufmann et al. (2020) and

Ménard et al. (2020) studied reward-free exploration on

the non-stationary episodic MDP (i.e., the transition model

depends on the level h 2 [H]), where the lower bound

of sample complexity is at least linear in H because the

complexity of MDP is larger (Jin et al., 2018; Zhang et al.,

2020c). In this paper, we consider the episodic MDP with

a stationary transition, that is, the transition model is inde-

pendent of the level. This is often considered to be a more

realistic model than the non-stationary transition model.

Furthermore, for non-stationary episodic MDP, our algo-

rithm could also provide a reward-free sample complexity

of Õ
�
HSA

✏2
(log(1

�
) + S)

�
, which matches current best re-

sult in (Ménard et al., 2020) up to logarithmic terms (see

Section 6 for more discussion).

2. Related Work
We review relevant works in this section. Comparisons
between our algorithm and existing ones on reward-free RL
are provided in Table 1.

2The original bound is for the case the total reward is bounded
by H , and here we scale down the total reward by a factor of H .

Algorithm Sample Complexity Non-unif.
Reward Log H

RF-RL-EXPLORE
(Jin et al., 2020) Õ

⇣
H

5
S

2
A

✏
log3(1

�
) + H

3
S

2
A

✏2
log(1

�
)
⌘

No No

RF-UCRL
(Kaufmann et al., 2020) Õ

⇣
H

2
SA

✏2
(log(1

�
) + S)

⌘
No No

RF-EXPRESS
(Ménard et al., 2020) Õ

�
HSA

✏2
(log(1

�
) + S)

�
No No

SSTP
This Work Õ

�
SA

✏2
(log(1

�
) + S)

�
Yes Yes

Lower Bound
(Jin et al., 2020) ⌦

�
SA

✏2
(log(1

�
) + S)

�
- -

Table 1. Sample complexity comparisons for state-of-the-art
episodic RL algorithms. See Section 2 for discussions on this
table. eO omits logarithmic factors on S,A,H, 1/✏ but not 1/�.
Sample Complexity: number of episodes to find an ✏-suboptimal
policy. Non-unif. Reward: Yes means the bound holds under As-
sumption 2 (allows non-uniformly bounded reward), and No means
the bound only holds under Assumption 1. Log H: Whether the
sample complexity bound depends logarithmically on H instead
of polynomially on H .

Reward-dependent exploration In reward-dependent
exploration, the agent aims to learn an ✏-optimal policy
under a fixed reward. Some papers assumed there is a gen-
erative model which can be queried to provide a sample for
any state-action pair (s, a) (Kearns & Singh, 1999; Azar
et al., 2013; Sidford et al., 2018; Agarwal et al., 2019; Li
et al., 2020), and the sample complexity is defined as the
number of queries needed to compute an ✏-optimal policy. In
the online setting (Brafman & Tennenholtz, 2003; Kakade,
2003; Dann & Brunskill, 2015; Dann et al., 2017; 2019;
Azar et al., 2017; Jin et al., 2018; Zanette & Brunskill, 2019;
Kaufmann et al., 2020; Zhang et al., 2020c; Wang et al.,
2020a; Zhang et al., 2020b), the agent starts from a fixed
initial distribution in each episode, and collects a trajectory
by interacting with the environment. Then the sample com-
plexity is given by the number of episodes that are necessary
to learn an ✏-optimal policy. The state-of-the-art result by
Zhang et al. (2020b) requires eO

⇣
SA

✏2
+ S

2
A

✏

⌘
number of

episodes.

Reward Assumption and Dependency on H For the re-
ward, the widely adopted assumption is rh 2 [0, 1] for all
h 2 [H], which implies the total reward

P
H

h=1 rh 2 [0, H].
However, as argued in (Kakade, 2003; Jiang & Agarwal,
2018), the characterization of sample complexity should
be independent of the scaling, i.e., the target suboptimality
✏ 2 (0, 1) should be a relative quantity to measure the per-
formance of an algorithm. To this end, we need to scale the
total reward within [0, 1]. Then the assumption becomes:

Assumption 1 (Uniformly Bounded Reward). The reward

satisfies that rh 2 [0, 1/H] for all h 2 [H].

Compared to Assumption 1, the totally-bounded reward as-
sumption (Assumption 2) is more general. Therefore, any

Nearly Optimal Reward-Free Reinforcement Learning

upper bound under Assumption 2 implies an upper bound
under Assumption 1. In the view of practice, because en-
vironments under Assumption 2 can have high one-step
reward, it is more natural to consider Assumption 2 in envi-
ronments with sparse rewards, such as the Go game, which
are often considered to be puzzling. In the view of the-
oretical basis, it is more complicated to design efficient
algorithms under Assumption 2 due to the global structure
of the reward. 3

Recent work (Zanette & Brunskill, 2019; Wang et al., 2020a;
Zhang et al., 2020b) made essential progress in reward-
dependent exploration under Assumption 2, and obtained
sample complexity bounds that only scale logarithmically

with H . Zanette & Brunskill (2019) showed the main term
(with respect to 1/✏2) does not depend on H . Wang et al.
(2020a) proved a sample complexity bound of Õ

⇣
S

5
A

4

✏3

⌘

despite suffering an exponential computational cost, and
later (Zhang et al., 2020b) achieved a nearly sharp sample
complexity bound of Õ

⇣
SA

✏2
+ S

2
A

✏

⌘
with a computation-

ally efficient algorithm. We use some technical ideas from
(Zhang et al., 2020b) (cf. Section 4.2). However, because
the problem settings are different, we need new techniques
to establish a nearly tight sample complexity bound for
reward-free exploration.

Reward-Free RL The main algorithm in (Jin et al., 2020)
assigns only non-zero reward for each state at every turn, and
utilizes a regret minimization algorithm EULER (Zanette
& Brunskill, 2019) to visit each state as much as possible.
Since their algorithm only learns one state each time, their
sample complexity bound is not tight with respect to H .
Kaufmann et al. (2020) proposed RF-UCRL to achieve
sample complexity of Õ

⇣
SAH

2

✏2
(S + log(1

�
))
⌘

by building
upper confidence bounds for any reward function and any
policy, and then taking the greedy policy accordingly. The
later work by Ménard et al. (2020) constructed an explo-
ration bonus of 1

n(s,a) instead of the classical exploration
bonus of 1p

n(s,a)
, where n(s, a) is the visit count of (s, a).

