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A. Proof of Theorem 1
Proof. We use 〈·, ·〉 to denote the standard inner product.
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B. Proof of Theorem 4
Proof. By Theorem 1, we have
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Then, since ψ is s-strongly proper composite with link function λ, we have
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Combining Eqs. (3, 4), and applying Jensen’s inequality (to the convex function x 7→ x2) establishes the result.
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C. Proof of Lemma 3
Proof. We will show for all p ∈ ∆n and u ∈ Rn−1,
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Fix p ∈ ∆n and u ∈ Rn−1. Then
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D. Proof of Theorem 5
Proof. Part 1 (Sufficiency).

Suppose C satisfies the given sufficient condition, i.e. that
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Fix any class y ∈ [n].
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Moreover, we have
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argmaxx η̃y(x) ⊆ argmaxx ηy(x).

Part 2 (Necessity).

Suppose that C fails to satisfy the given necessary condition, i.e. that there exist y 6= ỹ such that
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We will show that argmaxx ηỹ(x) 6= argmaxx η̃ỹ(x).

We give a proof by contradiction. In particular, let if possible argmaxx ηỹ(x) = argmaxx η̃ỹ(x) = argmaxx(C>η(x))ỹ .

By assumption (A), there exists x̄ỹ ∈ X such that η(x̄ỹ) = eỹ, so this means x̄ỹ ∈ argmaxx ηỹ(x) = argmaxx η̃ỹ(x) =
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contradicting our assumption. Therefore, we must have argmaxx ηỹ(x) 6= argmaxx η̃ỹ(x).

E. Additional Experimental Details

Table 3. Details of MNIST and CIFAR10 data sets.
Data set # train # test # classes # features

(n) (d)
MNIST 60,000 10,000 10 784
CIFAR10 50,000 10,000 10 3072

For MNIST, the asymmetric noise matrix CMNIST(γ) includes the following label noise transitions: 2→ 7, 3→ 8, 5↔ 6,
7→ 1. Following Patrini et al. (2017), features were normalized to [0, 1], and two fully connected hidden layers of size 128
were trained, with ReLU activation and dropout rate 0.2.13

For CIFAR10, the asymmetric noise matrix CCIFAR10(γ) includes the following label noise transitions: Truck →
Automobile, Bird → Airplane, Deer → Horse, Cat ↔ Dog. Again following Patrini et al. (2017), per-pixel
mean subtraction and data augmentation were performed, and a 14-layer residual network (ResNet) (He et al., 2016) was
trained.14

13Batch size was 32. AdaGrad (Duchi et al., 2010) was run for 40 epochs with default parameters.
14Batch size was 32. SGD was run for 120 epochs with momentum 0.9 and learning rate set to 0.1 initially and divided by 10 after 40

and 80 epochs; weight decay was 10−4.


