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A. Algorithmic Subroutines
In this section, we present three key subroutines in our work. Algorithm 2 is the SPARSEVECTOR algorithm, a classic
primitive in differential privacy. Algorithm 3 is SAFFRON and algorithm 4 is LORD++, both are recent methods for
online control of false discovery rate.

Algorithm 2 Sparse Vector: SPARSEVECTOR(D,∆, {f1, f2, . . .}, T, c, ε)
Input: databaseD, stream of queries {f1, f2, . . .} each with sensitivity ∆, threshold T , a cutoff point c, privacy parameter
ε
Let T̂0 = T + Lap( 2∆c

ε )
Let count = 0
for each query i do

Let Zi ∼ Lap( 4∆c
ε )

if fi(X) + Zi > T̂ then
Output ai = >
Let count = count +1
Let T̂count = T + Lap( 2∆c

ε )
else

Output ai = ⊥
end if
if count ≥ c then

Halt.
end if

end for

Algorithm 3 SAFFRON(α,W0, {γj}∞j=0)

Input: stream of p-values {p1, p2, . . .}, target FDR level α, initial wealth W0 < α, positive non-increasing sequence
{γj}∞j=0 of summing to one.
Set rejection number i = 0
for each p-value pt do

Set λt = gt(R1:t−1, C1:t−1)

Set the indicator for candidacy Ct = I(pt < λt). Set the candidates after the j-th rejection as Cj+ =
∑t−1
i=τj+1 Ci

if t = 1 then
Set α1 = (1− λ1)γ1W0

else
Compute αt = (1− λt)(W0γt−C0+ + (α−W0)γt−τ1−C1+ +

∑
j≥2 αγt−τj−Cj+)

end if
Output Rt = I(pt ≤ αt)
if Rt = 1 then

Update rejection number i = i+ 1. Set the i-th rejection time as τi = t
end if

end for
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Algorithm 4 LORD++(α,W0, {γj}∞j=0)

Input: stream of p-values {p1, p2, . . .}, target FDR level α, initial wealth W0 < α, positive non-increasing sequence
{γj}∞j=0 of summing to one.
Set rejection number i = 0
for each p-value pt do

Compute αt = W0γt + (α−W0)γt−τ1 +
∑
j≥2 αγt−τj

Output Rt = I(pt ≤ αt)
if Rt = 1 then

Update rejection number i = i+ 1. Set the i-th rejection time as τi = t
end if

end for

We conclude this section by formally describing the conditional super-uniformity condition condition required by SAF-
FRON’s guarantees, as stated in Theorem 2. It requires that the input sequence of p-values are not too correlated under
the null hypothesis. This condition is formalized through a filtration on the sequence of candidacy and rejection deci-
sions. Intuitively, this means that the sequence of hypotheses cannot be too adaptively chosen, otherwise the p-values
may become overly correlated and violate this condition. Denote by Rj := I(pj ≤ αj) the indicator for rejection,
and let Cj := I(pj ≤ λj) be the indicator for candidacy. Define the filtration formed by the sequences of σ-fields
F t := σ(R1, . . . , Rt, C1, . . . , Ct), and let αt := ft(R1, . . . , Rt−1, C1, . . . , Ct−1), where ft is an arbitrary function of the
first t− 1 indicators for rejections and candidacy. The null p-values are said to be conditionally super-uniformly distributed
with respect to the filtration F if:

If null hypothesis Hi is true, then Pr(pt ≤ αt|F t−1) ≤ αt. (2)

We note that independent p-values is a special case of the conditional super-uniformity condition of (2). When p-values are
independent, they satisfy the following condition:

If the null hypothesis Hi is true, then Pr(pt ≤ u) ≤ u for all u ∈ [0, 1].