Based on the novel bonus, they achieve sample complexity
of Õ(SAH

✏2
(S + log(1

�
)). Recently, these results have been

extended to linear function approximation settings (Wang
et al., 2020b; Zanette et al., 2020). Reward-free exploration
is also related to another setting, reward-agnostic RL, in
which N reward functions are considered in the planning

3Under Assumption 2, the reward still satisfies rh 2 [0, 1],
so if an algorithms enjoys an sample complexity bound under
Assumption 1, scaling up this bound by an H2 for PAC bound,
one can also obtain a bound under Assumption 2. However, this
reduction is highly suboptimal in terms of H , so when comparing
with existing results, we display their original results and add a
column indicating whether the bound is under Assumption 2 or
Assumption 1.

phase. Zhang et al. (2020a) provided an algorithm which
achieves Õ

⇣
H

3
SA log(N) log(1/�)

✏2

⌘
sample complexity. See

Table 1 for a summary.

3. Preliminaries
Notations. Throughout this paper, we define [N] to be the
set {1, 2, . . . , N} for N 2 Z+. We use I[E] to denote the
indicator function for an event E , i.e., I[E] = 1 if E holds
and I[E] = 0 otherwise. For notational convenience, we set
◆ = ln(2/�) throughout the paper. For two n-dimensional
vectors x and y, we use xy to denote x>y, use V(x, y) =P

i
xiy2i � (

P
i
xiyi)2, and use x2 to denote the vector

[x2
1, x

2
2, ..., x

2
n
]> for x = [x1, x2, ..., xn]>. For two vectors

x, y, x � y denotes xi � yi for all i 2 [n] and x y
denotes xi yi for all i 2 [n]. We use 1 to denote the
S-dimensional vector [1, ..., 1]> and 1s to denote the S-
dimensional vector [0, ..., 1, ..., 0]> where the only non-zero
element is in the s-th dimension.

Episodic Reinforcement Learning. We first describe the
setting for standard episodic RL. A finite-horizon Markov
Decision Process (MDP) is a tuple M = (S,A, P,R,H, µ).
S is the finite state space with cardinality S. A is the finite
action space with cardinality A. P : S ⇥ A ! � (S)
is the transition operator which takes a state-action pair
and returns a distribution over states. For h = 1, 2, ..., H ,
Rh : S ⇥ A ! � (R) is the reward distribution with a
mean function rh : S ⇥A ! R. H 2 Z+ is the planning
horizon (episode length). µ 2 � (S) is the initial state
distribution. P , R and µ are unknown. For notational
convenience, we use Ps,a and Ps,a,s0 to denote P (·|s, a)
and P (s0|s, a) respectively.

A policy ⇡ chooses an action a based on the current state
s 2 S and the time step h 2 [H]. Formally, we define
⇡ = {⇡h}

H

h=1 where for each h 2 [H], ⇡h : S ! A maps
a given state to an action. The policy ⇡ induces a (random)
trajectory {s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH}, where
s1 ⇠ µ, a1 = ⇡1(s1), r1 ⇠ R(s1, a1), s2 ⇠ P (·|s1, a1),
a2 = ⇡2(s2), etc. We use E⇡,M [·] and P⇡,M [·] to denote
respectively the expectation and probability under policy ⇡
with respect to the MDP M , and omit M when M is clear
in the context,

The goal of RL is to find a policy ⇡ that maximizes the
expected total reward, i.e. max⇡ E⇡

hP
H

h=1 rh
i

where the
expectation is over the initial distribution state µ, the transi-
tion operator P and the reward distribution R.

As for scaling, we make the following assumption about the
reward. As we discussed in Section 2, this is a more general
assumption than the assumption made in most previous
works.

Nearly Optimal Reward-Free Reinforcement Learning

Assumption 2 (Bounded Total Reward). The reward sat-

isfies that rh � 0 for all h 2 [H]. Besides,
P

H

h=1 rh 1
almost surely.

Given a policy ⇡, a level h 2 [H] and a state-action pair
(s, a) 2 S ⇥A, the Q-function is defined as:

Q⇡

h
(s, a) = E⇡

"
HX

h0=h

rh0 | sh = s, ah = a

#
.

Similarly, given a policy ⇡, a level h 2 [H], the value
function of a given state s 2 S is defined as:

V ⇡

h
(s) = E⇡

"
HX

h0=h

rh0 | sh = s,

#
.

Then Bellman equation establishes the following identities
for policy ⇡ and (s, a, h) 2 S ⇥A⇥ [H]

Q⇡

h
(s, a) = rh(s, a) + P>

s,a
V ⇡

h+1 V ⇡

h
(s) =

X

a

⇡(a|s)Q⇡

h
(s, a).

Throughout the paper, we let VH+1(s) = 0 and
QH+1(s, a) = 0 for notational simplicity. We use Q⇤

h

and V ⇤
h

to denote the optimal Q-function and V -function
at level h 2 [H], which satisfies for any state-action
pair (s, a) 2 S ⇥ A, Q⇤

h
(s, a) = max⇡ Q⇡

h
(s, a) and

V ⇤
h
(s) = max⇡ V ⇡

h
(s).

Dataset A dataset D = {(sk
h
, ak

h
, sk

h+1)}(h,k)2[H]⇥[K]

consists of trajectories of K episodes. We also define
{Ns,a,s0(D)}(s,a,s0)2S⇥A⇥S to be the visitation count and
{Ps,a,s0(D) =

N
s,a,s0 (D)P

s̃
Ns,a,s̃(D)}(s,a,s0)2S⇥A⇥S to be the

empirical transition probability computed by D, where
Ps,a,s0(D) is defined as 1

S
if
P

s̃
Ns,a,s̃(D) = 0. We further

define Ns,a(D) =
P

s̃
Ns,a,s̃(D) and Ps,a(D) be the vec-

tor such that the value of its s0-th dimension is Ps,a,s0(D)
for all (s, a) 2 S ⇥ A. With the notation defined above,
we let N(D) and P (D) be respectively the shorthands of
{Ns,a(D)}(s,a)2S⇥A and {Ps,a(D)}(s,a)2S⇥A.

