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Abstract

Generating functions, which are widely used
in combinatorics and probability theory, en-
code function values into the coefficients of a
polynomial. In this paper, we explore their
use as a tractable probabilistic model, and pro-
pose probabilistic generating circuits (PGCs) for
their efficient representation. PGCs are strictly
more expressive efficient than many existing
tractable probabilistic models, including deter-
minantal point processes (DPPs), probabilistic
circuits (PCs) such as sum-product networks, and
tractable graphical models. We contend that PGCs
are not just a theoretical framework that unifies
vastly different existing models, but also show
great potential in modeling realistic data. We
exhibit a simple class of PGCs that are not triv-
ially subsumed by simple combinations of PCs
and DPPs, and obtain competitive performance
on a suite of density estimation benchmarks. We
also highlight PGCs’ connection to the theory of
strongly Rayleigh distributions.

1. Introduction
Probabilistic modeling is an important task in machine learn-
ing. Scaling up such models is a key challenge: probabilistic
inference quickly becomes intractable as the models become
large and sophisticated (Roth, 1996). Central to this effort is
the development of tractable probabilistic models (TPMs)
that guarantee tractable probabilistic inference in the size
of the model, yet can efficiently represent a wide range of
probability distributions. There has been a proliferation
of different classes of TPMs. Examples include bounded-
treewidth graphical models (Meila & Jordan, 2000), deter-
minantal point processes (Borodin & Rains, 2005; Kulesza
& Taskar, 2012), and various probabilistic circuits (Dar-
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wiche, 2009; Kisa et al., 2014; Vergari et al., 2020) such as
sum-product networks (Poon & Domingos, 2011).

Ideally, we want our probabilistic models to be as expressive
efficient (Martens & Medabalimi, 2014) as possible, mean-
ing that they can efficiently represent as many classes of
distributions as possible, and adapt to a wider spectrum of
realistic applications. Often, however, stronger expressive
power comes at the expense of tractability: fewer restric-
tions can make a model more expressive efficient, but it can
also make probabilistic inference intractable. We therefore
raise the following central research question of this paper:
Does there exist a class of tractable probabilistic models
that is strictly more expressive efficient than current TPMs?

All aforementioned models are usually seen as representing
probability mass functions: they take assignments to random
variables as input and output likelihoods. In contrast, espe-
cially in the field of probability theory, it is also common
to represent distributions as probability generating poly-
nomials (or generating polynomials for short). Generating
polynomials are a powerful mathematical tool, but they have
not yet found direct use as a probabilistic machine learning
representation that permits tractable probabilistic inference.

We make the key observation that the marginal probabili-
ties (including likelihoods) for a probability distribution can
be computed by evaluating its generating polynomial in a
particular way. Based on this observation, we propose prob-
abilistic generating circuits (PGCs), a class of probabilistic
models that represent probability generating polynomials
compactly as directed acyclic graphs. PGCs provide a partly
positive answer to our research question: they are the first
known class of TPMs that are strictly more expressive ef-
ficient than decomposable probabilistic circuits (PCs), in
particular, sum-product networks, and determinantal point
processes (DPPs) while supporting tractable marginal infer-
ence.

Section 2 formally defines PGCs and establishes their
tractability by presenting an efficient algorithm for com-
puting marginals. Section 3 demonstrates the expressive
power of PGCs by showing that they subsume PCs and
DPPs while remaining strictly more expressive efficient.
Section 4 shows that there are PGCs that cannot be repre-
sented by PCs with DPPs as leaves. Section 5 evaluates
PGCs on standard density estimation benchmarks: even the
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X1 X2 X3 Prβ
0 0 0 0.02
0 0 1 0.08
0 1 0 0.12
0 1 1 0.48
1 0 0 0.02
1 0 1 0.08
1 1 0 0.04
1 1 1 0.16

(a) Table (b) Probabilistic generating circuit (c) Probabilistic mass circuit

Lβ =

X1 X2 X3[ ]
1 2 0 X1

2 6 0 X2

0 0 4 X3

Kβ =

X1 X2 X3[ ]
0.3 0.2 0 X1

0.2 0.8 0 X2

0 0 0.8 X3

(d) Kernel Lβ and marginal
kernel Kβ for a DPP

Figure 1. Four different representations for the same probability distribution Prβ .

simplest PGCs outperform other TPM learners on half of
the datasets. Then, Section 6 highlights PGCs’ connection
to strongly Rayleigh distributions. Section 7 summarizes
the paper and motivates future research directions.

2. Probabilistic Generating Circuits
In this section we establish probabilistic generating circuits
(PGCs) as a class of tractable probabilistic models. We
first introduce generating polynomials as a representation
for probability distributions and propose PGCs for their
compact representations. Then, we show that marginal
probabilities for a PGC can be computed efficiently.

2.1. Probability Generating Polynomials

It is a common technique in combinatorics to encode se-
quences as generating polynomials. In particular, prob-
ability distributions over binary random variables can be
represented by probability generating polynomials.

Definition 1. Let Pr(·) be a probability distribution over
binary random variables X1, X2, . . . , Xn, then the proba-
bility generating polynomial (or generating polynomial for
short) for the distribution is defined as

g(z1, . . . , zn) =
∑

S⊆{1,...,n}

αSz
S (1)

where αS = Pr({Xi = 1}i∈S , {Xi = 0}i/∈S) and zS =∏
i∈S zi.

As an illustrating example, we consider the probability dis-
tribution Prβ specified as a table in Figure 1a. By definition,
the generating polynomial for distribution Prβ is given by

gβ = 0.16z1z2z3 + 0.04z1z2 + 0.08z1z3 + 0.02z1

+ 0.48z2z3 + 0.12z2 + 0.08z3 + 0.02.
(2)

We see from Equation 2 that the generating polynomial for
a distribution simply “enumerates” all possible variable as-
signments term-by-term, and the coefficient of each term

corresponds to the probability of an assignment. The prob-
ability for the assignment X1 = 0, X2 = 1, X3 = 1, for
example, is 0.48, which corresponds to the coefficient of the
term z2z3. That is, given an assignment, we can evaluate
its probability by directly reading off the coefficient for the
corresponding term. We can also evaluate marginal proba-
bilities by summing over the coefficients for a set of terms.
For example, the marginal probability Pr(X2 = 0, X3 = 0)
is given by Pr(X1 = 0, X2 = 0, X3 = 0) + Pr(X1 =
1, X2 = 0, X3 = 0), which corresponds to the sum of the
constant term and the coefficient for the term z1.

2.2. Compactly Representing Generating Polynomials

Equation 2 also illustrates that the size of a term-by-term rep-
resentation for a generating polynomial is exponential in the
number of variables. As the number of variables increases,
it quickly becomes impractical to compute probabilities by
extracting coefficients from these polynomials. Hence, to
turn generating polynomials into tractable models, we need
a data structure to represent them more efficiently. We thus
introduce a new class of probabilistic circuits called prob-
abilistic generating circuits to represent generating poly-
nomials compactly as directed acyclic graphs (DAGs). We
first present the formal definition for PGCs.