B. PrivLORD and PrivLORD2
In this section, we present two private versions of LORD++: PrivLORD in Algorithm 5 and PrivLORD2 in Algorithm 6.
The former combines SPARSEVECTOR and LORD++, with the same threshold shifting as in PAPRIKA. The latter adds
the candidacy checking step with constant λ on top of PrivLORD. The privacy of PrivLORD follows immediately from
SPARSEVECTOR , and the privacy proof for PAPRIKA also applies to PrivLORD2 with a different choice of αt.
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Algorithm 5 PrivLORD(α,W0, γ, c, ε, A)

Input: stream of p-values {p1, p2, . . .} with mutiplicative sensitivity (η,µ), target FDR level α, initial wealth W0 < α,
positive non-increasing sequence {γj}∞j=0 of summing to one, expected number of rejections c, privacy parameters ε,
threshold shift A.
Let Z0

α ∼ Lap(2ηc/ε), count = 0
for each p-value pt do

if count ≥ c then Output Rt = 0
else
Sample Zt ∼ Lap(4ηc/ε).
if t = 1
then Set α1 = γ1W0

else
Compute αt = W0γt + (α−W0)γt−τ1 +

∑
j≥2 αγt−τj

if log pt + Zt ≤ logαt −A+ Zcount
α

then Output Rt = 1. Set count = count +1 and sample Zcount
α ∼ Lap(2ηc/ε)

else Output Rt = 0
end for

Algorithm 6 PrivLORD2(α, λ,W0, γ, c, ε, δ, A)

Input: stream of p-values {p1, p2, . . .} with mutiplicative sensitivity (η,µ), target FDR level α, candidacy threshold λ,
initial wealth W0 < α, positive non-increasing sequence {γj}∞j=0 of summing to one, expected number of rejections c,
privacy parameters ε, δ, threshold shift A.
Let Z0

α ∼ Lap(2ηc/ε), count = 0
for each p-value pt do

if count ≥ c then Output Rt = 0
else
Sample Zt ∼ Lap(4ηc/ε). Set the indicator for candidacy Ct = I(log pt < log λ).
if t = 1
then Set α1 = γ1W0

else
Compute αt = W0γt + (α−W0)γt−τ1 +

∑
j≥2 αγt−τj

if Ct = 1 and log pt + Zt ≤ logαt −A+ Zcount
α

then Output Rt = 1. Set count = count +1 and sample Zcount
α ∼ Lap(2ηc/ε)

else Output Rt = 0
end for

C. Additional Experimental Results
We provide a further illustration of our experiments on truncated exponentials in Figure 4. In particular, we plot the rejection
threshold αt and wealth versus the hypothesis index. Each “jump” of the wealth corresponds to a rejection. We observe that
the rejections of our private algorithms are consistent with the rejections of the non-private algorithms, another perspective
which empirically confirms their accuracy.

One hypothesis for the good performance observed in Figure 3 is that the signal between the null and alternative hypotheses
as parameterized by θi is very strong, meaning the algorithms can easily discriminate between the true null and true non-null
hypotheses based on the observed p-values. To measure this, we also varied the value of θi in the alternative hypotheses.
These results are shown in Figure 5, which plots FDR and power of PAPRIKA and PAPRIKA AI with when the alternative
hypotheses have parameter θi = 1.90, 1.95, 2.00. As expected, the performance gets better as we increase the signal, and
we observe that when the signal is too weak (θi = 1.90), performance begins to decline.

We compare PAPRIKA and PAPRIKA AI against PrivLORD and PrivLORD2 with truncated exponential observations in
Figure 6. All methods except for PrivLORD perform well, suggesting that the candidacy checking step is critical for private
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FDR control algorithms.
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Figure 4. Wealth and rejection threshold αt versus hypothesis index with privacy parameter ε = 5 when the database consists of truncated
exponential observations. PAPRIKA AI and SAFFRON AI used λj = αj , PAPRIKA used λj = 0.2, and SAFFRON used λj = 0.5.
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Figure 5. FDR and statistical power versus expected fraction of non-null hypotheses π1 under various choices of signal θi =
1.90, 1.95, 2.00 for alternative hypothesis parameters. The privacy parameter is ε = 5, and the database consists of truncated ex-
ponential observations. The first row shows performance of PAPRIKA AI where λj = αj , and the second row shows performance of
PAPRIKA where λj = 0.2.
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Figure 6. FDR and statistical power versus fraction of non-nulls π1 for PAPRIKA (with λj = 0.2), PAPRIKA AI (with λj = αj), and
PrivLORD and PrivLORD2 when the database consists of truncated exponential observations.

