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Supplementary Materials for Quantile Bandits for Best Arms Identification
We show experiment details in Section A, the detailed proofs for both concentration inequalities (Section B) bandit task
(Section C), and discussion in Section D.

A. Experiments Details
In this section, we illustrate experiment details, including simulation details (Section A.1), vaccine allocation strategy
description (Section A.2), Q-SR algorithm (Section A.3).

A.1. Illustrative Example

We provide more details about the environments setting in Section 5. We consider two distributions which satisfy our
assumptions: absolute Gaussian distribution (Definition 3), and exponential distribution (Definition 4).

Definition 3 (Absolute Gaussian Distribution). Given a Gaussian random variable X with mean µ and variance σ2, the
random variable Y = |X| has a absolute Gaussian distribution with p.d.f and c.d.f. shown as,
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1
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where the error function erf (x) = 1√
π

∫ x
−x e

−t2dt. We denote the absolute Gaussian distribution random variable with
mean µ and variance σ2 as |N (µ, σ2)|. When µ = 0, the lower bound of hazard rate L = 1

σ
√

2π
.

Definition 4 (Exponential Distribution). With θ > 0, the p.d.f and c.d.f of exponential distribution are defined as

fExp (x, θ) = θe−θx, (27)

FExp (x, θ) = 1− e−θx, (28)

We denote the exponential distribution with θ as Exp(θ). The hazard rate for exponential distribution is a constant and
equal to θ, i.e. h(x) = θ.

We design our experimental environments based on three configurations of reward distributions: A) |N (0, 2)| B) |N (3.5, 2)|
C) Exp(1/4). The histogram of these three arms is shown below.
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Figure 7. Simulated Arm Rewards Histogram.

A.2. Vaccine Allocation Strategy

We provide more details about the vaccine allocation strategy in this section. We allocate 100 vaccine doses (5% of the
population) to 5 age groups (0-4 years, 5-18 years, 19-29 years, 30-64 years and >65 years). We consider all combinations
of groups (resulting in K = 32 arms), and denote the allocation scheme as a Boolean 5-tuple, with each position corresponds
to the respective age group (1 represents allocation; 0 otherwise). We use the median (τ = 0.5) as a robust summary
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statistic for each strategy. For the task of identifying the best subset of ages (m = 1) Q-SAR finds that the optimal arm
is (0, 1, 0, 0, 0), i.e. only allocation to 5-18 years old group. For identifying the m = 3 best arms, the optimal arms are
(0, 1, 0, 0, 0), (1, 1, 0, 0, 0) and (0, 1, 1, 0, 0), indicated as arms 8, 24, and 12 in Figure 5 respectively.

A.3. Q-SR

We extend the Successive Rejects algorithm (Audibert et al., 2010) to a quantile version and adapt it to recommend more
than one arm.

Algorithm 2 Q-SR

Denote the active set A1 = {1, ...,K}, l̃og(K) = m
m+1 +

∑K−m
p=1

1
K+1−p , n0 = 0, and for k ∈ {1, ...,K − 1},

np =

⌈
1

l̃og(K)

N −K
K + 1− p

⌉
For each phase p = 1, 2, ...,K −m:
(1) For each i ∈ Ap, select arm i for np − np−1 rounds.
(2) Let Ap+1 = Ap/ argmini∈Ap Q̂

τ
i,np

The recommended set is AK−m+1.

We provide justifications for the design choice of our proposed Q-SR algorithm shown in Algorithm 2. Although that both
SR and SAR are analysed on reward distributions with support [0, 1], they can both be directly extended to subgaussian
reward distributions (Audibert et al., 2010; Bubeck et al., 2013). We propose Quantile-based Successive Rejects (Q-SR),
adapted from Successive Rejects (SR) algorithm (Audibert et al., 2010). To be able to recommend multiple arms, the total
phase is designed to be K−m instead of K−1, and the number of pulls for each round is modified to make sure all budgets
are used. More precisely, one is pulled n1 =

⌈
1

l̃og(K)

N−K
K

⌉
times, one is pulled n2 =

⌈
1

l̃og(K)

N−K
K−1

⌉
times, . . . , m+ 1 is

pulled nK−m =
⌈

1

l̃og(K)

N−K
K+1−(K−m)

⌉
times, then

n1 + · · ·+ (m+ 1)nK−m ≤ K +
N −K
l̃og(K)

(
m

m+ 1
+

K−m∑
p=1

1

K + 1− p

)
= N. (29)

As shown in Section 4, when m = 1, the Q-SAR algorithm can be reduced to the Q-SR algorithm. So the theoretical
performance of the Q-SR algorithm is guaranteed. We leave the theoretical analysis of Q-SR for m > 1 for the future work.

B. Concentration Inequality Proof
This section shows the proofs of the concentration results shown in Section 2. In the following, we will walk through the
key statement and show how we achieve our results in details. For the reader’s convenience, we restate our theorems in the
main paper whenever needed. We first introduce the Modified logarithmic Sobolev inequality, which gives the upper bound
of the entropy (Eq. (15)) of exp(λW ).

Theorem 5 (Modified logarithmic Sobolev inequality (Ledoux, 2001)). Consider independent random variables
X1, . . . , Xn, let a real-valued random variable W = f (X1, . . . , Xn), where f : Rn → R is measurable. Let Wi =
fi (X1, . . . , Xi−1, Xi+1, . . . , Xn), where fi : Rn−1 → R is an arbitrary measurable function. Let φ(x) = exp(x)− x− 1.
Then for any λ ∈ R,

Ent [exp(λW )] = λE [W exp(λW )]− E [exp(λW )] logE [exp(λW )] (30)

≤
n∑
i=1

E [exp(λW )φ (−λ (W −Wi))] (31)

Consider i.i.d random variables X1, . . . , Xn, and the corresponding order statistics X(1) ≥ · · · ≥ X(n). Define the spacing
between rank k and k + 1 order statistics as Sk = X(k) −X(k+1). By taking W as k rank order statistics (or negative k
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rank), and Wi as nearest possible order statistics, i.e. k± 1 rank (or negative k± 1 rank), Theorem 5 provides the connection
between the order statistics and the spacing between order statistics. The connection is shown in Proposition 1.