Definition 2. A probabilistic generating circuit (PGC) is a
directed acyclic graph consisting of three types of nodes:

1. Sum nodes
⊕

with weighted edges to children;
2. Product nodes

⊗
with unweighted edges to children;

3. Leaf nodes, which are zi or constants.

A PGC has one node of out-degree 0 (edges are directed
from children to parents), and we refer to it as the root of
the PGC. The size of a PGC is the number of edges in it.

Each node in a PGC represents a polynomial, (i) each leaf in
a PGC represents the polynomial zi or a constant, (ii) each
sum node represents the weighted sum over the polynomials
represented by its children, and (iii) each product node
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represents the unweighted product over the polynomials
represented by its children. The polynomial represented by
a PGC is the polynomial represented by its root.

We have now fully specified the syntax of PGCs, but a PGC
with valid syntax does not necessarily have valid semantics.
Because of the presence of negative parameters, it is not
guaranteed that the polynomial represented by a PGC is a
probability generating polynomial: it might contain terms
that are not multiaffine or have negative coefficients (e.g.
−1.2z1z32). In practice, however, we show in Section 4
that, by certain compositional operations, we can construct
PGCs that are guaranteed to have valid semantics for any
parameterization.

Continuing our example, we observe that the generating
polynomial gβ in Equation 2 can be re-written as:

(0.1(z1 + 1)(6z2 + 1)− 0.4z1z2)(0.8z3 + 0.2) (3)

Based on Equation 3, we can immediately construct a PGC
that compactly represents gβ , as shown in Figure 1b. In this
way, generating polynomials for high-dimensional distribu-
tions may become feasible to represent by PGCs.

2.3. Tractable Inference with PGCs

We now show that the computation of marginals is tractable
for PGCs. As briefly mentioned in Section 2.1, we can
compute probabilities by extracting the coefficients of gen-
erating polynomials, which is much trickier when they are
represented as deeply-nested DAGs; as shown in Figure 1b,
it is impossible to directly read off any coefficient. We cir-
cumvent this problem by making the key observation that
we can “zero-out” the terms we don’t want from generating
polynomials by evaluating them in a certain way. For exam-
ple, when evaluating a marginal probability with X1 set to
0, we zero-out all terms that contain z1 by setting z1 to 0.
We generalize this idea as follows.

Lemma 1. Let g(z1, . . . , zn) be a probability generating
polynomial for Pr(·), then for A,B ⊆ {1, . . . , n} with
A ∩B = ∅, the marginal probability can be computed by:

Pr({Xi = 1}i∈A, {Xi = 0}i∈B)
= coef|A| (g({zi = t}i∈A, {zi = 0}i∈B , {zi = 1}i/∈A∪B)) ,

where t is an indeterminate for polynomials, and
coefk(g(t)) denotes the coefficient for the term tk in g(t).

Lemma 1 basically says that for a generating polynomial,
its marginals can be computed by evaluating the generating
polynomial in the polynomial ring R[t]. With a bottom-up
pass, this result naturally extends to generating polynomials
represented as PGCs: we first evaluate the leaf nodes to t, 1
or 0 based on the assignment; then, for the sum nodes, we
compute the weighted sum over the polynomials that their

children evaluate to; for the product nodes, we compute the
product over the polynomials that their children evaluate
to. Note that, as we are taking sums and products over
univariate polynomials of degree n, the time complexities
for the naive algorithms are O(n) and O(n2), respectively.
In light of this, it is not hard to see that computing marginal
probabilities is polynomial-time with respect to the size of
the PGCs.

Theorem 1. For PGCs of size m representing distri-
butions on n binary random variables, marginal prob-
abilities (including likelihoods) are computable in time
O(mn log n log log n).

The O(mn log n log log n) complexity in the theorem con-
sists of two parts: the O(m) part is the time complex-
ity of a bottom-up pass for a PGC of size m and the
O(n log n log log n) part is contributed by the time com-
plexity of computing the product of two degree-n polyno-
mials with fast Fourier transform (Schönhage & Strassen,
1971; Cantor & Kaltofen, 1991).

3. PGCs Subsume Other Probabilistic Models
To this point, we have introduced PGCs as a probabilis-
tic model and shown that they support tractable marginals.
Next, we show that PGCs are strictly more expressive ef-
ficient than other TPMs by showing that PGCs tractably
subsume decomposable probabilistic circuits and determi-
nantal point processes.

3.1. PGCs Subsume Other Probabilistic Circuits

We start by introducing the basics of probabilistic cir-
cuits (Vergari et al., 2020; Choi et al., 2020). Just like PGCs,
each PC also represents a polynomial with respect to vari-
ables Xi and Xi. The syntax of probabilistic circuits (PCs)
is basically the same as PGCs except for the following:

1. the variables in PCs are Xis and Xis rather than zis;
they are inherently different in the sense that Xis and
Xis are the random variables themselves, while zis are
symbolic formal objects;

2. the edge weights of PCs must be non-negative;

3. unlike PGCs, which represent probability generating
polynomials, all of the existing PCs represent probabil-
ity mass functions (as polynomials), so we sometimes
refer to them as probabilistic mass circuits.

Figure 1c shows an example PC that represents the distri-
bution Prβ . For a given assignment X = x, the PC A
evaluates to a number A (x), which is obtained by (i) re-
placing Xi variable leaves by xi, (ii) replacing Xi variable
leaves by 1−xi, (iii) evaluating product nodes as taking the
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product over their children, and (iv) evaluating sum nodes
as taking a weighted sum over their children. Finally, a PC
A with variable leaves X = (X1, . . . , Xn) represents the
probability distribution Pr(X=x) ∝ A (x).

For an arbitrary PC, most probabilistic inference tasks, in-
cluding marginals and MAP inference, are computationally
hard in the circuit size. In order to guarantee the efficient
evaluation of queries it is therefore necessary to impose fur-
ther constraints on the structure of the circuit. In this paper
we consider two well-known structural properties of prob-
abilistic circuits (Darwiche & Marquis, 2002; Choi et al.,
2020):

Definition 3. For a PC, we denote the input variables that a
node depends on as its scope; then,

1. A
⊗

node is decomposable if the scopes of its children
are disjoint.

2. A
⊕

node is smooth if the scopes of its children are
the same.

A PC is decomposable if all of its
⊗

nodes are decompos-
able; a PC is smooth if all of its

⊕
nodes are smooth.

Let A be a PC over X1, . . . , Xn. If A is decomposable
and smooth, then we can efficiently compute its marginals:
for disjoint A,B ⊆ {1, . . . , n} the marginal probability
Pr({Xi = 1}i∈A, {Xi = 0}i∈B) is given by the evaluation
of A with the following inputs.