C.1. Choice of shift A

We now discuss how to choose the shift parameter A. Theorem 3 gives a theoretical lower bound for A in terms of the
privacy parameter δ, but this bound may be overly conservative. Since the shift A is closely related to the performance
of FDR and statistical power, we wish to pick a value of A that yields good performance in practice. In Theorem 4, we
show that FDR(t) is less than our desired bound α plus the privacy parameter δt, which naturally requires that the privacy
loss parameter δ be small. For a more detailed explanation, we bound Inequality (22) in the proof of Theorem 4 using
Inequality (14) from the proof of Theorem 3, and therefore, the empirical δ is naturally tied to the empirical FDR. As long
as we can guarantee the empirical FDR to be bounded by the target FDR level, our privacy loss is bounded by the nominal δ.

We use the Bernoulli example in Section 4.1 to investigate the performance under different choices of the shift A with
privacy parameter ε = 5. The results are summarized in Figure 7, which plots the FDR and power versus the expected
fraction of non-nulls when we vary the shift size with s = 0.5, 1, 1.5, 2.

Larger shifts (corresponding to larger values of s) will lower the rejection threshold, which causes fewer hypotheses to be
rejected. This improves FDR of the algorithm, but harms Power, as the threshold may be too low to reject true nulls. Figure
7 shows that the shift size parameter s should be chosen by the analyst to balance the tradeoff between FDR and Power, as
demanded by the application.



Private Online False Discovery Rate Control

0.02 0.04
π1

0.0

0.1

0.2

FD
R

s=0.5
s=1

s=1.5
s=2

(a) PAPRIKA AI

0.02 0.04
π1

0.0

0.5

1.0

Po
we

r

s=0.5
s=1

s=1.5
s=2

(b) PAPRIKA AI

0.02 0.04
π1

0.0

0.1

0.2

FD
R

s=0.5
s=1

s=1.5
s=2

(c) PAPRIKA

0.02 0.04
π1

0.0

0.5

1.0

Po
we

r

s=0.5
s=1

s=1.5
s=2

(d) PAPRIKA

Figure 7. FDR and statistical power versus expected fraction of non-null hypotheses π1 under various choices of shift magnitude s. The
privacy parameter is ε = 5, and the database consists of Bernoulli observations. The first row shows performance of PAPRIKA AI where
λj = αj , and the second row shows performance of PAPRIKA where λj = 0.2.

C.2. Additional Tables

Tables 1 and 2 report the numerical values for our experiments on Bernoulli and truncated exponential data, respectively.
This information is also presented visually in Figures 1 and 3.

D. Proof of Theorem 3
Before proving Theorem 3, we will state and prove the following lemma, which will be useful in the proofs of Theorem 3
and Theorem 4.

Lemma 2. If Z1 ∼ Lap(2b), Z2 ∼ Lap(b) and C > 0 is a constant, we have Pr(Z1 ≥ Z2 − C) = 1 − 2
3 exp(− C

2b ) +
1
6 exp(−C/b).
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π ε
PAPRIKA AI PAPRIKA SAFFRON AI SAFFRON LORD Alpha-investing LapSAFFRON

FDR power FDR power FDR power FDR power FDR power FDR power FDR power

0.01
3 0 .825 0 .817

0 .833 0 .833 0 .833 0 .833 .990 .4855 0 .833 0 .833
10 0 .833 0 .833

0.02
3 0 .844 .017 .810

0 .938 0 .938 0 .938 0 .875 .973 .5095 0 .916 .001 .900
10 0 .941 0 .938

0.03
3 .008 .457 .103 .389

.077 .923 0 .846 0 .846 0 .692 .977 .5095 .006 .694 .018 .670
10 .015 .849 .007 .808

0.04
3 .003 .604 .120 .580

.030 .970 0 .879 0 .940 0 .848 .943 .5125 .003 .756 .035 .740
10 .060 .860 .008 .836

0.05
3 .009 .560 .168 .514

.056 .971 .056 .971 .105 .971 .056 .971 .940 .5055 .007 .815 .053 .785
10 .017 .938 .012 .922

Table 1. Numerical values of FDR and power for Bernoulli observations experiments. LapSAFFRON corresponds to running SAFFRON
on the naı̈ve Laplace privatization of the p-values.

Proof.