Proposition 1 (Entropy upper bounds). Define φ(x) := exp(x)− x− 1 and ζ(x) := exp(x)φ(−x) = 1 + (x− 1) exp(x).
For all λ ≥ 0, and for k ∈ [1, n) ∧ N∗,

Ent
[
exp(λX(k))

]
≤ kE

[
exp(λX(k+1))ζ (λSk)

]
. (18)

For k ∈ (1, n] ∧ N∗,

Ent
[
exp(−λX(k))

]
≤

(n− k + 1)E
[
exp(−λX(k))φ (−λSk−1)

]
. (19)

Proof. We prove the upper bound based on Theorem 5. We first prove Eq. (18). We define W,Wi with fk, fki as following.
LetW be the rank k order statistics ofX1, . . . , Xn, i.e. W = fk(X1, . . . , Xn) = X(k); LetWi be the rank k order statistics
of X1, . . . , Xi−1, Xi+1, . . . , Xn (i.e. with Xi removed from X1, . . . , Xn), i.e. fi = X(k+1)I(Xi ≥ X(k)) +X(k)I(Xi <
X(k)). So Wi = X(k+1) when the removed element is bigger and equal to X(k), otherwise W = X(k). Then the upper
bound of Ent

[
exp(λX(k))

]
is

Ent
[
exp(λX(k))

]
≤E
[ n∑
i=1

exp(λX(k))φ
(
− λ(X(k) −X(k+1)I(Xi ≥ X(k))−X(k)I(Xi < X(k))

)]
Theorem 5 (32)

=E
[

exp(λX(k))φ
(
− λ(X(k) −X(k+1))

) n∑
i=1

I(Xi ≥ X(k))
]

(33)

=kE
[
exp(λX(k))φ (−λSk)

]
(34)

=kE
[
exp(λX(k+1)) exp(λSk)φ (−λSk)

]
(35)

=kE
[
exp(λX(k+1))ζ (λSk)

]
ζ(x) = exp(x)φ(−x) (36)

Similarly, for the proof of Eq. (19), We define W,Wi with f̃k, f̃k−1
i . Let W be the negative value of k rank order statistics

of X1, . . . , Xn, i.e. W = f̃k(X1, . . . , Xn) = −X(k); Let Wi be the negative value of k − 1 rank order statistics of
X1, . . . , Xi−1, Xi+1, . . . , Xn. Thus when Xi ≥ X(k−1), Wi = −X(k), otherwise Wi = −X(k−1). Then by Theorem 5,
we get Ent

[
exp(−λX(k))

]
≤ (n− k + 1)E

[
exp(−λX(k))φ (−λSk−1)

]
.

Compared with the proof in Boucheron & Thomas (2012), we do not choose a different initialisation of Wi in terms
of the two cases k ≤ n/2 and k > n/2, which does not influence the concentration rates of empirical quantiles, and
allows us to extend the proof to all ranks (excluding extremes). We derive upper bounds for both Ent

[
exp(λX(k))

]
and

Ent
[
exp(−λX(k))

]
, which allows us to derive two-sided concentration bounds instead of one-sided bound. Now we show

the proof of Theorem 3.

Theorem 3 (Extended Exponential Efron-Stein inequality). With the logarithmic moment generating function defined in Eq.
14, for λ ≥ 0 and k ∈ [1, n) ∧ N∗,

ψZk(λ) ≤ λk
2
E [Sk (exp(λSk)− 1)] . (20)

For k ∈ (1, n] ∧ N∗,

ψZ′k(λ) ≤ λ2(n− k + 1)

2
E[S2

k−1]. (21)

Proof. The proof of Eq. (20) is based on Proposition 1 and follows the same reasoning from (Boucheron & Thomas, 2012)
Theorem 2.9. Note since Eq. (18) holds for k ∈ [1, n), Eq. (20) can be proved for k ∈ [1, n) (Boucheron & Thomas (2012)
only proved for k ∈ [1, n/2]).
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We now prove Eq. (21). Recall φ(x) = exp(x)− x− 1. φ(x) is nonincreasing when x ≤ 0 and nondecreasing otherwise.
By Proposition 1 and Proposition 4 (which will be shown later), for λ ≥ 0,

Ent
[
exp(−λX(k))

]
≤(n− k + 1)E

[
exp(−λX(k))φ (−λSk−1)

]
By Proposition 1 (37)

≤(n− k + 1)E
[
exp(−λX(k))

]
E [φ (−λSk−1)] By Proposition 4 (38)

Multiplying both sides by exp(λE[X(k)]),

Ent[exp(λZ ′k)] ≤ (n− k + 1)E[exp(λZ ′k)]E[φ(−λSk−1)]. (39)

With the fact φ(x) ≤ 1
2x

2 when x ≤ 0, and −λSk−1 ≤ 0, we have E[φ(−λSk−1)] ≤ λ2

2 E[S2
k−1]. We then obtain

Ent [exp(λZ ′k)]

λ2E [exp(λZ ′k)]
≤ n− k + 1

λ2
E[φ(−λSk−1)] ≤ n− k + 1

2
E[S2

k−1]. (40)

We now solve this integral inequality. Integrating left side, with the fact that limλ→0
1
λ logE exp(λZ ′k) = 0, for λ ≥ 0, we

have ∫ λ

0

Ent [exp(tZ ′k)]

t2E [exp(tZ ′k)]
dt =

∫ λ

0

E[tZ ′k]− logE[exp(tZ ′k)]

t2
dt =

logE[exp(tZ ′k)]

t
|λ0 =

1

λ
logE[exp(λZ ′k)]. (41)

Integrating right side, for λ ≥ 0, ∫ λ

0

n− k + 1

2
E[S2

k−1]dt =
λ(n− k + 1)

2
E[S2

k−1]. (42)

Combining Eq. (40), (41) and (42), we get

ψZ′k(λ) = logE[exp(λZ ′k)] ≤ λ2(n− k + 1)

2
E[S2

k−1]. (43)

which concludes the proof.

To further bound the order statistic spacings in expectation, we introduce the R-transform (Definition 5) and Rényi’s
representation (Theorem 6). In the sequel, f is a monotone function from (a, b) to (c, d), its generalised inverse f← :
(c, d)→ (a, b) is defined by f←(y) = inf{x : a < x < b, f(x) ≥ y}. Observe that the R-transform defined in Definition 5
is the quantile transformation with respect to the c.d.f of standard exponential distribution, i.e. F← (Fexp (t)).