Xi = 1, Xi = 0 if i ∈ A
Xi = 0, Xi = 1 if i ∈ B
Xi = 1, Xi = 1 otherwise.

Many TPMs are certain forms of decomposable PCs. Ex-
amples include sum-product networks (SPNs) (Poon &
Domingos, 2011; Peharz et al., 2019), And-Or graphs (Ma-
teescu et al., 2008), probabilistic sentential decision dia-
grams (PSDDs) (Kisa et al., 2014), arithmetic circuits (Dar-
wiche, 2009), cutset networks (Rahman & Gogate, 2016)
and bounded-treewidth graphical models (Meila & Jordan,
2000) such as Chow-Liu trees (Chow & Liu, 1968) and
hidden Markov models (Rabiner & Juang, 1986).

A decomposable PC can always be “smoothed” (i.e. trans-
formed into a smooth and decomposable PC) in polynomial
time with respect to its size (Darwiche, 2001; Shih et al.,
2019). Hence, when we are trying to show that decom-
posable PCs can be transformed into equivalent PGCs in
polynomial time, we can always assume without loss of
generality that decomposable PCs are also smooth. Our
first observation is that the probability mass functions repre-
sented by smooth and decomposable PCs are very similar
to the corresponding generating polynomials:

Proposition 1. Let A be a smooth and decomposable PC
that represents the probability distribution Pr over random

variables X1, . . . , Xn. Then A represents a probability
mass polynomial of the form:

m(z1, . . . , zn) =
∑

S⊆{1,...,n}

αS
∏
i∈S

Xi

∏
i/∈S

Xi (4)

where αS = Pr({Xi = 1}i∈S , {Xi = 0}i/∈S).

Note that Equation 4 is closely related to the network poly-
nomials (Darwiche, 2003) defined for Bayesian Networks.
By comparing Equation 4 to Equation 1 in the definition
of generating circuits, we find that they look very similar,
except for the absence of the negative random variables Xi

in Equation 1, which gives us the following corollary:

Corollary 1. Let A be a smooth and decomposable PC. By
replacing all Xi in A by 1 and Xi by zi, we obtain a PGC
that represents the same distribution.

Corollary 1 establishes that PGCs subsume decomposable
PCs and in turn, the TPMs subsumed by decomposable PCs.
This raises the question of whether PGCs are strictly more
expressive efficient and we give a positive answer:

Theorem 2. PGCs are strictly more expressive efficient than
decomposable PCs; that is, there exists a class of probability
distributions that can be represented by polynomial-size
PGCs but the sizes of any decomposable PCs that represent
the distributions are at least exponential in the number of
random variables.

We take determinantal point processes (DPPs) as this sepa-
rating class of distributions and prove Theorem 2 by show-
ing the following two results: (1) DPPs, in general, cannot
be represented by polynomial-size decomposable PCs, and
(2) DPPs are tractably subsumed by PGCs. The first result
has already been proved in previous works:

Theorem 3 (Zhang et al. (2020); Martens & Medabalimi
(2014)). There exists a class of DPPs such that the the size
of any decomposable PCs that represent them is exponential
in the number of random variables.

In the next section, we complete this proof by showing that
any DPP can be represented by a PGC of polynomial size
in the number of random variables.

3.2. PGCs subsume Determinantal Point Processes

In this section, we focus on showing that determinantal point
processes (DPPs) can be tractably represented by PGCs. We
start by introducing the basics for DPPs.

At a high level, a unique property of DPPs is that they are
tractable representations of probability distributions that
express global negative dependence, which makes them
very useful in many applications (Mariet & Sra, 2016), such
as document and video summarization (Chao et al., 2015;
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Lin & Bilmes, 2012), recommender systems (Zhou et al.,
2010), and object retrieval (Affandi et al., 2014).

In machine learning, DPPs are most often represented by
means of an L-ensemble (Borodin & Rains, 2005):1

Definition 4. A probability distribution Pr over n binary
random variables X = (X1, . . . , Xn) is an L-ensemble
if there exists a (symmetric) positive semidefinite matrix
L ∈ Rn×n such that for all x = (x1, . . . , xn) ∈ {0, 1}n,

Pr(X = x) ∝ det(Lx), (5)

where Lx = [Lij ]xi=1,xj=1 denotes the submatrix of L
indexed by those i, j where xi = 1 and xj = 1. The matrix
L is called the kernel for the L-ensemble. To ensure that the
distribution is properly normalized, it is necessary to divide
Equation 5 by det(L + I), where I is the n × n identity
matrix (Kulesza & Taskar, 2012).

Consider again the example distribution Prβ . It is actually
a DPP whose kernel is given by the matrix Lβ in Figure 1d.
The probability of the assignment X = (1, 0, 1), for exam-
ple, is given by

Pr(X = (1, 0, 1)) =
det(Lβ{1,3})

det(Lβ + I)
=

1

50

∣∣∣∣1 0
0 4

∣∣∣∣ = 0.08.

To compute marginal probabilities for L-ensembles, we also
need marginal kernels, which characterize DPPs in general,
as an alternative to L-ensemble kernels.

Definition 5. A probability distribution Pr is a DPP over
n binary random variables X1, . . . , Xn if there exists a
positive semdidefinite matrix K ∈ Rn×n such that for all
A ⊆ {1, . . . , n}

Pr({Xi = 1}i∈A) = det(KA), (6)

where KA = [Kij ]i∈A,j∈A denotes the submatrix of K
indexed by elements in A.

The marginal kernel Kβ for the L-ensemble that represents
the distribution Prβ is shown in Figure 1d, along with its ker-
nel Lβ . One can use a generalized version of Equation 6 to
compute the marginal probabilities Pr((Xi=1)i∈A, (Xj=
0)j∈B) efficiently, where A,B ⊆ {1, . . . , n}. We refer to
Kulesza & Taskar (2012) for further details.

PCs and DPPs support tractable marginals in strikingly dif-
ferent ways, and we wonder whether these two tractable
languages can be captured by a unified framework. As
mentioned in Section 3.1, it has already been proved that
PCs cannot tractably represent DPPs in general. We now
show that PGCs also tractably subsume DPPs, providing a
positive answer to this open problem.

1Although not every DPP is an L-ensemble, Kulesza & Taskar
(2012) show that DPPs that assign non-zero probability to the
empty set (the all-false assignment) are L-ensembles.

The key to constructing a PGC representation for DPPs is
that their generating polynomials can be written as determi-
nants over polynomial rings.

Lemma 2 (Borcea et al. (2009)). The generating polyno-
mial for an L-ensemble with kernel L is given by

gL =
1

det(L+ I)
det(LZ + I). (7)

With Z = diag(z1, . . . , zn), the generating polynomial for
a DPP with marginal kernel K is given by

gK = det(I −K +KZ). (8)

Note that the generating polynomials presented in Lemma 2
are just mathematical objects; to use them as tractable mod-
els, we need to represent them in the framework of PGCs.
So let us examine Equations (7) and (8) in detail. The entries
in the matrices LZ + I and I −K +KZ are degree-one
univariate polynomials, which can be easily represented as
PGCs. Thus, to compactly represent DPPs’ generating poly-
nomials as PGCs, we only need to compactly represent the
determinant function as a PGC.