Pr(Z1 ≥ Z2 − C) =

∫ ∞
−∞

∫ ∞
x−C

1

4b
exp(−|y|

2b
)

1

2b
exp(−|x|

b
)dydx

=

∫ C

∞
(1− 1

2
exp(−|x− C|

2b
))

1

2b
exp(−|x|

b
)dx+

∫ ∞
C

1

2
exp(−|x− C|

2b
)

1

2b
exp(−|x|

b
)dx

=

∫ C

−∞

1

2b
exp(−|x|

b
)dx−

∫ 0

−∞

1

4b
exp(−|3x− C|

2b
)dx

−
∫ C

0

1

4b
exp(−C + x

2b
)dx+

∫ ∞
C

1

4b
exp(−|3x− C|

2b
)dx

= 1− 1

2
exp(−C

b
)− 1

6
exp(−C

2b
)− 1

2
exp(−C

2b
) +

1

2
exp(−C

b
) +

1

6
exp(−C

b
)

= 1− 2

3
exp(−C

2b
) +

1

6
exp(−C

b
)

Theorem 3. For any stream of p-values {p1, p2, . . .}, PAPRIKA is (ε, δ)-differentially private.

Proof. Fix any two neighboring databases D and D′. Let R denote the random variable representing the output
of PAPRIKA(D,α, λ,W0, {γj}∞j=0, c, ε, δ, s) and let R′ denote the random variable representing the output of PA-
PRIKA(D′, α, λ,W0, {γj}∞j=0, c, ε, δ, s). Let k denote the total number of hypotheses. When log pt ≥ log 2λ and
log p′t ≥ log 2λ for all t, Pr(R = {0, 0, . . . , 0}) = 1 = Pr(R′ = {0, 0, . . . , 0}). When log pt < log 2λ and log p′t < log 2λ
for all t, privacy follows from the privacy of SPARSEVECTOR with dynamic thresholds. Since the threshold at each time
t only depends on the threshold at time t− 1 and and private rejection R(t− 1), by post-processing, the threshold αt is
private. Then by post-processing and the privacy of SPARSEVECTOR , the rejection R(t) is also private. We give the formal
probability argument as follows. For any neighboring D,D′ and any sequence of hypotheses, we first consider the output up
to the first rejection, which is ABOVETHRESH . Consider any output r ∈ {0, 1}l. Let r = {r1, r2, . . . , rl}, with rl = 1 and
r1 = . . . = rl−1 = 0. Let

fi(D, z, αi) = Pr(log pi(D) + Zi < logαi −A+ z)

gi(D, z, αi) = Pr(log pi(D) + Zi ≥ logαi −A+ z),
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π ε
PAPRIKA AI PAPRIKA SAFFRON AI SAFFRON LORD Alpha-investing LapSAFFRON

FDR power FDR power FDR power FDR power FDR power FDR power FDR power

0.01
3 0 .995 0 .987

0 1.00 0 1.00 0 1.00 0 .638 .989 .5435 0 1.00 0 1.00
10 0 1.00 0 1.00

0.02
3 0 .936 0 .903

0 1.00 0 1.00 0 .999 0 .676 .973 .5055 0 .994 0 .993
10 0 .999 0 1.00

0.03
3 0 .708 .005 .618

0 1.00 0 1.00 0 1.00 0 .982 .977 .5165 0 .958 0 .942
10 0 .999 0 .996

0.04
3 0 .569 .003 .474

0 1.00 0 1.00 0 1.00 0 .999 .944 .5035 0 .905 0 .873
10 0 .998 0 .996

0.05
3 0 .394 .007 .327

0 1.00 0 1.00 0 1.00 0 1.00 .940 .5055 0 .825 .002 .726
10 0 .990 0 .986

Table 2. Numerical values of FDR and power for truncated exponential observations experiments. LapSAFFRON corresponds to running
SAFFRON on the naı̈ve Laplace privatization of the p-values.

where α1, . . . , αt is a fixed sequence of thresholds determined by the r. We have

Pr(R = r|D)

Pr(R′ = r|D′)
=

∫∞
−∞ Pr(Zα = z) Pr(Rl(D) = rl|rl−1, . . . , r1) Pr(R2(D) = r2|r1) Pr(R1(D) = r1)dz∫∞
−∞ Pr(Zα = z) Pr(Rl(D′) = rl|rl−1, . . . , r1) Pr(R2(D′) = r2|r1) Pr(R1(D′) = r1)dz