Definition 5 (R-transform). The R-transform of a distribution F is defined as the non-decreasing function on [0,∞) by
R(t) = inf{x : F (x) ≥ 1− exp(−t)} = F←(1− exp(−t)).

Theorem 6 (Rényi’s representation, Theorem 2.5 in (Boucheron & Thomas, 2012)). Let X(1) ≥ . . . ≥ X(n) be the order
statistics of samples from distribution F, Y(1) ≥ Y(2) ≥ . . . ≥ Y(n) be the order statistics of independent samples of the
standard exponential distribution, then

(Y(n),...,Y(k),...,Y(1))
d
=(Enn ,...,

∑n
i=k

Ei
i ,...,

∑n
i=1

Ei
i ), (44)

where E1, . . . , En are independent and identically distributed (i.i.d.) standard exponential random variables, and(
X(n), . . . , X(1)

) d
=
(
R
(
Y(n)

)
, . . . , R

(
Y(1)

))
, (45)

where R (·) is the R-transform defined in Definition 5, equality in distribution is denoted by d
=.

The Rényi’s representation shows the order statistics of an Exponential random variable are linear combinations of
independent Exponentials, which can be extended to the representation for order statistics of a general continuous F
by quantile transformation using R-transform. The following proposition states the connection between the IHR and
R-transform.
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Proposition 3 (Proposition 2.7 (Boucheron & Thomas, 2012)). Let F be an absolutely continuous distribution function
with hazard rate h (assuming density exists), the derivative of R-transform is R′ = 1/h (R). Then if the hazard rate h is
non-decreasing (Assumption 1), then for all t > 0 and x > 0, R (t+ x)−R(t) ≤ x/h (R(t)) .

We now show Proposition 4 based on the Rényi’s representation (Theorem 6) and Harris’ inequality (Theorem 7). Proposition
4 allows us to upper bound the expectation of multiplication of two functions in terms of the multiplication of expectation of
those two functions respectively. We will use this property to prove Theorem 3.

Theorem 7 (Harris’ inequality (Boucheron et al., 2013)). Let X1, . . . , Xn be independent real-valued random variables
and define the random vector X = (X1, . . . , Xn) taking values in Rn. If f : Rn → R is nonincreasing and g : Rn → R is
nondecreasing then

E[f(X)g(X)] ≤ E[f(X)]E[g(X)]

Proposition 4 (Negative Association). Let the order statistics spacing of rank k − 1 as Sk−1 = X(k−1) −X(k). Then X(k)

and Sk−1 are negatively associated: for any pair of non-increasing function f1 and f2,

E
[
f1(X(k))f2 (Sk−1)

]
≤ E

[
f1(X(k))

]
E [f2 (Sk−1)] . (46)

Proof. From Definition 5 and Theorem 6, let Y(1), . . . , Y(n) be the order statistics of an exponential sample. Let Ek−1 =

Y(k−1) − Y(k) be the (k − 1)
th spacing of the exponential sample. By Theorem 6, Ek−1 and Y(k) are independent.

E
[
f1

(
X(k)

)
f2 (Sk−1)

]
=E

[
f1(R(Y(k)))f2

(
R(Y(k−1))−R(Y(k))

)]
(47)

=E
[
E
[
f1(R(Y(k)))f2

(
R(Ek−1 + Y(k))−R(Y(k))

)
|Y(k)

]]
(48)

=E
[
f1(R(Y(k)))E

[
f2

(
R(Ek−1 + Y(k))−R(Y(k))

)
|Y(k)

]]
. (49)

The function f1 ◦R is non-increasing. Almost surely, the conditional distribution of (k−1)Ek−1 w.r.t Y(k) is the exponential
distribution.

E
[
f2

(
R(Ek−1 + Y(k))−R(Y(k))

)
|Y(k)

]
=

∫ ∞
0

e−xf2(R(
x

k − 1
+ Y(k))−R(Y(k)))dx. (50)

As F is IHR, R( x
k−1 + y)− R(y) =

∫ x/(k−1)

0
R′(y + z)dz is non-increasing w.r.t. y (from Proposition 3 we know R is

concave when F is IHR). Then E
[
f2

(
R(Ek−1 + Y(k))−R(Y(k))

)
|Y(k)

]
is non-decreasing function of Y(k). By Harris’

inequality,

E
[
f1

(
X(k)

)
f2 (Sk−1)

]
≤E

[
f1(R(Y(k)))

]
E
[
E
[
f2

(
R(Ek−1 + Y(k))−R(Y(k))

)
|Y(k)

]]
(51)

=E
[
f1(R(Y(k)))

]
E
[
f2

(
R(Ek−1 + Y(k))−R(Y(k))

)]
(52)

=E
[
f1(X(k))

]
E [f2(Sk−1)] . (53)

We prove Proposition 2 in the following by transform the spacing based on Rényi’s representation and the property described
in Proposition 3.

Proposition 2. For any k ∈ [1, n)∧N∗, the expectation of spacing Sk defined in Eq. (17) can be bounded under Assumption
1, E[Sk] ≤ 1

kL .

Proof. We show the upper bound the expectations of the kth spacing of order statistics, assuming the lower bound hazard
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rate is L. The following proof uses Proposition 3, which requires Assumption 1 hold.

E[Sk] = E[X(k) −X(k+1)]

= E[R

(
Y(k+1) +

Ek
k

)
−R

(
Y(k+1)

)
] By Theorem 6 (54)

=

∫
Y

∫
E

(
R
(
y +

z

k

)
−R (y)

)
fY (y) fE (z) dzdy (55)

≤
∫
Y

∫
E

z

k × h (R (y))
fY (y) fE (z) dzdy By Proposition 3 (56)

≤
∫
E

z

kL
fE (z) dz =

1

kL
L is the lower bound of the hazard rate. (57)

Using the same technique of shown in Proposition 2, we prove Lemma 1 and Lemma 2 by further bounding inequalities
shown in Theorem 3.
Lemma 1 (Right Tail Concentration Bounds for Order Statistics). Define vr := 2

kL2 , cr := 2
kL . Under Assumption 1 , for

all λ ∈ [0, 1/cr), and all k ∈ [1, n) ∧ N∗, we have

logE[exp
(
λ
(
X(k) − E[X(k)

))
] ≤ λ2vr

2(1− crλ)
. (6)

For all γ ≥ 0, we obtain the concentration inequality

P
(
X(k) − E[X(k)] ≥

√
2vrγ + crγ

)
≤ exp(−γ). (7)

Proof. We first prove Eq. (6). From Theorem 6, we can represent the spacing as Sk = X(k)−X(k+1)
d
= R

(
Y(k+1)+Ek/k

)
−

R
(
Y(k+1)

)
, whereEk is standard exponentially distributed and independent of Y(k+1). The following proof uses Proposition

3, which requires Assumption 1 hold.