Reward-Free Reinforcement Learning Now we for-
mally describe reward-free RL. Let ✏, � 2 (0, 1) be the
thresholds of sub-optimality and failure probability. Reward-
free RL consists of two phases. In the exploration phase,
the algorithm collects a dataset D by interacting with the en-
vironment without reward information, and in the planning
phase, given any reward function r satisfying Assumption 2,
the agent is asked to output an ✏-optimal policy with prob-
ability at least 1 � �. The performance of an algorithm is
measured by how many episodes K used in the exploration
phase to make sure the planning phase succeeds.

4. Technique Overview
The proposed algorithm has two main components: the
sampling phase and the planning phase. At a high level,
we first propose a sufficient condition (see Condition 2) for
the agent to use the collect samples to learn an ✏-optimal
policy for any reward function satisfying Assumption 2.
Then we apply a modified version of Rmax (Brafman &
Tennenholtz, 2003) to obtain samples to satisfy Condition 2
in the sampling phase.

4.1. Planning Phase

4.1.1. A TIGHT SUFFICIENT CONDITION

To obtain a near-optimal policy for any given reward func-
tion, a sufficient condition is to collect N samples for each
(s, a) pair, where N is some polynomial function of S,A
and 1/✏. However, some (s, a) pairs might be rarely visited
with any policy so it is hard to get enough samples for such
pairs. To address this problem, we observe that such state-
action pairs contribute little to the accumulative reward. As
mentioned in (Jin et al., 2020), if the maximal expected visit
count of (s, a) is �(s, a), then N�(s, a) samples of (s, a)
is sufficient for us to compute a good policy. Instead of
considering each (s, a) pair one by one, we hope to divide
the state-action space into a group of disjoint subsets, such
that the maximal expect visit count of each subset is propor-
tionally to minimal visit count in this subset. This poses a
sufficient condition for the dataset in the plan phase.
Condition 1. Let K = blog2(2H/✏)c. Given the dataset

D, the state-action space S⇥A could be divided into K+1
subsets S ⇥A = X1 [X2 [... [XK+1, such that,

(1) For any 1 i K, Ns,a(D) � Ni := 4 · SH◆

2i✏2 for any

(s, a) 2 Xi;

(2) For each 1 i K + 1, it holds that

sup
⇡
E⇡

hP
H

h=1 I [(sh, ah) 2 Xi]
i

H

2i .

The following proposition shows this condition is sufficient.
The proof of Proposition 1 is postpone to Appendix D.
Proposition 1. Suppose Condition 1 holds for the dataset

D. Given any reward function r satisfying Assump-

tion 2, with probability 1 � 4S2A(log2(T0H) + 2)�, Q-
COMPUTING(P (D), N(D), r) (see Algorithm ??) returns

an ✏-optimal policy.

In previous work on reward-free exploration (Jin et al., 2020;
Kaufmann et al., 2020; Ménard et al., 2020), sufficient condi-
tions similar to Condition 1 have been proposed to prove ef-
ficient reward-free exploration. However, to obtain a dataset
satisfying Condition 1, the sample complexity bound is at
least polynomial in H in the worst case, which is the main
barrier of previous work. We give a simple counter-example
to explain why Condition 1 is hard to be satisfied without
a poly (H) number of episodes. Suppose there is a state

Nearly Optimal Reward-Free Reinforcement Learning

s̃, such that for any other (s, a) 2 S ⇥A Ps,a,s̃ = ✏1, and
for any action a Ps̃,a,s̃ = 1. Direct computation gives that
�(s) :=

P
a
�(s, a) = ⇥(H2✏1). However, the probabil-

ity that the agent never visit s̃ in N episodes is at least
(1 � H✏1)N ⇡ e�NH✏1 ⇡ e�

N�(s)
H . In the case N ⌧ H ,

the expected visit count in N episodes is N�(s), while the
empirical visit count could be 0 with constant probability,
which implies the expected visited number and the empirical
visit can be very different in the N = o(H) regime.

To address this problem, we observe that in the example
above, the probability the agent reaches s̃ is relatively small.
If we simply ignore s̃, the regret due to this ignorance is
at most O(H✏1) = O(�(s)/H) instead of original regret
bound of O(�(s)). This poses our main novel condition to
plan for a near-optimal policy given any reward function
satisfying Assumption 2. This is one of our key technical
contributions.

Condition 2. Recall K = blog2(2H/✏)c. The state-

action space S ⇥ A could be divided into K + 1 subsets

S ⇥A = X1 [X2 [... [XK+1, such that,

(1) N(s, a) � Ni = 4 · H(◆+6S ln(SAH/✏))
2i✏2 for any (s, a) 2

Xi for 1 i K;

(2) Recall Zi = max{min{ H

2i✏ , H}, 1} for each 1 i
K + 1. For each 1 i K + 1, it holds that

sup
⇡
P⇡[
P

H

h=1 I [(sh, ah) 2 Xi] > Zi] ✏ and

sup
⇡
E⇡

h
min{

P
H

h=1 I [(sh, ah) 2 Xi] , Zi}

i

H

2i .

Under Condition 2, the state-action space are divided into
K + 1 subsets according to their visit counts. For the state-
action pairs with visit counts in [Ni, Ni�1), different with
the second requirement in Condition 1 we require that the
maximal truncated expected visit count is strictly bounded
proportionally to their visit counts. Let Ei be the set of tra-
jectories satisfying that

P
H

h=1 I [(sh, ah) 2 Xi] > Zi. We
also requires that the probability of Ei is no larger than ✏ for
any policy. In fact, we directly pay loss of sup

⇡
P⇡[Ei] due

to ignoring Ei when computing the value function. On the
other hand, Zi is far less than H when i is relatively large,
which enables us to collect samples to satisfy Condition 2.