=

∫∞
−∞ Pr(Zα = z)gl(D, z, αl)

∏l−1
i=1 fi(D, z, αi)dz∫∞

−∞ Pr(Zα = z)gl(D′, z, αl)
∏l−1
i=1 fi(D

′, z, αi)dz
,

=

∫∞
−∞ Pr(Zα = z − η)gl(D, z − η, αl)

∏l−1
i=1 fi(D, z − η, αi)dz∫∞

−∞ Pr(Zα = z)gl(D′, z, αl)
∏l−1
i=1 fi(D

′, z, αi)dz
, (3)

≤
∫∞
−∞ exp(ε/2c) Pr(Zα = z)gl(D, z − η, αl)

∏l−1
i=1 fi(D

′, z, αi)dz∫∞
−∞ Pr(Zα = z)gl(D′, z, αl)

∏l−1
i=1 fi(D

′, z, αi)dz
, (4)

≤
∫∞
−∞ exp(ε/2c) Pr(Zα = z) exp(ε/2c)gl(D

′, z, αl)
∏l−1
i=1 fi(D

′, z, αi)dz∫∞
−∞ Pr(Zα = z)gl(D′, z, αl)

∏l−1
i=1 fi(D

′, z, αi)dz
, (5)

= exp(ε/c). (6)

Equation (3) is from change of integration variable z to z − η. Inequality (4) is because Zα follows Lap(2ηc/ε) and
log pi(D)− η ≤ log pi(D

′). Inequality (5) is because

gl(D, z − η, αl) = Pr(log pl(D) + Zl ≥ logαl −A+ z − η)

≤ Pr(log pl(D
′) + η + Zl ≥ logαl −A+ z − η)

≤ Pr(log pl(D
′) + Zl ≥ logαl −A+ z − 2η)

≤ exp(ε/2c) Pr(log pl(D
′) + Zl ≥ logαl −A+ z)

≤ exp(ε/2c)gl(D
′, z, αl).

When we restart ABOVETHRESH after the first rejection, the inital threshold is the post-processing of the previous ouputs,
which is also private. Then by simple composition, the overall privacy loss is ε.

For other cases, the worst case is that for all t, log pt < log 2λ and log p′t ≥ log 2λ. In this setting, we have

Pr(R′ = r) =

{
1 if r = {0, 0, . . . , 0}
0 otherwise.
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To satisfy (ε, δ)-differential privacy, we need to bound the probability of outputting r for database D. We first consider r =
{0, 0 . . . , 0}. We wish to bound Pr(R′ = {0, 0 . . . , 0}) ≤ exp(ε) Pr(R = {0, 0, . . . , 0}) + δ and Pr(R = {0, 0 . . . , 0}) ≤
exp(ε) Pr(R′ = {0, 0, . . . , 0}) + δ. The latter is trivial since exp(ε) Pr(R′ = {0, 0, . . . , 0}) + δ = exp(ε) + δ, which is
greater than 1. It remains to satisfy Pr(R′ = {0, 0 . . . , 0}) ≤ exp(ε) Pr(R = {0, 0, . . . , 0}) + δ, which is equivalent to
1− δ ≤ exp(ε) Pr(R = {0, 0, . . . , 0}). We have

Pr(R = {0, 0 . . . , 0}) = Pr(R1 = 0) Pr(R2 = 0|R1 = 0) . . .Pr(Rk = 0|Rk−1 = 0)

=

k∏
t=1

Pr(log pt + Zt ≥ logαt −A+ Zα)

>

k∏
t=1

Pr(log 2λ− η + Zt ≥ logαt −A+ Zα) (7)

=

k∏
t=1

Pr(Zt ≥ Zα + logαt − log 2λ+ η −A)

=

k∏
t=1

(
1− 2

3
exp(−ε(A+ log(2λ/αt)− η)

4ηc
) +

1

6
exp(−ε(A+ log(2λ/αt)− η)

2ηc

)
(8)

≥
(

1− 2

3
exp(−ε(A+ log 2− η)

4ηc
)

)k
, (9)

where Inequality (7) is because the worst case happens when pt is η below the candidacy threshold log 2λ, Equation (8)
applies Lemma 2, and Inequality (9) follows from the facts that αt ≤ λ for all t and that the third term in (8) is positive.
Setting (9) to be larger than (1− δ)/ exp(ε), we have,