ψZk(λ) ≤λk
2
E [Sk (exp(λSk)− 1)] By Theorem 3 (58)

≤λk
2

∫
E

∫
Y

z

h (R (y)) k

(
exp(

λz

h (R (y)) k
)− 1

)
fY (y) fE (z) dydz By Proposition 3 (59)

≤k
2

∫
E

λ

Lk
z

(
exp(

λ

Lk
z)− 1

)
fE (z) dz (60)

=
k

2

∫ ∞
0

λ

Lk
z

(
exp(

λ

Lk
z)− 1

)
exp(−z)dz (61)

≤ λ2vr

2(1− crλ)
, With vr =

2

kL2
, cr =

2

kL
(62)

The last step is because for 0 ≤ µ ≤ 1
2 ,
∫∞

0
µz (exp(µz)− 1) exp(−z)dz = µ2(2−µ)

(1−µ)2
≤ 2µ2

1−2µ . where we let µ = λ
Lk .

From Eq. (6) to Eq. (7), we convert the bound of logarithmic moment generating function to the tail bound by using the
Cramér-Chernoff method (Boucheron et al., 2013). Markov’s inequality implies, for λ ≥ 0,

P(Zk ≥ γ) ≤ exp(−λγ)E[exp(λZk)]. (63)

To choose λ to minimise the upper bound, one can introduce ψ∗Zk(γ) = supλ≥0 (λγ − ψZk(λ)). Then we get P(Zk ≥ γ) ≤
exp

(
−ψ∗Zk(γ)

)
. Set h1(u) := 1 + u−

√
1 + 2u for u > 0, we have

ψ∗Zk(t) = supλ∈(0,1/cr)(γλ−
λ2vr

2(1− crλ)
) =

vr

(cr)
2h1(

crγ

vr
) (64)

Since h1 is an increasing function from (0,∞) to (0,∞) with inverse function h−1
1 (u) = u +

√
2u for u > 0, we have

ψ∗−1(u) =
√

2vru+ cru. Eq. (7) is thus proved.
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Lemma 2 (Left Tail Concentration Bounds for Order Statistics). Define vl := 2(n−k+1)
(k−1)2L2 . Under Assumption 1, for all

λ ≥ 0, and all k ∈ (1, n] ∧ N∗, we have

logE[exp
(
λ
(
E[X(k)]−X(k)

))
] ≤ λ2vl

2
. (8)

For all γ ≥ 0, we obtain the concentration inequality

P
(
E[X(k)]−X(k) ≥

√
2vlγ

)
≤ exp(−γ). (9)

Proof. The proof is similar to the proof of Lemma 1. From Theorem 6, we can represent the spacing as Sk−1 =

X(k−1) −X(k)
d
= R

(
Y(k)+Ek−1/(k−1)

)
−R

(
Y(k)

)
, where Ek−1 is standard exponentially distributed and independent of

Y(k). The following proof uses Proposition 3, which requires Assumption 1 hold.

ψZ′k(λ) ≤λ
2(n− k + 1)

2
E[S2

k−1] By Theorem 3 (65)

≤λ
2(n− k + 1)

2

∫
Y

∫
E

(
z

(k − 1)× h (R (y))

)2

fY (y) fE (z) dzdy By Proposition 3 (66)

≤λ
2(n− k + 1)

2

∫ ∞
0

(
z

(k − 1)L

)2

exp(−z)dz (67)

≤λ
2vl

2
. With vl =

2(n− k + 1)

(k − 1)2L2
(68)

Eq. (8) is proved. Follow the Cramér-Chernoff method described above, we can prove Eq. (9).

The concentration results for order statistics can be of independent interest. For example, one can take this result and derive
the concentration for sum of order statistics by applying Hoeffding’s inequality (Hoeffding, 1994) or Bernstein’s inequality
(Bernstein, 1924). Kandasamy et al. (2018) took the results from Boucheron & Thomas (2012) and showed such results, but
limited for right tail result for exponential random variables of rank 1 order statistics (i.e. maximum).

Now we convert the concentration results of order statistics to the quantiles, based on the results from Lemma 1 and 2, and
the Theorem 1 , which shows connection between expected order statistics and quantiles.

Theorem 2 (Two-side Concentration Inequality for Quantiles). Recall vr = 2
kL2 , vl = 2(n−k+1)

(k−1)2L2 , cr = 2
kL , wn = b

n . For
quantile level τ ∈ (0, 1), let rank k = bn(1− τ)c. Under Assumption 1 and 2, we have

P
(
Q̂τn −Qτ ≥

√
2vrγ + crγ + wn

)
≤ exp(−γ).

P
(
Qτ − Q̂τn ≥

√
2vlγ + wn

)
≤ exp(−γ).

Proof. Denote the confidence interval for the right tail bound of order statistics as drk,γ =
√

2vrγ + crγ. From Lemma 1,

we have P
(
X(k) − E[X(k)] ≥ drk,γ

)
≤ exp(−γ). With k = bn(1 − τ)c, we have Q̂τn = X(k) and from Theorem 1, we

have E[X(k)] ≤ Qτ + wn. With probability at least 1− exp(−γ), the following event holds

X(k) − E[X(k)] < drk,γ ⇒ X(k) < E[X(k)] + drk,γ ≤ Qτ + wn + drk,γ ⇒ Q̂τn −Qτ < wn + drk,γ , (69)

from which we have P(Q̂τn −Qτ ≥ wn + drk,γ) ≤ exp(−γ).