There are a variety of polynomial-time division-free algo-
rithms for computing determinants over rings (Bird, 2011;
Samuelson, 1942; Berkowitz, 1984; Mahajan & Vinay,
1997) and we take Bird’s algorithm (Bird, 2011) as an exam-
ple. Bird’s algorithm is simply an iteration of certain matrix
multiplications and requires O(nM(n)) additions and mul-
tiplications, where M(n) is the number of basic operations
needed for a matrix multiplication. We conservatively as-
sume that M(n) is upper-bounded by n3. Thus when we
encode Bird’s algorithm as a PGC, the PGC contains at most
O(n4) sum and product nodes, each with a constant number
of edges. Together with Lemma 2, it follows that DPPs are
tractably subsumed by PGCs.

Theorem 4. Any DPP over n binary random variables can
be represented by a PGC of size O(n4).

We conclude this section with the following remarks:

1. DPPs cannot represent any positive dependence; for
example, Pr(Xi = 1, Xj = 1) > Pr(Xi = 1)Pr(Xj = 1)
can never happen for a DPP. On the other hand, since PGCs
are fully general, they are strictly more expressive than
DPPs.

2. In practice, when representing DPPs in the language of
PGCs, we do not need to explicitly construct the sum nodes
and product nodes to form the circuit structures. Recall
from Lemma 1 that marginals are tractable as long as we
can efficiently evaluate the PGCs over polynomial rings.
Thus we can simply apply Bird’s algorithm, for example, to
compute the determinants from Lemma 2.
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3. Since nonsymmetric DPPs (Gartrell et al., 2019) are
defined in the same way as standard DPPs, except for their
kernels L need not be symmetric, they are also tractably
subsumed by PGCs.

4. Beyond PCs and DPPs
In the previous section we have demonstrated the expres-
sive power of PGCs by showing that they are strictly more
expressive efficient than decomposable PCs and DPPs. It is
well-known, however, that PCs can use arbitrary families
of tractable distributions at their leaves, including DPPs. In
this section, we construct a simple class of PGCs that are
more interesting than PCs with DPP leaves.

4.1. Basic Compositional Operations for PGCs

We start by defining the sum, product and hierarchical com-
position operations for PGCs.

Proposition 2. Let A,B ⊂ N+; denote {zi}i∈A by zA and
{Xi}i∈A by XA. Let f(zA) and g(zB) be the generating
polynomials for distributions Prf (XA) and Prg(XB), then,
Sum: let α ∈ [0, 1], then αf + (1− α)g is the generating
polynomial for the probability distribution Prsum where

Prsum(XA = a,XB = b)

= αPrf (XA = a) + (1− α)Prg(XB = b).

Product: if A and B are disjoint (i.e. f and g depend
on disjoint sets of variables), then fg is the generating
polynomial for the probability distribution Prprod where

Prprod(XA = a,XB = b) = Prf (XA = a)Prg(XB = b).

The sum and product operations described above are basi-
cally the same as those for PCs: the sum distribution Prsum
is just a mixture over two distributions Prf and Prg, and
the product distribution Prprod is the point-wise product of
Prf and Prg. The hierarchical composition is much more
interesting.

Proposition 3 (hierarchical composition). Let Prg be
a probability distribution with generating polynomial
g(z1, . . . , zn). Let A1, . . . , An be disjoint subsets of N+

and f1(zA1), . . . , fn(zAn) be generating polynomials for
Pri. We define the hierarchical composition of g and fis by

gcomp = g
∣∣
zi=fi

,

which is the generating polynomial obtained by substitut-
ing zi in g by fis. In particular, gcomp is a well-defined
generating polynomial that represents a valid probability
distribution.

Unlike the sum and product operations, the hierarchical com-
position operation for PGCs does not have an immediate

!! !" … !#

!!"…!!#

Pr" Pr$ Pr!

!$"…!$#!""…!"#

!! = det(' + ) diag - " , - # , … , - $ )%" %$ %!

Figure 2. An example of the hierarchical composition for PGCs.
We partition n binary random variables into m parts, each with
k variables. Then, variables from part i are modeled by the
PGC Pri with generating polynomial fi. Let gL = det(I +
Ldiag(z1, . . . , zn)) be the generating polynomial for a DPP with
kernel L. Then gδ is the hierarchical composition of gL and fis.
We refer to this architecture for gδ as a determinantal PGC.

analogue for PCs. This operation is a simple yet power-
ful way to construct classes of PGCs; Figure 2 shows an
example, which we illustrate in detail in the next section.

4.2. A Separating Example

Now we construct a simple class of PGCs that are not triv-
ially subsumed by PCs with DPPs as leaves. Figure 2 gives
an outline of its structure. We construct a model of a prob-
ability distribution over n random variables X1, . . . , Xn.
For simplicity we assume n = mk and partition the vari-
ables into m parts, each with k variables. Changing nota-
tion, we write {X11, . . . , X1k}, . . . , {Xm1, . . . , Xmk}. For
1 ≤ i ≤ m, let Pri be a PGC over the random variables
Xi1, . . . , Xik with generating polynomial fi(zi1, . . . , zik).
Let PrL be a DPP with kernel L and generating polyno-
mial gL(z1, . . . , zm). Then, the generating polynomial
gδ = gL

∣∣
zi=fi

, namely the hierarchical composition of
gL and fi, defines a PGC Prδ , which we refer to as a deter-
minantal PGC (DetPGC).

DPPs are great at modeling negative dependencies but can-
not represent positive dependencies between variables: for
the DPP PrL, PrL(Xi = 1, Xj = 1) > PrL(Xi =
1)PrL(Xj = 1) can never happen. Our construction of
DetPGCs aims to equip a DPP model to capture local pos-
itive dependencies. To understand how DetPGCs actually
behave, we compute the marginal probability Prδ(Xik =
1, Xjl = 1) by Lemma 1.