The selection of Zi is quite non-trivial. On one hand,
we need Zi large enough so that it is possible to ensure
sup

⇡
P⇡

hP
H

h=1 I [(sh, ah) 2 Xi]
i

no larger than ✏ (for ex-
ample, by choosing Zi = H + 1, we can easily make this
probability 0), and on the other hand, we need Zi small
enough to get rid of polynomial dependence on H . One
possible solution is to set Zi to scale linear as the maximal
expected visit count of Xi, which plays a crucial role in the
analysis.

4.1.2. PLANNING USING AN AUXILIARY MDP

Suppose Condition 2 holds for some dataset D with the
partition {Xi}

K+1
i=1 . Because we only require the trun-

cated maximal expected visit is properly bounded in Con-
dition 2, standard planning method cannot work triv-
ially. The main difficulty here is that, to apply the
bounds of sup

⇡
E⇡

h
max{

P
H

h=1 I [(sh, ah) 2 Xi] , Zi}

i

and sup
⇡
P⇡ [Ei], we should set the reward 0 if Xi has been

visited for more than Zi times in an episode. A naive so-
lution is to encode the visit counts of {Xi}

K+1
i=1 into the

state space. However, in this approach, the size of the new
state space is exponential in S, which leads to exponential
computational cost. Due to the reason above, to our best of
knowledge, no existing algorithms can direct learn such a
truncated MDP.

To address this problem, we consider an auxiliary MDP
M

† =
D
S [send,A, r†, P̂ †, µ†

E
. Here send is an addi-

tional absorbing state. The reward function r† is the same
as r except for an additional column 0 for send, and the
transition probability P̂ † is given by P †

s,a
= (1� 1

Zi

)P̂s,a +
1
Zi

1send for any (s, a) 2 Xi and P̂send,a = 1send for any a.
In words, we add an absorbing state to the original MDP,
such that the agent would fall into send if it visit Xi for Zi

times in expectation for some 1 i K + 1. Instead of
learning the truncated MDP, we consider a soft-truncated

MDP, which exponentially reduces computational cost. For
more details, we refer the readers to Section 5.2.

4.2. Sampling Phase

Having identified the sufficient condition, we need to design
an algorithm to collect a set of samples that satisfy this
condition.

We make the partition S ⇥A = [K+1
i=1 Xi by specifying Xi

for i = 1, 2, ...,K + 1 one by one. We divide the learning
process into K stages. Take the first stage as an exam-
ple. At the beginning of the first stage, we assign reward
1 to all (s, a) 2 S ⇥ A, and proceeds to learn with this
reward. Like RMAX, whenever the visit count of some
(s, a) pair is equal to or larger than N1, we say this (s, a)
is known and set r(s, a) = 0. We will discuss the problem
of regret minimization for this MDP with time-varying re-
ward function later and simply assume the regret is properly
bounded. Defining X1 be the set of known state-action pairs
after the first stage, the statements in Condition 2 holds triv-
ially. Beside, the length of each stage is properly designed.
Combining this with the bound of regret, we show that the
maximal expected visit count of the unknown state-action
pairs is properly bounded. Because X2 ⇢ (X1)C , we learn
that the second part in the second statement in Condition 2
holds for X2. We then continue to learn the second subset

Nearly Optimal Reward-Free Reinforcement Learning

X2 and so on.

Note that in arguments above, we do not introduce Zi be-
cause Zi = H for the beginning stages by definition. In the
case Zi < H , there are two major problems.

The regret minimization algorithm Most regret min-
imization algorithms such (Azar et al., 2017; Zanette &
Brunskill, 2019) works in the regime Zi = H , where no
truncation occurs. However, in the case Zi ⌧ H , the regret
bounds by these algorithms depends on H polynomially. To
address this problem, we constructed an expanded MDP
with truncated cumulative reward (see definition in Section
5.1), where the Q-function is strictly bounded by Zi. In
this way, we obtain desired regret bounds. We would like
to mention that our algorithm is somewhat similar to re-
cent work (Zhang et al., 2020b) which addresses the regret
minimization problem with a total-bounded reward func-
tion. More precisely, after re-scaling, the reward function
in our regret minimization problem is also total bounded
by 1 and each single reward is bounded by 1/Zi. Although
the reward function might vary in different episodes, we
can provide efficient regret bounds in a similar way to the
analysis in (Zhang et al., 2020b).

Bound of P [Ei+1] Recall that Ei is the set of trajecto-
ries satisfying that

P
H

h=1 I[(sh, ah) 2 Xi] > Zi. De-
fine Yi+1 = (S ⇥ A)/(X1 [. . . [Xi) for i � 1 and
Y1 = S ⇥ A. It is clear that Wi is decreasing in
i. By the upper bound of regret (see Lemma 3), we
show that the maximal truncated expected visit count
sup

⇡
E⇡

h
min{

P
H

h=1 I [(sh, ah) 2 Yi] , Zi}

i
is properly

bounded. Noting that Zi+1 Zi, we have that

P [Ei+1] sup
⇡

P⇡

"
HX

h=1

I [(sh, ah) 2 Yi+1] > Zi+1

#

 sup
⇡

P⇡

"
HX

h=1

I [(sh, ah) 2 Yi+1] > Zi

#

+
1

Zi+1
sup
⇡

E⇡

"
min

(
HX

h=1

I [(sh, ah) 2 Yi+1] , Zi

)#

 sup
⇡

P⇡

"
HX

h=1

I [(sh, ah) 2 Yi] > Zi

#

+
1

Zi+1
sup
⇡

E⇡

"
min

(
HX

h=1

I [(sh, ah) 2 Yi+1] , Zi

)#
.

(1)

By properly choosing the value of Zi, we show that the
second term in RHS of (1) could be bounded by O(✏). Then
by induction, we show that P [Ei+1] K✏. Noting that
K = blog2(2H/✏)c is a logarithmic term, we can bound
the probability of P [Ei+1] properly.