Denote the confidence interval for the right tail bound of order statistics as dlk,γ =
√

2vlγ. From Lemma 2, we have

P
(
E[X(k)]−X(k) ≥ dlk,γ

)
≤ exp(−γ). With k = bn(1 − τ)c, we have Q̂τn = X(k) and from Theorem 1, we have

E[X(k)] ≥ Qτ − wn. With probability at least 1− exp(−γ), the following event holds

E[X(k)]−X(k) < dlk,γ ⇒ −X(k) < −E[X(k)] + dlk,γ ≤ −(Qτ − wn) + dlk,γ ⇒ Qτ − Q̂τn < wn + dlk,γ , (70)

from which we have P(Qτ − Q̂τn ≥ wn + dlk,γ) ≤ exp(−γ). This concludes the proof.
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In ths following, we show the representations for the concentration results.

Corollary 2 (Representation of Concentration inequalities for Order Statistics). For ε > 0, the concentration inequalities
for order statistics in Lemma 1 and 2 can be represented as

P
(
X(k) − E[X(k)] ≥ ε

)
≤ exp

(
− ε2

2(vr + crε)

)
, (71)

P
(
E[X(k)]−X(k) ≥ ε

)
≤ exp

(
− ε2

2vl

)
. (72)

Proof. Eq. (72) follows by setting ε =
√

2vlγ. We now show the case for Eq. (71). Recall from the proof of Lemma 1 Eq.
(64), h1(u) = 1 + u−

√
1 + 2u. Follow the elementary inequality

h1(u) ≥ u2

2(1 + u)
u > 0. (73)

Lemma 1 implies ψ∗Zk(t) ≥ t2

2(v+ct) , so the statement Eq. (71) follows from Chernoff’s inequality.

Recall that for Q-SAR, we are interested in events of small probability, that is for large values of γ in Theorem 2. In the
corollary below, we focus on such events of small probability by considering γ ≥ 1 (i.e. error less than 1

e ≈ 0.37), which
allows a simpler expression.

Corollary 1 (Representation of Concentration inequalities for Quantiles). For ε > 0, vr, vl, cr, wn stay the same as stated
in Theorem 2. With γ ≥ 1, Theorem 2 can be represented as

P
(
Q̂τn −Qτ ≥ ε

)
≤ exp

(
− ε2

2(vr + (cr + wn)ε)

)
,

P
(
Qτ − Q̂τn ≥ ε

)
≤ exp

(
− ε2

2(vl + wnε)

)
.

Proof. With γ ≥ 1, we have γwn ≥ wn, then with probability at least 1− exp(−γ), we have

Q̂τn −Qτ ≤
√

2vrγ + crγ + wn ≤
√

2vrγ + crγ + wnγ.

That is, we have

P
(
Q̂τn −Qτ ≥

√
2vrγ + (cr + wn)γ

)
≤ exp(−γ). (74)

Similarly, one can prove the other side. Then the similar reasoning as shown in proof of Corollary 2 concludes the proof.

C. Bandits Proof
In this section, we provide the proof for the bandit theoritical result (Section C.2), with a re-expression of the concentration
result (Section C.1).

C.1. Re-expression of Concentration Results

The proof of Q-SAR error bound uses the concentration results for quantiles. We first further derive the result shown in
Corollary 1 to show direct dependency on the number of samples n. Recall the rank k = bn(1− τ)c with quantile level
τ ∈ (0, 1), which can be re-expressed as

k

1− τ
≤ n ≤ k + 1

1− τ
(75)

n(1− τ)− 1 ≤ k ≤ n(1− τ). (76)

We show the representation of concentration depending on n in the following.
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Lemma 3. For ε > 0, recall n denotes the number of samples, b is a constant depending on the density about τ -quantile
(0 < τ < 1), L is the lower bound of hazard rate. With n ≥ 4

1−τ , Corollary 1 can be represented as

P
(
Q̂τn −Qτ ≥ ε

)
≤ exp

(
− n(1− τ)L2ε2

2( 8
3 + 4

3 (2L+ b(1− τ)L2)ε)

)
,

P
(
Qτ − Q̂τn ≥ ε

)
≤ exp

(
− n(1− τ)L2ε2

2( 4(1+τ)
1−τ + b(1− τ)L2ε)

)
.

Combining the two bounds together, we have the two-sided bound shown in the following,

P
(
|Q̂τn −Qτ | ≥ ε

)
≤ 2 exp

(
−n(1− τ)L2ε2

2(α+ βε)

)
,

where α = 4(1+τ)
1−τ , β = 4

3 (2L+ b(1− τ)L2).

Proof. By assuming n ≥ 4
1−τ , we have

n(1− τ)− 1 = n(1− (τ +
1

n
)) ≥ 3

4
n(1− τ). (77)

n(1− τ)− 2 = n(1− (τ +
2

n
)) ≥ 1

2
n(1− τ). (78)

Recall vr = 2
kL2 , vl = 2(n−k+1)

(k−1)2L2 , cr = 2
kL , wn = b

n , we have

P
(
Q̂τn −Qτ ≥ ε

)
≤ exp

(
− ε2

2(vr + (cr + wn)ε)

)
(79)

= exp

(
− ε2

2( 2
kL2 + ( 2

kL + b
n )ε)

)
(80)

≤ exp

(
− ε2

2( 2
kL2 + ( 2

kL + b(1−τ)
k )ε)

)
n ≥ k

1− τ
(81)

= exp

(
− kL2ε2

2(2 + (2L+ b(1− τ)L2)ε)

)
(82)

≤ exp

(
−

3
4n(1− τ)L2ε2

2(2 + (2L+ b(1− τ)L2)ε)

)
k ≥ 3

4
n(1− τ) (83)

= exp

(
− n(1− τ)L2ε2

2( 8
3 + 4

3 (2L+ b(1− τ)L2)ε)

)
. (84)

Similarly,

P
(
Qτ − Q̂τn ≥ ε

)
≤ exp

(
− ε2

2(vl + wnε)

)
(85)

= exp

− ε2

2( 2(n−k+1)
(k−1)2L2 + b

nε)

 (86)

≤ exp

− ε2

2( (1+τ)
1/4n(1−τ)2L2 + b

nε)

 k − 1 ≥ n(1− τ)

2
(87)

= exp

(
− 1/4n(1− τ)2L2ε

2

2((1 + τ) + 1/4b(1− τ)2L2ε)

)
(88)

= exp

(
− n(1− τ)L2ε

2

2( 4(1+τ)
1−τ + b(1− τ)L2ε)

)
. (89)
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Then let α = max{ 8
3 ,

4(1+τ)
1−τ } = 4(1+τ)

1−τ , β = max{ 4
3 (2L+ b(1− τ)L2), b(1− τ)L2} = 4

3 (2L+ b(1− τ)L2)), we have

P
(
|Q̂τn −Qτ | ≥ ε

)
= P

(
Q̂τn −Qτ ≥ ε

)
+ P

(
Qτ − Q̂τn ≥ ε

)
≤ 2 exp

(
−n(1− τ)L2ε2

2(α+ βε)

)
.