2

3
exp

(
−ε(A+ log 2− η)

4ηc

)
≤ 1−

(
1− δ

exp(ε)

) 1
k

. (10)

Next, we consider all other possible outputs r. Define the set S := {r | there exists a t such that rt = 1}. We wish to bound
Pr(R ∈ S) ≤ exp(ε) Pr(R′ ∈ S)+δ and Pr(R′ ∈ S) ≤ exp(ε) Pr(R ∈ S)+δ. The latter is trivial since Pr(R′ ∈ S) = 0.
It remains to bound Pr(R ∈ S) ≤ δ. For any t, we have

Pr(R ∈ S) ≤ Pr(Rt = 1)

= Pr(log pt + Zt ≤ logαt −A+ Zα)

≤ Pr(log 2λ+ Zt ≤ logαt −A+ Zα) (11)
= Pr(Zt ≤ Zα − (log(2λ/αt) +A))

≤ Pr(Zt ≤ Zα − (log 2 +A))

=
2

3
exp

(
−ε(A+ log 2)

4ηc

)
− 1

6
exp

(
−ε(A+ log 2)

2ηc

)
(12)

≤ 2

3
exp

(
−ε(A+ log 2)

4ηc

)
, (13)

where Inequality (11) is because the worst case occurs when log pt = log 2λ, Equality (12) applies Lemma 2, and Inequality
(13) follows from the facts that αt ≤ λ for all t and that the second term in (12) is negative. Setting (13) to be less than δ,
we have,

2

3
exp

(
−ε(A+ log 2)

4ηc

)
≤ δ. (14)

Combining Equations (14) and (10), we have the condition that 2
3 exp

(
− ε(A+log 2−η)

4ηc

)
≤ min{δ, 1−((1−δ)/ exp(ε))1/k}.

Rearranging this inequality for A gives

A ≥ 4ηc

ε

(
log

2

3 min{δ, 1− ((1− δ)/ exp(ε))1/k}
− log 2 + η

)
,
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which is how the shift term A is set in PAPRIKA.

E. Proof of Theorem 4
Theorem 4. If the null p-values are conditionally super-uniformly distributed, then we have:
(a) E

[∑
j≤t,j∈H0 αj

I(pj>2λj)
1−2λj

]
+ δt ≥ E

[
|H0 ∩R(t)|

]
;

(b)The condition F̂DPPAPRIKA(t) ≤ α for all t ∈ N implies that mFDR(t) ≤ α+ δt for all t ∈ N.
If the null p-values are independent of each other and of the non-null p-values, and {αt} and {λt} are coordinate-wise
non-decreasing functions of the vector R1, . . . , Rt−1, C1, . . . , Ct−1, then
(c) E

[
F̂DPPAPRIKA(t)

]
+ δt ≥ E [FDP (t)] := FDR(t) for all t ∈ N;

(d) The condition F̂DPPAPRIKA(t) ≤ α for all t implies that FDR(t) ≤ α+ δt for all t ∈ N.

Proof. For any time t > 0, before the total number of rejections reaches c we bound the number of false rejections as
follows:

E
[
|H0 ∩R(t)|

]
≤

∑
j≤t,j∈H0

E [I(log pj + Zj ≤ logαj −A+ Zα)] (15)

≤
∑

j≤t,j∈H0

Pr(log pj ≤ logαj) + Pr(Zj ≤ Zα −A)

≤
∑

j≤t,j∈H0

E [αj ] + Pr(Zj ≤ Zα −A), (16)

where Inequality (15) follows from the rejection rule before the total number of rejections reaches c, and the number of false
rejections is always 0 afterwards. Inequality (16) follows from the conditional super-uniformity property. We bound each
term in (16) separately. Using the law of iterated expectations by conditioning on F ′t−1, we can bound the first term of (16)
as follows:

∑
j≤t,j∈H0

E [αj ] ≤E

 ∑
j≤t,j∈H0

αjE
[
I(pj > 2λj)

1− 2λj
|F ′t−1

]
=E

E
 ∑
j≤t,j∈H0

αj
I(pj > 2λj)

1− 2λj
|F ′t−1


=E

 ∑
j≤t,j∈H0

αj
I(pj > 2λj)

1− 2λj

 , (17)

where Equation (17) applies the conditional super-uniformity. Since F̂DPPAPRIKA(t) ≤ α, we have,

E

 ∑
j≤t,j∈H0

αj
I(pj > 2λj)

1− 2λj

 ≤ αE [|R(t)|] .