When Xik and Xjl belong to the same group (i.e. i = j):
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DPP Strudel EiNet MT SimplePGC
nltcs −9.23 −6.07 −6.02 −6.01 −6.05∗

msnbc −6.48 −6.04 −6.12 −6.07 −6.06†◦
kdd −2.45 −2.14 −2.18 −2.13 −2.14∗†

plants −31.20 −13.22 −13.68 −12.95 −13.52†
audio −49.31 −42.20 −39.88 −40.08 −40.21∗
jester −63.88 −54.24 −52.56 −53.08 −53.54∗
netflix −64.18 −57.93 −56.54 −56.74 −57.42∗

accidents −35.61 −29.05 −35.59 −29.63 −30.46†
retail −11.43 −10.83 −10.92 −10.83 −10.84†

pumsb −51.98 −24.39 −31.95 −23.71 −29.56†
dna −82.19 −87.15 −96.09 −85.14 −80.82∗†◦

kosarek −13.35 −10.70 −11.03 −10.62 −10.72†
msweb −11.31 −9.74 −10.03 −9.85 −9.98†
book −41.22 −34.49 −34.74 −34.63 −34.11∗†◦
movie −83.55 −53.72 −51.71 −54.60 −53.15∗◦
webkb −180.61 −154.83 −157.28 −156.86 −155.23†◦
reuters −107.44 −86.35 −87.37 −85.90 −87.65
20ng −174.43 −153.87 −153.94 −154.24 −154.03◦
bbc −278.15 −256.53 −248.33 −261.84 −254.81∗◦
ad −63.20 −16.52 −26.27 −16.02 −21.65†

(a) Results on the Twenty Datasets benchmark.

DPP Strudel EiNet MT SimplePGC
apparel −9.88 −9.51 −9.24 −9.31 −9.10∗†◦

bath −8.55 −8.38 −8.49 −8.53 −8.29∗†◦
bedding −8.65 −8.50 −8.55 −8.59 −8.41∗†◦
carseats −4.74 −4.79 −4.72 −4.76 −4.64∗†◦
diaper −10.61 −9.90 −9.86 −9.93 −9.72∗†◦

feeding −11.86 −11.42 −11.27 −11.30 −11.17∗†◦
furniture −4.38 −4.39 −4.38 −4.43 −4.34∗†◦

gear −9.14 −9.15 −9.18 −9.23 −9.04∗†◦
gifts −3.51 −3.39 −3.42 −3.48 −3.47◦

health −7.40 −7.37 −7.47 −7.49 −7.24∗†◦
media −8.36 −7.62 −7.82 −7.93 −7.69†◦
moms −3.55 −3.52 −3.48 −3.54 −3.53◦
safety −4.28 −4.43 −4.39 −4.36 −4.28∗†◦

strollers −5.30 −5.07 −5.07 −5.14 −5.00∗†◦
toys −8.05 −7.61 −7.84 −7.88 −7.62†◦

(b) Results on the Amazon Baby Registries benchmark.

Figure 3. Experiment results on the Twenty Datasets and the Amazon Baby Registries, comparing the performance of DPP, Strudel, EiNet,
MT and SimplePGC in terms of average log-likelihood. Bold numbers indicate the best log-likelihood. For SimplePGC, annotations ∗, †
and ◦ mean better log-likelihood compared to Strudel, EiNet and MT, respectively.

Prδ(Xik = 1, Xil = 1)

= PrL(Xi = 1)Pri(Xik = 1, Xil = 1);

that is, when two variables belong to the same group, the
dependencies between them are dominated by Pri, giving
space for positive dependencies.

When Xik and Xjl belong to different groups (i.e. i 6= j):

Prδ(Xik = 1, Xjl = 1) ≤ Prδ(Xik = 1)Prδ(Xjl = 1);

that is, random variables from different groups are still
negatively dependent, just like variables in the DPP PrL.

We stress that we construct DetPGCs merely to illustrate
how the flexibility of PGCs permits us to develop TPMs that
capture structure that is beyond the reach of the standard
suite of TPMs, including PCs, DPPs, and standard combina-
tions thereof. We are not proposing DetPGCs as an “optimal”
PGC structure for probabilistic modeling. Nevertheless, as
we will see, even the simple DetPGC model may be a better
model than PCs or DPPs for some kinds of real-world data.

5. Experiments
This section evaluates PGCs’ ability to model real data on
density estimation benchmarks. We use a weighted sum over
DetPGCs as our model. This simple method achieves state-
of-the-art performance on half the benchmarks, illustrating
the potential of PGCs in real-world applications.

5.1. Datasets

We evaluate PGCs on two density estimation benchmarks:

1. Twenty Datasets (Van Haaren & Davis, 2012), which
contains 20 real-world datasets ranging from retail to bi-
ology. These datasets have been used to evaluate various
tractable probabilistic models (Liang et al., 2017; Dang
et al., 2020; Peharz et al., 2020).

2. Amazon Baby Registries, which contains 15 datasets,2

each representing a collection of registries or “baskets” of
baby products from a specific category such as “apparel”
and “bath”. We randomly split each dataset into train (70%),
valid (10%) and test (20%) sets. This benchmark has been
commonly used to evaluate DPP learners (Gillenwater et al.,
2014; Mariet & Sra, 2015; Gartrell et al., 2019).

5.2. Model Structure

The model we use in our experiments is a weighted sum over
DetPGCs, the example constructed in Section 4.2, which
we refer to as SimplePGCs. Recall from Figure 2 that a
DetPGC is the hierarchical composition of a DPP and some
“leaf” PGCs Pr1, . . . ,Prm. For SimplePGC, we make the
simplest choice by setting the Pris to be the fully general
PGCs. In addition, to partition the input variables into

2The original benchmark had 17 datasets. We omit the datasets
with fewer than 10 variables: decor and pottytrain.
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m groups as shown in Figure 2, we use a simple greedy
algorithm that aims at putting pairs of positively depen-
dent variables into the same groups. The structure of a
SimplePGC is also governed by two hyperparameters: the
number of DetPGCs in the weighted sum (denoted by C)
and the maximum number of variables (i.e. k in Figure 2)
allowed in each group (denoted by K). We tune C and K
by a grid search over the following ranges: K ∈ {1, 2, 5, 7}
and C ∈ {1, 4, 7, 10, 20}. Note that our model reduces to a
mixture over DPPs when K = 1.

We implement SimplePGC in PyTorch and learn the pa-
rameters by maximum likelihood estimation (MLE). In par-
ticular, we use Adam (Kingma & Ba, 2014) as the opti-
mizing algorithm to minimize the negative log likelihoods
given the training sets. Regularization is done by setting the
weight decay parameter in Adam. For further details regard-
ing the construction and implementation of SimplePGCs,
please see the Appendix.

5.3. Baselines

We compare SimplePGC against four baselines: DPPs,
Strudel, Einsum Networks and Mixture of Trees.

DPP: As mentioned, SimplePGC reduces to a mixture over
DPPs when the hyperparameter K = 1. DPPs are learned
via SGD. We expect PGCs to outperform DPPs on most
datasets and be at least as good on all datasets.

Strudel: Strudel (Dang et al., 2020) is an algorithm for
learning the circuit structure of structured-decomposable
PCs. We include them as one of the state-of-the-art tractable
density estimators.

Einsum Networks: Einsum Networks (Peharz et al., 2020)
(EiNets) are a deep-learning-style implementation design
for PCs. Compared to Strudel, EiNets are more related to
SimplePGC in the sense that they are both fixed-structure
models where only parameters are learned. The hyper-
parameters are chosen by a grid search as suggested by
Peharz et al. (2020).