Remark 2 (Lower bound of sample size). In Lemma 3, we make an assumption about the lower bound of sample size, i.e.
n ≥ 4

1−τ . Note that along with the left inequality of Equation (75), the lower bound of sample size can be expressed as

n ≥ max{k,4}
1−τ . When k ≥ 4, we have n ≥ k

1−τ = bn(1−τ)c
1−τ , which holds for all n ≥ 1. This implies that instead of making

an assumption about sample size n, we could equivalently make an assumption about the rank (k ≥ 4) or the quantile level
(τ ≤ 1− 4

n with n ≥ 4).
Note the constant 4 in n ≥ 4

1−τ is chosen to have a simpler expression for the concentration bounds, one can choose any
constant bigger than 2 (such that the term n(1− τ)− 2 is valid in Equation (78)).

We show a variant of Lemma 3 where we remove the lower bound assumption of the number of samples. The derived
concentration bounds have a constant term, which does not influence the convergence rate in terms of n.

Lemma 4. For ε > 0, recall n denotes the number of samples, b is a constant depending on the density about τ -quantile
(0 < τ < 1), L is the lower bound of hazard rate. Corollary 1 can be represented as

P
(
Q̂τn −Qτ ≥ ε

)
≤ exp

(
− n(1− τ)L2ε2

2(2 + (2L+ b(1− τ)L2)ε)
+

L2ε2

2(2 + (2L+ b(1− τ)L2)ε)

)
,

P
(
Qτ − Q̂τn ≥ ε

)
≤ exp

(
− n(1− τ)L2ε2

2( 2(2+τ)
1−τ + b(1− τ)L2ε)

+
L2ε2

2( 1
2

τ
1−τ + 1

4b(1− τ)L2ε)

)
.

Combining the two bounds together, we have the two-sided bound shown in the following,

P
(
|Q̂τn −Qτ | ≥ ε

)
≤ 2 exp

(
−n(1− τ)L2ε2

2(α̃+ β̃ε)
+

L2ε2

2(α̃+ β̃ε)

)
,

where α̃ = 2 τ+2
1−τ , β̃ = 2L+ b(1− τ)L2.

Proof. From Eq. (82), we have

P
(
Q̂τn −Qτ ≥ ε

)
≤ exp

(
− kL2ε2

2(2 + (2L+ b(1− τ)L2)ε)

)
(90)

≤ exp

(
− (n(1− τ)− 1)L2ε2

2(2 + (2L+ b(1− τ)L2)ε)

)
k ≥ n(1− τ)− 1 (91)

= exp

(
− (n(1− τ))L2ε2

2(2 + (2L+ b(1− τ)L2)ε)
+

L2ε2

2(2 + (2L+ b(1− τ)L2)ε)

)
. (92)
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From Eq. (86), we have

P
(
Qτ − Q̂τn ≥ ε

)
≤ exp

− ε2

2( 2(n−k+1)
(k−1)2L2 + b

nε)

 (93)

≤ exp

− L2ε2

2( 2(nτ+2)
(n(1−τ)−2)2 + bL2

n ε)

 k − 1 ≥ n(1− τ)− 2

(94)

≤ exp

− L2ε2

2( 2(nτ+2)
(n(1−τ))(n(1−τ)−4) + bL2

n ε)

 (95)

= exp

(
− (n(1− τ))(n(1− τ)− 4)L2ε2

2(2(nτ + 2) + n(1− τ)2bL2ε)

)
(96)

= exp

− n(1− τ)L2ε2

2(2 τ+2/n
1−τ + (1− τ)bL2ε)

+
L2ε2

2( 1
2

(nτ+2)
n(1−τ) + 1

4 (1− τ)bL2ε)

 (97)

≤ exp

(
− n(1− τ)L2ε2

2(2 τ+2
1−τ + b(1− τ)L2ε)

+
L2ε2

2( 1
2

τ
1−τ + 1

4b(1− τ)L2ε)

)
. n ≥ 1→ 1/n ≤ 1 (98)

Then let α̃ = 2 max
{

1, τ+2
1−τ ,

1
4

τ
1−τ

}
= 2 τ+2

1−τ , β̃ = max{2L+b(1−τ)L2, b(1−τ)L2, 1
4b(1−τ)L2)} = 2L+b(1−τ)L2.

we have

P
(
|Q̂τn −Qτ | ≥ ε

)
= P

(
Q̂τn −Qτ ≥ ε

)
+ P

(
Qτ − Q̂τn ≥ ε

)
≤ 2 exp

(
−n(1− τ)L2ε2

2(α̃+ β̃ε)
+

L2ε2

2(α̃+ β̃ε)

)
.

Remark 3 (Constant term in concentration bound). Note the constant term L2ε2

2(α̃+β̃ε)
in Lemma 4 is due to the floor operator

of the rank k, as explained in Eq. (75). This constant term is a bias term coming from estimating the quantile by a single
order statistic and is unavoidable without additional assumptions.
By comparing Lemma 3 and Lemma 4 we observe that one needs to balance between the constant term, convergence rate,
and assumptions to be made. For example, Lemma 3 reduces the constant term by assuming a lower bound on the sample
size. On one hand, this assumption guarantees there is enough number of samples to have a more accurate estimation; on
the other hand, compared with Lemma 4, Lemma 3 has a smaller convergence rate in terms of n (larger parameters α, β).

C.2. Q-SAR Error Bounds

In this section, we show the proof of Q-SAR error bounds, based on the concentration results we proposed. In Theorem 4,
we show the error bound based on Lemma 3 under the assumption of lower bound of budget. In Theorem 8, we release the
budget assumption, and show a variant of the error bound based on Lemma 4. The proof technique follows Bubeck et al.
(2013).