Next, we bound the second term in (16) as follows:∑
j≤t,j∈H0

Pr(Zj ≤ Zα −A) ≤2t

3
exp

(
− Aε

4ηc

)
− t

6
exp

(
− Aε

2ηc

)

≤tmin

{
δ, 1−

(
1− δ

exp(ε)

) 1
k

}
.
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Combining this inequality with (17), we bound mFDR as

mFDR :=
E
[
|H0 ∩R(t)|

]
E [|R(t)|]

≤α+
1

E [|R(t)|]
∑

j≤t,j∈H0

Pr(Zj ≤ Zα −A)

≤α+ min

{
δ, 1−

(
1− δ

exp(ε)

) 1
k

}
t

≤α+ δt.

If the null p-values are independent of each other and the non-nullls, and {αt} is a coordinate-wise non-decreasing function
of the vector R1, . . . , Rt−1, then we have

FDR(t) = E
[
|H0 ∩R(t)|
|R(t)|

]
=

∑
j≤t,j∈H0

E
[
I(log pj + Zj ≤ logαj −A+ Zα)

|R(t)|

]

≤
∑

j≤t,j∈H0

E
[

min{αj exp(Zα − Zj −A), 1}
|R(t)|

]
(18)

≤
∑

j≤t,j∈H0

E
[

αj
|R(t)|

]
+ Pr(Zj ≤ Zα −A), (19)

where Inequality (18) applies the law of iterated expectations by conditioning on F ′t−1 and Lemma 1. Inequality (19)
follows by a case analysis: if Zj > Zα − A, then exp(Zα − Zj − A) < 1, and thus min{αj exp(Zα−Zj−A),1}

|R(t)| reduces to
αj
|R(t)| . On the other hand, if Zj ≤ Zα − A, then min{αj exp(Zα−Zj−A),1}

|R(t)| ≤ 1
|R(t)| ≤ 1, allowing us to upper bound the

expectation by the probability of this event.

We bound the first term in (19) as follows:∑
j≤t,j∈H0

E
[

αj
|R(t)|

]
≤

∑
j≤t,j∈H0

E
[
αjI(pj > 2λj)

(1− 2λj)|R(t)|

]
(20)

≤ E
[∑

j≤t αjI(pj > 2λj)

(1− 2λj)|R(t)|

]
= E

[
F̂DPPAPRIKA(t)

]
≤ α, (21)

where Inequality (20) applies Lemma 1.

It remains to bound the second term in (19), which we do using Lemma 2 as follows:∑
j≤t,j∈H0

Pr(Zj ≤ Zα −A) ≤
∑
j≤t

Pr(Zj ≤ Zα −A)

=
2t

3
exp(− Aε

4ηc
)− t

6
exp(− Aε

2ηc
)

≤ min

{
δ, 1−

(
1− δ

exp(ε)

) 1
k

}
t. (22)

Combining (21) and (22), we reach the conclusion that FDR(t) ≤ α+ min{δ, 1− ((1− δ)/ exp(ε))1/k}t ≤ α+ δt.
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F. Proof of Lemma 1
Lemma 1. Assume p1, p2, . . . are all independent and let h : {0, 1}k → R be any coordinate-wise non-decreasing
function. Assume ft and gt are coordinate-wise non-decreasing functions and that αt = ft(R1:t−1, C1:t−1) and λt =

gt(R1:t−1, C1:t−1). Then for any t ≤ k such that Ht ∈ H0, we have E
[

αtI(pt>2λt)
(1−2λt)h(R1:k) |F

′t−1
]
≥ E

[
αt

h(R1:k) |F
′t−1

]
and

E
[

min{αt exp(Zα−Zt−A),1}
h(R1:k) |F ′t−1

]
≥ E

[
I(log pt+Zt≤logαt+Zα−A)

h(R1:k) |F ′t−1
]
.