Mixture of Trees The Mixture of Trees (Meila & Jordan,
2000) (MT) model is a mixture model over Chow-Liu
trees (Chow & Liu, 1968). MTs are included as a rep-
resentative of tractable graphical models with simple yet
expressive structures. For learning, we run the mtlearn
algorithm implemented in the Libra-tk library (Lowd &
Rooshenas, 2015); the number of components in MT is
chosen by a grid search from 2 to 30 with step size 2, as
suggested by Rooshenas & Lowd (2014).

5.4. Results and Analysis

Figure 3 shows the experiment results. We first compare
SimplePGC against DPPs. On both benchmarks, Sim-

plePGC performs significantly better than DPPs on almost
every dataset except for 4 datasets from the Amazon Baby
Registries benchmark, where SimplePGC performs at least
as well as DPPs.

Overall, SimplePGC achieves competitive performance
when compared against Strudel, EiNet and MT on both
benchmarks. On the Twenty Datasets benchmark, Sim-
plePGC obtains better average log-likelihood than at least
one of the baselines (Strudel, EiNet and MT) on 19 out
of the 20 datasets and, in particular, SimplePGC obtains
higher log-likelihood than all of them on 2 datasets. Such
results are remarkable, given the fact that SimplePGC is
just a simple hand-crafted PGC architecture with little fine-
tuning, while Strudel, EiNet and MT follow from a long line
of research aiming to perform well on exactly the Twenty
Datasets benchmark.

The performance of SimplePGC on the Amazon Baby Reg-
istries benchmark is even more impressive: SimplePGC
beats all of baselines on 11 out of 15 datasets and beats at
least one of them on all datasets. One possible reason that
SimplePGC performs much better than the other baselines
on this benchmark is because these datasets exhibit rela-
tively strong negative dependence and SimplePGCs’ DPP-
like structure allows them to capture negative dependence
well.

We also conducted one-sample t-test for the results; for
further details please refer to the Appendix.

6. PGCs and Strongly Rayleigh Distributions
At a high level, the study of PCs and graphical models
mainly focuses on constructing classes of models that guar-
antee tractable exact inference. A separate line of research
in probabilistic machine learning, however, aims at identify-
ing classes of distributions that support tractable sampling,
where generating polynomials play an essential role. For ex-
ample, a well-studied class of distributions are the strongly
Rayleigh (SR) distributions (Borcea et al., 2009; Li et al.,
2016), which were first defined in the field of probability
theory for studying negative dependence:

Definition 6. A polynomial f ∈ R[z1, . . . , zn] is real
stable if whenever the imaginary part Im(zi) > 0 for
1 ≤ i ≤ n, f(z1, . . . , zn) 6= 0. We say that a distribution
over X1, . . . , Xn is strongly Rayleigh (SR) if its generating
polynomial is real stable.

SR distributions contain many important subclasses such
as DPPs and the spanning tree/forest distributions, which
have various applications. From Section 3.2, we already
know that PGCs can compactly represent DPPs. We now
show that PGCs can represent spanning tree distributions in
polynomial-size.
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We first define the spanning tree distributions. Let G =
(V,E) be a connected graph with vertex set V = {1, . . . , n}
and edge set E. Associate to each edge e ∈ E a variable ze
and a weight we ∈ R≥0. If e = {i, j}, let Ae be the n× n
matrix where Aii = Ajj = 1, Aij = Aji = −1 and all
other entries equal to 0. Then the weighted Laplacian of G
is given by L(G) =

∑
e∈E wezeAe,

By the Principal Minors Matrix-Tree Theorem (Chaiken &
Kleitman, 1978),

fG = det(L(G)\{i}) =
∑

T a spanning tree of G

wedges(T )zedges(T )

is the (un-normalized) generating polynomial for the span-
ning tree distribution, and we denote it by PrG. Here
L(G)\{i} denotes the principal minor of L(G) by removing
its ith row and column.

As shown in the equation above, PrG is supported on the
spanning trees of G, and the probability of each spanning
tree is proportional to the product of its edge weights. PrG
is a strongly Rayleigh distribution (Borcea et al., 2009), and,
to the best of our knowledge, it is not a DPP unless the
edge weights are the same. By the same argument as in
Section 3.2, we claim that PrG can be tractably represented
by PGCs.

Thus, we see that there is another natural class of SR distribu-
tions – spanning tree distributions – that can be represented
by PGCs. More generally, generating polynomials play a
key role in the study of a number of other classes of distribu-
tions, including the Ising model (Jerrum & Sinclair, 1993),
exponentiated strongly Rayleigh (ESR) distributions (Ma-
riet et al., 2018) and strongly log-concave (SLC) distribu-
tions (Robinson et al., 2019). Specifically, most of these
distributions are naturally characterized by their generating
polynomials rather than probability mass functions. This
poses a major barrier to linking them to other probabilistic
models. Thus by showing that PGCs can tractably represent
certain subclasses of SR distributions, we present PGCs as
a prospective avenue for bridging this gap.

Although we conjecture that not all SR distributions can
be represented by polynomial-size PGCs, we believe that
the subclasses of the above distributions that have concise
parameterizations should be representable by PGCs. Estab-
lishing this for various families is a direction for future work.

7. Conclusion and Perspectives
We conclude by summarizing our contributions and high-
lighting future research directions. In this paper, we study
the use of probability generating polynomials as a data struc-
ture for representing probability distributions. We showed
that their representation as circuits are a TPM, and are
strictly more expressive efficient than existing families of

TPMs. Indeed, even a simple example family of distribu-
tions that can be represented by PGCs but not PCs or DPPs
obtains state-of-the-art performance as a probabilistic model
on some datasets.

To facilitate the general use of PGCs for probabilistic model-
ing, a facinating direction for future work is to build efficient
structure learning or ‘architecture search’ algorithms for
PGCs. Theoretically, the main mathematical advantage of
generating polynomials was the variety of properties they re-
veal about a distribution. This raises the question of whether
there are other kinds of useful queries we can support ef-
ficiently with PGCs, and where truly lies the boundary of
tractable probabilistic inference.

Acknowledgements
We thank the reviewers for their detailed and thoughtful
feedback and efforts towards improving this paper. We thank
Steven Holtzen, Antonio Vergari and Zhe Zeng for helpful
feedback and discussion. This work is partially supported by
NSF grants #IIS-1943641, #IIS-1633857, #CCF-1837129,
#CCF-1718380, #IIS-1908287, and #IIS-1939677, DARPA
XAI grant #N66001-17-2-4032, Sloan and UCLA Samueli
Fellowships, and gifts from Intel and Facebook Research.

References
Affandi, R. H., Fox, E., Adams, R., and Taskar, B. Learning

the parameters of determinantal point process kernels. In
ICML, pp. 1224–1232, 2014.