Algorithm 1 MAIN ALGORITHM: STAGED SAMPLING +
TRUNCATED PLANNING

1: (D, {Xi}
K+1
i=1) STAGED SAMPLING (Algorithm 2);

2: Given any reward function r satisfying Assumption 2,
return ⇡ TRUNCATED PLANNING(D, {Xi}

K+1
i=1 , r)

(Algorithm 3).

Following the arguments above, we set the number of
episodes in each stage to be T0 := C1

SA(◆+S)l
✏2

where C1

is some large enough constant and l is a poly-logarithmic
term in (S,A,H, 1/✏). At the beginning of an episode in
the i-th stage, we assign reward 1 to a state-action pair if its
visit number is less than Ni and otherwise 0. We then apply
Algorithm 4 to minimize regret in each stage, and finally
obtain X1,X2, ...,XK+1.

For more technical details, we refer the reader to Section
5.1 and 5.2.

5. Proof of Theorem 1
Similar as in Section 4, our proof consists of two parts,
one for the sampling phase and another for the planning
phase. We propose the main lemmas for these two parts
respectively.

Lemma 1. By running Algorithm 2, with probability 1 �
K
�
2(log2(T0H) + 1) log2(T0H) + 4S2A(log2(H) + 2)

�
�,

we can collect a dataset D and obtain the partition

{Xi}
K+1
i=1 such that Condition 2 holds for the collected

dataset D with the partition {Xi}
K+1
i=1 . Besides, we

consumes at most KT0 = Õ(SA(◆+S)
✏2

) episodes to run

Algorithm 2.

Lemma 2. Assuming Condition 2 holds for the collected

dataset D with partition {Xi}
K+1
i=1 , with probability 1 �

4S2AKT0H(log2(T0H) + 2)�, Algorithm 3 can compute

an ✏-optimal policy using these samples for any reward

function r satisfying Assumption 2.

Theorem 1 follows by combining Lemma 1 with Lemma
2 and replacing � by poly(S,A, 1/✏, log(H))�. The rest
part of this section is devoted to the proofs of Lemma 1 and
Lemma 2.

5.1. Sampling Phase: Proof of Lemma 1

As mentioned in Section 4, we aim to collect samples such
that Condition 2 holds. Our algorithm proceeds in K + 1
stages, where each stage consists of T0 episodes. Therefore,
at most KT0 = Õ(SA(◆+S)

✏2
) episodes are needed to run

Algorithm 2. In an episode, saying the k-th episode in
the i-th stage, we define Y

k = {(s, a)|Nk(s, a) < Ni}

to be the set of unknown state-action pairs. In particular,
we define Yi := Y

k(i) where k(i) is the first episode in

Nearly Optimal Reward-Free Reinforcement Learning

Algorithm 2 STAGED SAMPLING

1: Initialize: D ;, Y1 S ⇥A

2: for i = 1, 2, ...,K do
3: (Di,Yi+1) TRVRL(i, Yi);
4: D D [Di;
5: Xi Yi/Yi+1

6: end for
7: XK+1 YK+1;
8: Return (D, {Xi}

K+1
i=1).

the i-th stage. Note that Xi is defined as Yi/Yi+1 and
Y1 = S ⇥A, which means Yi+1 = Y1/(X1 [. . . [Xi) =
(S ⇥ A)/(X1 [. . . [Xi). So we have that Wi = Yi for
i � 1.

To learn the unknown state-action pairs, we adopt the
idea of Rmax by setting reward function to be r(s, a) =
I
⇥
(s, a) 2 Y

k
⇤
. However, by the definition of Condition 2,

it suffices to assign reward 1 to the first Zi visits to Yi. So
it corresponds to learn a policy to maximize

E⇡

"
min

(
HX

h=1

I
⇥
(sh, ah) 2 Y

k
⇤
, Zi

)#
.

To address this learning problem, we consider an expanded
MDP M

k =
⌦
S
k,Ak, P k, rk, µk

↵
, where

S
k = S ⇥ [Zi + 1];

A
k = A;

rk(s, z, a) = I[(s, a) 2 Y
k, z Zi], 8(s, z, a) 2 S

k
⇥A

k;

P k(s0, z0|s, z, a) = P (s0|s, a) ·
⇣
I
⇥
z0 = z + 1 \ (s, a) 2 Y

k
⇤

+ I
⇥
z0 = z \ (s, a) /2 Y

k
⇤ ⌘

, 8(s, a) 2 S ⇥A, z 2 [Zi];

P k(s0, Zi + 1|s, Zi + 1, a) = P (s0|s, a), 8(s, a) 2 S ⇥A;

µk(s, z) = µ(s)I [z = 1] .

Roughly speaking, a state in M
k not only represent its

position in S, but also records the reward the agent has
collected in current episode. We then define the pseudo
regret in the i-th stage as:

Ri :=
X

k in stage i

sup
⇡

E⇡

"
HX

h=1

rk
h

#
�

HX

h=1

rk
h

!
,

where rk
h

is a shorthand of rk(sk
h
, zk

h
, ak

h
). We show that Ri

could be bounded properly in a similar way to (Zhang et al.,
2020b).

Lemma 3. For any 1 i K, by running

Algorithm 4 with input i, with probability 1 �
(2(log2(T0H) + 1) log2(T0H) + 4SA(log2(Zi) + 2)) �,

Ri is bounded by

Õ
⇣
Zi

p
SAT0(S + ◆) + ZiSA(S + ◆)

⌘
. (2)

Algorithm 4 and the proof of Lemma 3 is postponed to
Appendix.B due to limitation of space.

Let i be fixed. Recall that ki is the first episode in the i-th
stage. We define uk = sup

⇡
E⇡

hP
H

h=1 r
k

h

i
, ui = u

k(i)

and ui = uk(i) where k(i) is the index of the last episode in
the i-th stage. Because rk is non-increasing in k, µk is also
non-increasing in k. If ui > H

2i , then by Lemma 3 and the
definition of T0 we have that there exists a constant C2 and
a poly-logarithmic factor l2 in (S,A,H, 1/✏) such that

T0ui
�

X

k in stage i

HX

h=1

rk
h

 C2l2
⇣
Zi

p
SAT0(S + ◆) + ZiSA(S + ◆)

⌘
.