Theorem 4 (Q-SAR Probability of Error Upper Bound). For the problem of identifying m best arms out of K arms, with
budget N ≥ 4

1−τ log(K) +K, the probability of error (Definition 2) for Q-SAR satisfies

eN ≤ 2K2 exp

(
− N −K

log(K)Hτ

)
,

where problem complexity Hτ is defined in Eq. (23).

Proof. Recall we order the arms according to optimality as o1, . . . , oK s.t. Qτo1 ≥ · · · ≥ Q
τ
oK . The optimal arm set of size

m is S∗m = {o1, . . . , om}. In phase p, there are K + 1− p arms inside of the active set Ap, we sort the arms inside of Ap
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and denote them as `1, `2, . . . , `K+1−p such that Qτ`1 ≥ Q
τ
`2
≥ · · · ≥ Qτ`K+1−p

. If the algorithm does not make any error in
the first p− 1 phases (i.e. not reject an arm from optimal set and not accept an arm from non-optimal set), then we have

{`1, `2, . . . , `lp} ⊆ S∗m, {`lp+1, . . . , `K+1−p} ⊆ K\S∗m. (99)

Additionally, we sort the arms in Ap according to the empirical quantiles at phase p as abest(=

a1), a2, ..., alp , alp+1, ..., aworst(= aK−p+1) such that Q̂τabest,np ≥ Q̂
τ
a2,np ≥ · · · ≥ Q̂

τ
aworst,np .

Consider an event ξ,

ξ = {∀i ∈ {1, . . . ,K}, p ∈ {1, . . . ,K − 1},
∣∣∣Q̂τi,np −Qτi ∣∣∣ < 1

4
∆(K+1−p)}.

Recall α = 4(1+τ)
1−τ , and we adapt β to βi with i indicating the index of arm, that is, βi = 4

3 (2Li + bi(1− τ)L2
i ). Recall the

sample size for phase p is np = d N−K
log(K)(K+1−p)e. Based on Lemma 3 and the union bound, we derive the upper bound of

probability for the complementary event ξ̄ as

P(ξ̄) ≤
K∑
i=1

K−1∑
p=1

P
(∣∣∣Q̂τi,np −Qτi ∣∣∣ ≥ 1

4
∆(K+1−p)

)
union bound (100)

≤
K∑
i=1

K−1∑
p=1

2 exp

(
−
np(1− τ)L2

i (
1
4∆(K+1−p))

2

2(α+ βi
1
4∆(K+1−p))

)
By Lemma 3 (101)

≤
K∑
i=1

K−1∑
p=1

2 exp

− N −K
log(K)(K + 1− p)

1
8

1−τ ( 4α
L2
i∆

2
(K+1−p)

+ βi
L2
i∆(K+1−p)

)

 (102)

≤ 2K2 exp

(
− N −K

log(K)Hτ

)
. (103)

where Hτ = max{i,j∈K}
8j

1−τ ( 4α
L2
i∆

2
(j)

+ βi
L2
i∆(j)

).

Note that we have assumed the number of samples of each arm is at least 4
1−τ in Lemma 3. That is, Kn1 = Kd N−K

log(K)K
e ≥

4
1−τ , which gives N ≥ 4

1−τ log(K) +K. This means, the bound derived above holds when we have budget N no less than
4

1−τ log(K) +K.

We show that on event ξ, Q-SAR algorithm does not make any error by induction on phases. Assume that the algorithm
does not make any error on the first p− 1 phases, i.e. does not reject an arm from optimal set and not accept an arm from
non-optimal set. Then in the following, we show the algorithm does not make an error on the pth phase. We discuss in terms
of two cases:

Case 1: If an arm `j is accepted, then `j ∈ S∗m.
We prove by contradiction. Assume arm `j is accepted in phase p, but `j /∈ S∗m, i.e. Qτ`j ≤ Q

τ
`lp+1

≤ Qτom+1
. According

to Algorithm 1, arm `j is accepted only if its empirical quantile is the maximum among all active arms in phase p, thus
Q̂τ`j ,np ≥ Q̂

τ
`1,np

. On event ξ, we have

Qτ`j +
1

4
∆(K+1−p) > Q̂τ`j ,np ≥ Q̂

τ
`1,np > Qτ`1 −

1

4
∆(K+1−p) (104)

⇒ ∆(K+1−p) >
1

2
∆(K+1−p) > Qτ`1 −Q

τ
`j ≥ Q

τ
`1 −Q

τ
om+1

. (105)

Another requirement to accept `j is ∆̂best > ∆̂worst, that is,

Q̂τ`j ,np − Q̂
τ
alp+1,np

> Q̂τalp ,np − Q̂
τ
aK+1−p,np . (106)

In the following, we will connect Eq. (106) with the corresponding population quantiles on event ξ. We first connect
Q̂τaK+1−p,np and Qτ`K+1−p

. Since Q̂τaK+1−p,np is the minimum empirical quantile at phase p,

Q̂τaK+1−p,np ≤ Q̂
τ
`K+1−p,np < Qτ`K+1−p

+
1

4
∆(K+1−p). (107)
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We then connect Q̂τalp+1,np
, Q̂τalp ,np to Qτom . On event ξ, for all i ≤ lp,

Q̂τ`i,np > Qτ`i −
1

4
∆(K+1−p) ≥ Qτ`lp −

1

4
∆(K+1−p) ≥ Qτom −

1

4
∆(K+1−p), (108)

which means there are lp arms in active set, i.e. {`1, `2, . . . , `lp}, having empirical quantiles bigger or equal than Qτom −
1
4∆(K+1−p). Additionally, although j > lp, `j has the maximum empirical quantile, which is bigger thanQτom−

1
4∆(K+1−p)

as well. So in total there are lp + 1 arms having empirical quantiles bigger or equal to Qτom −
1
4∆(K+1−p), i.e.