Proof. The proof is similar to the proof of Lemma 2 in (Ramdas et al., 2018) with the addition of i.i.d. Laplace noise.

In a high level, we hallucinate a vector of p-values that are same as the original vector of p-values, except for the t-th index.
This allows us to apply the conditional uniformity property, since now pt is independent of the hallucinated rejections. We
then connect the original rejections and the hallucinated rejections by the monotonicity of the rejections.

We perform our analysis using a hallucinated process: let p̃t1:k be a copy of p1:k that is identical everywhere except for the
t-th p-value which is set to be 1. That is,

p̃i =

{
1 if i = t

pi otherwise.

Also let the hallucinated Laplace noises Z̃t1:k be an identical copy of Z1:k, and let Z̃α be an identical copy of Zα. The t-th
value of Z̃t1:k can be arbitrary since we have ensure the event {p̃t > 2λt}, so it will fail to become a candidate and the values
of Z̃t will not be relevant. We denote C̃1:k and R̃1:k as the candidates and rejections made using p̃t1:k, Z̃t1:k, and Z̃α.

By construction, we have R̃1:t−1 = R1:t−1. On the event {pt > 2λt}, we have Rt = R̃t = 0 and Ct = C̃t = 0 because
p̃t = 1, so both will fail to become candidates, and hence we have R̃1:k = R1:k and the following equation holds:

αtI(pt > 2λt)

(1− 2λt)h(R1:k)
=

αtI(pt > 2λt)

(1− 2λt)h(R̃1:k)
.

We note that when pt ≤ 2λt, the above equation still holds since both sides will be zero. Since R̃t1:k is independent of pt,
we have

E
[
αtI(pt > 2λt)

(1− 2λt)h(R1:k)
|F ′t−1

]
= E

[
αtI(pt > 2λt)

(1− 2λt)h(R̃1:k)
|F ′t−1

]
≥ E

[
αt

h(R̃1:k)
|F ′t−1

]
(23)

≥ E
[

αt
h(R1:k)

|F ′t−1
]

(24)

where Inequality (23) is obtained by taking the expectation only with respect to pt by invoking the conditional super-
uniformity property and independence of pt and h(R̃1:k), and Inequality (24) follows from the facts that Ri ≥ R̃i for all i
and that the function h is non-decreasing.

For the second inequality in the lemma statement, we hallucinate a vector of p-values p̄t1:k that equals p1:k everywhere
except for the t-th p-value which is set to be 0. That is,

p̄i =

{
0 if i = t

pi otherwise.

Also let the hallucinated Laplace noises Z̄t1:k be an identical copy of Z1:k, and let Z̄α be an identical copy of Zα. We denote
C̄1:k and R̄1:k as the candidates and rejections made using p̄t1:k and Z̄t1:k. By construction, we have R̄i = Ri and C̄i = Ci
for all i < t. On the event that {log pt + Zt ≤ logαt + Zα −A}, since p̄t = 0 and we inject the same Laplace noise, we
have R̄t = Rt = 1 and C̄t = Ct = 1, and hence also R̄1:k = R1:k. Then the following equation holds:

I(log pt + Zt ≤ logαt + Zα −A)

h(R1:k)
=
I(log pt + Zt ≤ logαt + Zα −A)

h(R̄1:k)
.



Private Online False Discovery Rate Control

We note that when log pt + Zt > logαt + Zα −A, the above equation still holds since both sides will be zero. Since R̄1:k

and Zt, Zα are independent of pt, we can take conditional expectations to obtain

E
[
I(log pt + Zt ≤ logαt + Zα −A)

h(R1:k)
|F ′t−1

]
= E

[
I(log pt + Zt ≤ logαt + Zα −A)

h(R̄1:k)
|F ′t−1

]
≤ E

[
min{αt exp(Zα − Zt −A), 1})

h(R̄1:k)
|F ′t−1

]
(25)

≤ E
[

min{αt exp(Zα − Zt −A), 1})
h(R1:k)

|F ′t−1
]
, (26)

where Inequality (25) follows by taking expectation only with respect to pt by invoking the conditional uniformity property
and the fact that the support of p-values is [0, 1], and Inequality (26) follows from the facts that h(R1:k) ≤ h(R̄1:k) since
Ri ≤ R̄i for all i and that the function h is non-decreasing.