By choosing C1l1 � 8C2l2, we have that

X

k in stage i

HX

h=1

rk
h

� T0ui
� C2l2

⇣
Zi

p
SAT0(S + ◆) + ZiSA(S + ◆)

⌘

�
C1l1
2

SAH(◆+ 6S ln(SAH/✏))

2i✏2

>
C1

8
SANi. (3)

By choosing C1 � 16, we learn that
P

k in stage i

P
H

h=1 r
k

h
>

2SANi. On the other hand, each (s, a) could provide
at most Ni rewards in the i-th stage, which implies thatP

k in stage i

P
H

h=1 r
k

h
 2SANi. This leads to a contradic-

tion. We then have that u
i

H

2i .

Again because the reward function is non-increasing in k,
we have that

ui+1 u
i

H

2i
. (4)

Define pi = sup
⇡
P⇡

hP
H

h=1 I [(sh, ah) 2 Yi] > Zi

i
.

Then we have that

pi+1 sup
⇡

P⇡

"
Zi+1 <

HX

h=1

I [(sh, ah) 2 Yi+1] Zi

#

+ sup
⇡

P⇡

"
HX

h=1

I [(sh, ah) 2 Yi+1] > Zi

#

 I
⇥
2i+1✏ � 1

⇤ u
i

Zi+1
+ pi

 ✏+ pi.

Nearly Optimal Reward-Free Reinforcement Learning

By induction, we can obtain that pi i✏ (K + 1)✏

and
P

K

i=1 pi (K + 1)2✏. We claim that Condition 2
holds by defining Xi = Yi/Yi+1 for 1 i K and
XK+1 = YK+1.
(1) By the definition of Yi+1 , we learn that for any (s, a) 2
Xi, N(s, a) � 2Ni+1 � Ni.
(2) By the arguments above, we have that for each 1 i
K + 1.

sup
⇡

P⇡

"
HX

h=1

I [(sh, ah) 2 Xi] > Zi

#

 sup
⇡

P⇡

"
HX

h=1

I [(sh, ah) 2 Yi] > Zi

#
= pi (K + 1)✏

and

sup
⇡

E⇡

"
max

(
HX

h=1

I [(sh, ah) 2 Xi] , Zi

)#

ui u
i�1

H

2i�1
.

Noting that there are exactly K stages and each stage con-
sists of T0 = C1l1

SA(◆+6S ln(SAH/✏)) log2(H)
✏2

episodes, we
prove that we can collect a dataset satisfying Condition 2
within

KT0 = Õ(
SA(S + ln(1/�))

✏2
)

episodes.

5.2. Planning Phase: Proof of Lemma 2

Suppose we have a dataset D satisfying Condition 2 with
partition {Xi}

K+1
i=1 . Let P̂s,a and N(s, a) be the shorthand

of Ps,a(D) and N(s, a)(D) respectively. Denote the empir-
ical transition and visit count of (s, a) as P̂s,a and N(s, a)
respectively.

As mentioned in Section 4, we consider the reward-free aux-
iliary MDP M

† =
⌦
S [{send},A, P †, µ

↵
. The transition

function P †
s,a

= (1� 1
Zi

)Ps,a +
1
Zi

1send for all (s, a) 2 Xi

and P †
send,a

= 1send for any a. We first show that for any
policy, the value function of M† is eO(✏)-closed to that of
M.
Lemma 4. For any policy ⇡ and reward function r satisfy-

ing Assumption 2 and rsend = 0, define V ⇡

1 and V †⇡
1 be the

value function under M and M
†

with ⇡ respectively. We

then have

V †⇡
1 V ⇡

1 V †⇡
1 + 4(K + 1)2✏.

Instead of learning M, we aim to learn M
†. Let P̂s,a be

the empirical transition computed by the collected samples.
As described in Algorithm 3, for each 1 i K + 1, we

Algorithm 3 Truncated Planning
1: Input: The partition {Xi}

K+1
i=1 ; the dataset D; the re-

ward function r.
2: Initialize: r(send, a) 0; P (·|send, a) 1send

for all a 2 A; P̂ {Ps,a(D)}(s,a)2S⇥A; N

{Ns,a(D)}(s,a)2S⇥A;
3: for i = 1, 2, ...,K + 1 do
4: P̂ †

s,a
 (1� 1

Zi

)P̂s,a +
1
Zi

1send for any (s, a) 2 Xi;
5: end for
6: for (s, a, h) 2 S ⇥A⇥ [H] do
7: Qh(s, a) 1;
8: end for
9: for (a, h) 2 A⇥H do

10: Qh(send, a) 0;
11: end for
12: for h = H,H � 1, ..., 1 do
13: for (s, a) 2 S ⇥A do
14:

bh(s, a) 2

s
V(P̂ †

s,a, Vh+1)◆1
N(s, a)

+
29◆1

3N(s, a)
;

(5)

Qh(s, a) min{r(s, a) + P̂ †
s,a

Vh+1 + bh(s, a), 1};
(6)

Vh(s) max
a

Qh(s, a);

15: end for
16: end for
17: ⇡h(s) argmaxa Qh(s, a), 8s, h;
18: Return ⇡.

define P̂ †
s,a

= (1� 1
Zi

)P̂s,a +
1
Zi

1send for (s, a) in Xi and
then update backward the Q-function and value function
in an optimistic way. The final output policy ⇡ is induced
by the Q-function above. We first verify the Q-function is
optimistic, i.e.,
Lemma 5. With probability 1�4S2AKT0H(log2(T0H)+
2)�, Qh(s, a) � Q†⇤

h
(s, a) for any (s, a, h).