Berkowitz, S. J. On computing the determinant in small
parallel time using a small number of processors. Infor-
mation processing letters, 18(3):147–150, 1984.

Bird, R. S. A simple division-free algorithm for computing
determinants. Information Processing Letters, 111(21-
22):1072–1074, 2011.
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A. Proofs
Proof for Lemma 1. We write the generating polynomial for Pr as g(z1, . . . , zn) =

∑
S⊂[n] αSz

S ; then,

Pr({Xi = 1}i∈A, {Xi = 0}i∈B)) =
∑

A⊂S,B∩S=∅

αS

Besides, we also have

coef|A|(g
∣∣
asgn) =

∑
αScoef|A|(zS

∣∣
asgn),

given the assignment asgn := {{zi = t}i∈A, {zi = 0}i∈B , {zi = 1}i/∈A∪B}; that is, to prove the Proposition, we only need
to show that coef|A|(zS

∣∣
asgn) = 1 for S ⊂ [n] where A ⊂ S and B ∩ S = ∅; and coef|A|(zS

∣∣
asgn) = 0 otherwise.

Case 1. Assume A ⊂ S and B ∩ S = ∅; then zS
∣∣
asgn = t|A|; hence coef|A|(zS

∣∣
asgn) = 1.

Case 2. Assume A 6⊂ S or B ∩ S 6= ∅; if B ∩ S 6= ∅, then zS
∣∣
asgn = 0; done. Now we assume A 6⊂ S. In this case,

zS
∣∣
asgn = t|S∩A|. It follows from S ∩A ( A that |S ∩A| < |A|, which implies that coef|A|(zS

∣∣
asgn) = 0.

Proof for Proposition 1. Let A be a decomposable and smooth PC. Without loss of generality we assume A is normalized.
For each node u in A , we define Iu = {i : Xi or Xi ∈ scope(u)} and denote the polynomial that u represents by mu. We
first prove the following intermediate result by a bottom-up induction on A :

mu =
∑
S⊂Iu

αS
∏
i∈S

Xi

∏
i/∈S

Xi,

where the αS are some non-negative numbers depending on the node u.

Case 1. If u is a leaf node Xi or Xi, then mu is Xi or Xi; done.

Case 2. If u is a sum node with children {vi}1≤i≤k and weights {wi}1≤i≤k. mu =
∑

1≤i≤k wimvi . By smoothness,
Ivi = Iu for all i. Then, by the induction hypothesis:

mu =
∑

1≤i≤k

wi
∑
S⊂Ivi

αiS
∏
j∈S

Xj

∏
j /∈S

Xj

=
∑

1≤i≤k

wi
∑
S⊂Iu

αiS
∏
j∈S

Xj

∏
j /∈S

Xj

=
∑
S⊂Iu

(
∑

1≤i≤k

wiαiS)
∏
j∈S

Xj

∏
j /∈S

Xj

Case 3. If u is a product node with children {vi}1≤i≤k. Then, by decomposability, Iv1 , . . . , Ivk are pairwise disjoint; in
particular, for each S ⊂ Iu, S can be uniquely decomposed into S1 ⊂ Iv1 , . . . , Sk ⊂ Ivk . Thus,

mu =
∏

1≤i≤k

mvi

=
∏

1≤i≤k

∑
Si⊂Ivi

αiS
∏
j∈Si

Xj

∏
j /∈Si

Xj

=
∑

S1⊂Iv1 ,...,Sk⊂Ivk

 ∏
1≤i≤k

αiSi

 ∏
1≤i≤k

∏
j∈Si

Xj

∏
j /∈Si

Xj


=
∑
S⊂Iu

 ∏
1≤i≤k

αiSi

∏
j∈S

Xj

∏
j /∈S

Xj ; with Iu = Iv1 ∪ · · · ∪ Ivn a disjoint union.
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Hence the mass polynomial represented by A is given by:

m(X1, . . . , Xn, X1, . . . , Xn) =
∑

S⊂{1,...,n}

αS
∏
i∈S

Xi

∏
i/∈S

Xi

By plugging in {Xi = 1}i∈S , {Xi = 0}i/∈S , it immediately follows that αS = Pr({Xi = 1}i∈S , {Xi = 0}i/∈S).

Proof for Proposition 2. Let A,B ⊂ N+; let f =
∑
S⊂A βSz

S and g =
∑
S⊂B γSz

S be the normalized probability
generating polynomials for distributions Prf (XA) and Prg(XB), respectively.

Case 1 (Sum). First, we view f and g as polynomials over {zi}i∈A∪B by setting βS = 0 ∀S 6⊂ A, and γS = 0 ∀S 6⊂ B,
which is equivalent to, from the perspective of probability distributions, viewing Prf and Prg as distributions over XA∪B
such that

Prf (XA = a,XB = b) =

{
Prf (XA = a), if bi = 0 for i ∈ (A ∪B)\A
0, otherwise

and

Prg(XA = a,XB = b) =

{
Prg(XB = b), if ai = 0 for i ∈ (A ∪B)\B
0, otherwise

Then,

αf + (1− α)g = α
∑
S⊂A

βSz
S + (1− α)

∑
S⊂B

γSz
S

=
∑

S⊂A∪B
(αβS + (1− α)γS) zS ,

where αβS+(1−α)γS are clearly non-negative, and
∑
S⊂A∪B αβS+(1−α)γS = α

∑
S⊂A∪B βS+(1−α)

∑
S⊂A∪B γS =

α+ (1− α) = 1. That is, αf + (1− α)g is a valid probability generating polynomial for a distribution, Prsum.

For assignments XA = a and XB = b with no conflict (A and B are not necessarily disjoint), let S = {i ∈ A : ai =
1} ∪ {i ∈ B : bi = 1}. By definition, Prsum(XA = a,XB = b) is given by the coefficient of the term zS , which is

αβS + (1− α)γS
=αPrf (XA = a,XB = b) + (1− α)Prg(XA = a,XB = b)

=αPrf (XA = a) + (1− α)Prg(XB = b) for short.

Case 2 (Product). We assume A ∩B = ∅. Then,

fg =

(∑
S⊂A

βSz
S

)(∑
T⊂B

γT z
T

)
=

∑
S⊂A,T⊂B

βSγT z
SzT

As A and B are disjoint, zSzT are multiaffine. On top of that, βSγT ≥ 0 and
∑
S⊂A,T⊂B βSγT =

∑
S⊂A βS

∑
T⊂B γT =

1. Thus, fg is a valid probability generating polynomial for a distribution, Prprod.

For assignments XA = a,XB = b, we set Sa = {i ∈ A : ai = 1} and Sb = {i ∈ B : bi = 1}. Then, by definition,
Prprod(XA = a,XB = b) is given by the coefficient of the term zSa∪Sb , which is βSaγSb

= Prf (XA = a)Prf (XB = b).