Without loss of generality, we assume µ = 1s1 . Now
we bound the gap V ⇤

1 (s1) � V ⇡

1 (s1). Let ✏1 =

min{ ◆

T0H
, ◆

2

T
2
0 H

3 } 1 , �1 = �✏S1 and ◆1 = ln(1/�1)

◆S ln(T 3
0H

4/◆3).
Lemma 6. With probability 1�4S2AKT0H(log2(T0H)+
2)�, it holds that

V ⇤
1 (s1)� V ⇡

1 (s1) V1(s1)� V ⇡

1 (s1)

X

s,a,h

wh(s, a,⇡)�h(s, a)

where wh(s, a,⇡) := E⇡,M† [I[(sh, ah) = (s, a)]] and

Nearly Optimal Reward-Free Reinforcement Learning

�h(s, a) := min{6

r
V(P †

s,a,Vh+1)◆1
N(s,a) + 12◆1

N(s,a) , 1}.

Define !†
i
(⇡) =

P
(s,a)2Xi

P
h
wh(s, a,⇡) for 1 i

K + 1.
Lemma 7. w†

i
(⇡) O(HK

2i) for 1 i K.

By Lemma 7, we further have
Lemma 8.
X

s,a,h

wh(s, a,⇡)�h(s, a)

 O

0

@K✏

s
2 + 2

X

s,a,h

X

s,a,h

wh(s, a,⇡)�h(s, a) +K2✏2

1

A .

By Lemma 6 and solving the inequality
x O(K✏

p
2 + 2x+K2✏2), we learn that

V †⇤
1 (s1)� V †⇡

1 (s1)

X

s,a,h

wh(s, a,⇡)�h(s, a) O
�
K✏+K2✏2

�
.

Recall that by Lemma 4, we have |V ⇡

1 (s1) � V †⇡
1 (s1)|

O
�
(K + 1)2✏

�
and |V †⇤

1 (s1)�V ⇤
1 (s1)| O

�
(K + 1)2✏

�
.

We then finally conclude that

V ⇤
1 (s1)� V ⇡

1 (s1)
X

s,a,h

wh(s, a,⇡)�h(s, a) O
�
K2✏

�
.

Since K log2(2H/✏), we finish the proof by rescaling ✏.

6. Discussions on Non-Stationary Episodic
MDP

We claim that SSTP could provide a reward-free sample
complexity of Õ(SAH

✏2
(log(1

�
) + S)) with a slight modifi-

cation. Because the analysis for the non-stationary episodic
MDP is very similar to previous analysis, we only point
out the major differences between the proofs and omit the
details. We also follow previous notations.

Planning phase Let Nh(s, a) denote the count of (s, a, h)
in the dataset. For non-stationary episodic MDP, we pro-
pose a sufficient condition for the dataset to plan for a near-
optimal policy given any reward function as follows.
Condition 3. Recall K = blog2(2H/✏)c. S ⇥ A ⇥ [H]
could be divided into K + 1 subsets S ⇥ A ⇥ [H] =
X1 [X2 [... [XK+1, such that,

(1) Nh(s, a) � Ni = 4 ·
H(◆+6S ln(SAH/✏))

2i✏2 for any

(s, a, h) 2 Xi for 1 i K;

(2) Recall Zi = max{min{ H

2i✏ , H}, 1} for each 1 i
K + 1. For each 1 i K + 1, it holds that

sup
⇡
P⇡[
P

H

h=1 I [(sh, ah, h) 2 Xi] > Zi] ✏ and

sup
⇡
E⇡

h
min{

P
H

h=1 I [(sh, ah, h) 2 Xi] , Zi}

i

H

2i .

Because the transition model at different layer could be
different, instead of the requirement on N(s, a), we ask
Nh(s, a) � Ni for (s, a, h) 2 Xi. Following the arguments
in the proof of Lemma 2, we can show that with Condition 3,
we can compute an ✏-optimal policy for any reward function
satisfying Assumption 2.

Sampling phase To learn a dataset satisfying Condition 3,
in a similar way as Algorithm 4, we invoke TRVRL to learn
Yi for 1 i K + 1. The major difference is that HT0

episodes are required for each stage. In this way, following
the proof of Lemma 3, we have that the regret in the i-th
stage is bounded by

Õ
⇣
Zi

p
SAH2T0(S + ◆) + ZiSAH(S + ◆)

⌘
. (7)

Compared to Lemma 3, we note that the bound in (7) has
two additional

p
H factors. The first

p
H factor is because

the length is multiplied by H and the second is due to the
structure of non-stationary episodic MDP. By (7), we can
further ensure that u

i

H

2i by noting that when u
i
> H

2i ,

X

k in stage i

HX

h=1

rk
h
�

C1

8
SAHNi, (8)

which contradicts to the fact that
P

k in stage i

P
H

h=1 r
k

h

2SAHNi (because each (s, a, h) could be visited for at
most Ni times).

Lower bound The current best lower bound is ⌦(SA

✏2
(H+

S + log(1
�
)) by the lower bounds in (Jin et al., 2020) and

(Zhang et al., 2020c). It remains an open problem whether
the Õ(SAH

✏2
(S + log(1

�
))) upper bound is tight.

7. Conclusion
We give a new algorithm, SSTP, which enjoys a near-optimal
sample complexity for reward-free RL. Importantly, we
show the sample complexity only depends logarithmically
on the planning horizon. Our algorithm relies on three new
technical ideas: 1) A new sufficient condition for the dataset
to plan for an ✏-suboptimal policy ; 2) A new way to plan
efficiently under the proposed condition using soft-truncated
planning; 3) Constructing extended MDP to maximize the
truncated accumulative rewards efficiently. In this way,
we can divide the state-action space into different groups
according to their maximal possible frequencies, which is
especially suited for RL with growing batches.

Another important future direction is to generalize our algo-
rithm to RL with function approximation. For example, can
we obtain a near-optimal sample complexity for reward-free
RL with linear function approximation (Wang et al., 2020b;
Zanette et al., 2020)?

Nearly Optimal Reward-Free Reinforcement Learning

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. arXiv preprint arXiv:1705.10528,
2017.

Agarwal, A., Kakade, S., and Yang, L. F. Model-based rein-
forcement learning with a generative model is minimax
optimal. arXiv preprint arXiv:1906.03804, 2019.

Altman, E. Constrained Markov decision processes, vol-
ume 7. CRC Press, 1999.

Azar, M. G., Munos, R., and Kappen, H. J. Minimax PAC
bounds on the sample complexity of reinforcement learn-
ing with a generative model. Machine learning, 91(3):
325–349, 2013.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In Proceedings of

the 34th International Conference on Machine Learning-

Volume 70, pp. 263–272. JMLR. org, 2017.

Brafman, R. I. and Tennenholtz, M. R-max - a general poly-
nomial time algorithm for near-optimal reinforcement
learning. J. Mach. Learn. Res., 3(Oct):213–231, March
2003. ISSN 1532-4435.

Dann, C. and Brunskill, E. Sample complexity of episodic
fixed-horizon reinforcement learning. In Advances in

Neural Information Processing Systems, pp. 2818–2826,
2015.

Dann, C., Lattimore, T., and Brunskill, E. Unifying PAC
and regret: Uniform PAC bounds for episodic reinforce-
ment learning. In Proceedings of the 31st International

Conference on Neural Information Processing Systems,
NIPS’17, pp. 5717–5727, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Dann, C., Li, L., Wei, W., and Brunskill, E. Policy certifi-
cates: Towards accountable reinforcement learning. In
Proceedings of the 36th International Conference on Ma-

chine Learning, volume 97 of Proceedings of Machine

Learning Research, pp. 1507–1516, Long Beach, Califor-
nia, USA, 09–15 Jun 2019. PMLR.

Du, S. S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudı́k,
M., and Langford, J. Provably efficient RL with rich
observations via latent state decoding. arXiv preprint

arXiv:1901.09018, 2019.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. Prov-
ably efficient maximum entropy exploration. In Interna-

tional Conference on Machine Learning, pp. 2681–2691,
2019.

Jiang, N. and Agarwal, A. Open problem: The dependence
of sample complexity lower bounds on planning hori-
zon. In Conference On Learning Theory, pp. 3395–3398,
2018.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
Q-learning provably efficient? In Advances in Neural

Information Processing Systems, pp. 4863–4873, 2018.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu,
T. Reward-free exploration for reinforcement learning.
arXiv preprint arXiv:2002.02794, 2020.

Kakade, S. M. On the sample complexity of reinforcement

learning. PhD thesis, University of London London,
England, 2003.

Kaufmann, E., Ménard, P., Domingues, O. D., Jonsson,
A., Leurent, E., and Valko, M. Adaptive reward-free
exploration. arXiv preprint arXiv:2006.06294, 2020.

Kearns, M. J. and Singh, S. P. Finite-sample convergence
rates for Q-learning and indirect algorithms. In Advances

in neural information processing systems, pp. 996–1002,
1999.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Break-
ing the sample size barrier in model-based reinforce-
ment learning with a generative model. arXiv preprint

arXiv:2005.12900, 2020.

Maurer, A. and Pontil, M. Empirical Bernstein bounds
and sample variance penalization. arXiv preprint

arXiv:0907.3740, 2009.

Ménard, P., Domingues, O. D., Jonsson, A., Kaufmann, E.,
Leurent, E., and Valko, M. Fast active learning for pure
exploration in reinforcement learning. arXiv preprint

arXiv:2007.13442, 2020.

Miryoosefi, S., Brantley, K., Daume III, H., Dudik, M., and
Schapire, R. E. Reinforcement learning with convex con-
straints. In Advances in Neural Information Processing

Systems, pp. 14093–14102, 2019.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. Near-
optimal time and sample complexities for solving Markov
decision processes with a generative model. In Advances

in Neural Information Processing Systems, pp. 5186–
5196, 2018.

Tessler, C., Mankowitz, D. J., and Mannor, S. Re-
ward constrained policy optimization. arXiv preprint

arXiv:1805.11074, 2018.

Wang, R., Du, S. S., Yang, L. F., and Kakade, S. M. Is
long horizon reinforcement learning more difficult than
short horizon reinforcement learning? arXiv preprint

arXiv:2005.00527, 2020a.

Nearly Optimal Reward-Free Reinforcement Learning

Wang, R., Du, S. S., Yang, L. F., and Salakhutdinov, R. On
reward-free reinforcement learning with linear function
approximation. arXiv preprint arXiv:2006.11274, 2020b.

Zanette, A. and Brunskill, E. Tighter problem-dependent
regret bounds in reinforcement learning without domain
knowledge using value function bounds. In International

Conference on Machine Learning, pp. 7304–7312, 2019.

Zanette, A., Lazaric, A., Kochenderfer, M. J., and Brunskill,
E. Provably efficient reward-agnostic navigation with
linear value iteration. arXiv preprint arXiv:2008.07737,
2020.

Zhang, X., Singla, A., et al. Task-agnostic exploration in
reinforcement learning. arXiv preprint arXiv:2006.09497,
2020a.

Zhang, Z., Ji, X., and Du, S. S. Is reinforcement learn-
ing more difficult than bandits? a near-optimal algo-
rithm escaping the curse of horizon. arXiv preprint

arXiv:2009.13503, 2020b.

Zhang, Z., Zhou, Y., and Ji, X. Almost optimal model-free
reinforcement learning via reference-advantage decom-
position. arXiv preprint arXiv:2004.10019, 2020c.

Zhang, Z., Zhou, Y., and Ji, X. Model-free reinforcement
learning: from clipped pseudo-regret to sample complex-
ity. arXiv preprint arXiv:2006.03864, 2020d.

	Introduction
	Our Contribution

	Related Work
	Preliminaries
	Technique Overview
	Planning Phase
	A Tight Sufficient Condition
	Planning using an Auxiliary MDP

	Sampling Phase

	Proof of Theorem 1
	Sampling Phase: Proof of Lemma 1
	Planning Phase: Proof of Lemma 2

	Discussions on Non-Stationary Episodic MDP
	Conclusion
	Technical Lemmas
	Miss Algorithms and Proofs in Section 5.1
	Proof of Lemma 3
	Bound of M1
	Bound of M2

	Missing Proofs in Section 5.2
	The Good Event G
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8

	Other Missing Proofs
	Proof of Proposition 1