Proof for Proposition 3. Let g(z1, . . . , zn) be a normalized probability generating polynomial. Let A1, . . . , An be disjoint
subsets of N+ and f1(zA1

), . . . , fn(zAn
) be normalized generating polynomials. Write g =

∑
S⊂{1,...,n} αSz

S . Then,

g
∣∣
zi=fi

=
∑

S⊂{1,...,n}

αS
∏
i∈S

fi
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It follows from Proposition 2 (product operation) that
∏
i∈S fi are valid generating polynomials for S ⊂ {1, . . . , n}; again

by Proposition 2 (sum operation), g
∣∣
zi=fi

=
∑
S⊂{1,...,n} αS

∏
i∈S fi is a valid generating polynomial.

B. Experiments
B.1. The Construction of SimplePGC

A SimplePGC is a weighted sum over several DetPGCs, which are defined in Section 4.2. The structure of a SimplePGC is
governed by two hyperparameters, the number of DetPGCs in the weighted sum (denoted by C), and the maximum number
of the variables (i.e. k in Figure 2) in the leaf distributions of the DetPGCs (denoted by K).

Partitioning Variables To construct SimplePGC, we first partition the variables X1, . . . , Xn into several groups. The idea
is, as shown in Section 4.2, for a DetPGC, variables from different groups have to be negatively dependent, so we want
to put pairs of variables that are positively dependent in the same group. Given some training examples D1, . . . , Dl, we
estimate the probabilities Pr(Xi = 1) and Pr(Xi = 1, Xj = 1) by counting; in particular, we set

Pr(event) =
|Diwhere event is true|

l
.

Then, inspired by the definition of pairwise mutual information, when Pr(Xi = 1, Xj = 1) > 0, we use the quantity

wij = Pr(Xi = 1, Xj = 1) log
Pr(Xi = 1, Xj = 1)

Pr(Xi = 1)Pr(Xj = 1)
, (9)

to measure the degree of positive dependence between Xi and Xj . Note that Xi and Xj are positively dependent if wij > 0.
Then we partition the variables into groups by the following greedy algorithm.

Algorithm 1 Partition Variables

Input: variables {Xi}1≤i≤n, weights {wij}1≤i<j≤n as defined by Equation (9)
Output: function group that maps Xi to the group that Xi belongs to
Initialization: group(Xi)← {Xi}, W ← {wij > 0}1≤i<j≤n

sort W in descending order
for wij in W do
union← group(Xi) ∪ group(Xj)
if |union| ≤ K then
group(Xi)← union
group(Xj)← union

end if
end for

Leaf PGCs After we partition the variables in to groups, we feed them to the leaf PGCs Pri, as shown in Figure 2. Pri can
be any PGCs; for SimplePGCs, we make the simplest choice by setting them to be the fully general distributions. For the
leaf distribution Pri over variables {Xi1, . . . , Xik}, we let

gi =
1

Zi

∑
∅6=S⊂{i1,...,ik}

exp(θi,S)z
S

be its generating polynomial with parameters θi,S and normalizing constantZi. Pris are fully general except for the constraint
that all-zero assignment must have zero probability; this constraint is nothing but a trick that makes implementation easier.

B.2. Supplementary Experiment Results

In addition to the experiment results presented in Figure 3, we also conducted one-sample t-tests. The results of the statistical
test are shown in Figure 4. For the Twenty Datasets benchmark, the log-likelihood of Strudel is only statistically better than
SimplePGC on 6 out of 20 datasets; the log-likelihood of EiNets is only statistically better than SimplePGC on 2 out of 20
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datasets; the log-likelihood of MT is statistically better than SimplePGC on 7 out of 20 datasets. For the Amazon Baby
Registries benchmark, the log-likelihoods of Strudel, EiNets and MT are statistically better than SimplePGC on none of the
datasets.

It would also help if we estimate the confidence intervals of the average test log-likelihoods via cross validation. However,
since we have four baselines and not all of their learning algorithms were designed to be fast, the computation cost for
estimating the confidence intervals would be infeasible.

Strudel EiNet MT SimplePGC vs. Strudel vs. EiNet vs. MT
nltcs −6.07 −6.02 −6.01 −6.05 = = =

msnbc −6.04 −6.12 −6.07 −6.06 < > =
kdd −2.14 −2.18 −2.13 −2.14 = > =

plants −13.22 −13.68 −12.95 −13.52 < = <
audio −42.20 −39.88 −40.08 −40.21 > = =
jester −54.24 −52.56 −53.08 −53.54 > < <
netflix −57.93 −56.54 −56.74 −57.42 > < <

accidents −29.05 −35.59 −29.63 −30.46 < > <
retail −10.83 −10.92 −10.83 −10.84 = = =

pumsb −24.39 −31.95 −23.71 −29.56 < > <
dna −87.15 −96.09 −85.14 −80.82 > > >

kosarek −10.70 −11.03 −10.62 −10.72 = = =
msweb −9.74 −10.03 −9.85 −9.98 < = =
book −34.49 −34.74 −34.63 −34.11 = = =
movie −53.72 −51.71 −54.60 −53.15 = = =
webkb −154.83 −157.28 −156.86 −155.23 = = =
reuters −86.35 −87.37 −85.90 −87.65 = = <
20ng −153.87 −153.94 −154.24 −154.03 = = =
bbc −256.53 −248.33 −261.84 −254.81 = = =
ad −16.52 −26.27 −16.02 −21.65 < > <

(a) One-sided t-test results on the Twenty Datasets benchmark.

Strudel EiNet MT SimplePGC vs. Strudel vs. EiNet vs. MT
apparel −9.51 −9.24 −9.31 −9.10 > = >

bath −8.38 −8.49 −8.53 −8.29 = > >
bedding −8.50 −8.55 −8.59 −8.41 = = >
carseats −4.79 −4.72 −4.76 −4.64 > = >
diaper −9.90 −9.86 −9.93 −9.72 > = >

feeding −11.42 −11.27 −11.30 −11.17 > = =
furniture −4.39 −4.38 −4.43 −4.34 = = =

gear −9.15 −9.18 −9.23 −9.04 = > >
gifts −3.39 −3.42 −3.48 −3.47 = = =

health −7.37 −7.47 −7.49 −7.24 > > >
media −7.62 −7.82 −7.93 −7.69 = = =
moms −3.52 −3.48 −3.54 −3.53 = = =
safety −4.43 −4.39 −4.36 −4.28 > > =

strollers −5.07 −5.07 −5.14 −5.00 = = >
toys −7.61 −7.84 −7.88 −7.62 = > >

(b) One-sided t-test results on the Amazon Baby Registries benchmark.

Figure 4. Results for one-sample two-sided t-test on two benchmarks with p = 0.1. In the 5th and 6th columns of the tables, = means
a statistical tie, > means that the log-likelihood of SimplePGC is statistically better, and < means that of SimplePGC is statistically
worse. Note that a statistical tie does not necessarily mean there is no difference in terms of performance. Bold numbers indicate the best
log-likelihood.