Q̂τalp ,np ≥ Q̂
τ
alp+1,np

≥ Qτom −
1

4
∆(K+1−p). (109)

Combine Eq. (106)(107)(109) together, we have

(Qτ`j +
1

4
∆(K+1−p))− (Qτom −

1

4
∆(K+1−p)) > (Qτom −

1

4
∆(K+1−p))− (Qτ`K+1−p

+
1

4
∆(K+1−p)) (110)

⇒ ∆(K+1−p) > 2Qτom − (Qτ`j +Qτ`K+1−p
) > Qτom −Q

τ
`K+1−p

. (111)

From Eq. (105)(111), we have ∆(K+1−p) > max{Qτ`1 − Qτom+1
, Qτom − Qτ`K+1−p

}, which contradicts the fact that
∆(K+1−p) ≤ max{Qτ`1 − Q

τ
om+1

, Qτom − Q
τ
`K+1−p

}, since at phase p, there are only p − 1 arms have been accepted or
rejected. So we have if an arm `j is accepted, then `j ∈ S∗m, which finishes the proof of Case 1.

Case 2: If an arm `j is rejected, the `j /∈ S∗m.

The proof of Case 2 is similar to the proof of Case 1. We prove by contradiction. Assume arm `j is rejected in phase p,
but `j ∈ S∗m, i.e. Qτ`j ≥ Qτ`lp ≥ Qτom . According to Algorithm 1, arm `j is rejected only if its empirical quantile is the

minimum among all active arms in phase p, thus Q̂τ`j ,np ≤ Q̂
τ
`K+1−p,np

. On event ξ, we have

Qτ`j −
1

4
∆(K+1−p) < Q̂τ`j ,np ≤ Q̂

τ
`K+1−p,np < Qτ`K+1−p

+
1

4
∆(K+1−p) (112)

⇒ ∆(K+1−p) >
1

2
∆(K+1−p) > Qτ`j −Q

τ
`K+1−p

≥ Qτom −Q
τ
`K+1−p

. (113)

Another requirement to accept `j is ∆̂best ≤ ∆̂worst, i.e.

Q̂τa1,np − Q̂
τ
alp+1,np

≤ Q̂τalp ,np − Q̂
τ
`j ,np . (114)

In the following, we will connect Eq. (114) with the corresponding population quantiles on event ξ. We first connect Q̂τa1,np
and Qτ`1 . Since Q̂τa1,np is the maximum empirical quantile at phase p,

Q̂τa1,np ≥ Q̂
τ
`1,np > Qτ`1 −

1

4
∆(K+1−p). (115)

We then connect Q̂τalp+1,np
, Q̂τalp ,np to Qτom+1

. On event ξ, for all i ≥ lp + 1,

Q̂τ`i,np < Qτ`i +
1

4
∆(K+1−p) ≤ Qτ`lp+1

+
1

4
∆(K+1−p) ≤ Qτom+1

+
1

4
∆(K+1−p), (116)

Additionally, although j < lp + 1, `j has the minimum empirical quantile, which is smaller than Qτom+1
+ 1

4∆(K+1−p) as
well. So that,

Q̂τalp+1,np
≤ Q̂τalp ,np ≤ Q

τ
om+1

+
1

4
∆(K+1−p). (117)

Combining Eq. (114), (115) and (117) together, we have

(Qτ`1 −
1

4
∆(K+1−p))− (Qτom+1

+
1

4
∆(K+1−p)) ≤ (Qτom+1

+
1

4
∆(K+1−p))− (Qτ`j −

1

4
∆(K+1−p)) (118)

⇒ ∆(K+1−p) ≥ (Qτ`j +Qτ`1)− 2Qτom+1
> Qτ`1 −Q

τ
om+1

. (119)
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From Eq. (113)(119), we have ∆(K+1−p) > max{Qτ`1 − Qτom+1
, Qτom − Qτ`K+1−p

}, which contradicts the fact that
∆(K+1−p) ≤ max{Qτ`1 − Q

τ
om+1

, Qτom − Q
τ
`K+1−p

}, since at phase p, there are only p − 1 arms have been accepted or
rejected. So we have if an arm `j is rejected, then `j /∈ S∗m, which finishes the proof of Case 2.

Now we show a variant of Theorem 4, using the result of Lemma 4. Define a slightly different problem complexity H̃τ ,
which has the same form of Hτ in Eq. (23) with smaller parameters α̃ and β̃.

H̃τ := max
i,j∈K

8j

1− τ
(

4α̃

L2
i∆

2
(j)

+
β̃i

L2
i∆(j)

), (120)

where α̃ = 2 τ+2
1−τ , β̃ = 2Li + (1− τ)biL

2
i .

Theorem 8 (Q-SAR Probability of Error Upper Bound Variant). For the problem of identifying m best arms out of K arms,
the probability of error (Definition 2) for Q-SAR satisfies

eN ≤ 2K2 exp

(
− N −K

log(K)H̃τ
+ C

)
,

where problem complexity variant H̃τ is defined in Eq. (120), and constant C = max{i,j∈K}
L2
i∆

2
(j)

8(4α̃+β̃i∆(j))
.

Proof. The only difference of the proof of Theorem 4 is we derive the bound of of P(ξ̄) (See Eq. (24) for the definition of
event ξ) based on a Lemma 4, and we do not have the lower bound assumption made for budget.

P(ξ̄) ≤
K∑
i=1

K−1∑
p=1

P
(∣∣∣Q̂τi,np −Qτi ∣∣∣ ≥ 1

4
∆(K+1−p)

)
union bound (121)

≤
K∑
i=1

K−1∑
p=1

exp

(
−
np(1− τ)L2

i (
1
4∆(K+1−p))

2

2(α̃+ β̃i
1
4∆(K+1−p))

+
L2
i (

1
4∆(K+1−p))

2

2(α̃+ β̃i
1
4∆(K+1−p))

)
By Lemma 4 (122)

≤ 2K2 exp

(
− N −K

log(K)H̃τ
+ C

)
, (123)

where C = max{i,j∈K}
L2
i∆

2
(j)

8(4α̃+β̃i∆(j))
.

Then we conclude the proof by following the same reasoning in the proof of Theorem 4.

D. Discussion
Quantile Estimation Complexity: This paper focuses on how quantiles provide a different way to summarise the distribu-
tion of each arm. Quantiles are interesting and useful summary statistics for risk-averse decision-making, but estimating
quantiles may be more expensive than estimating the mean. We provide the time complexity of our algorithms (for K
arms) in the following. Estimating quantiles needs binary search in each round when we get new samples. For Q-SAR,
in each phase p ∈ [1,K − 1], the time complexity is O(K log(np − np−1) +K logK) = O(K log(N/K2) +K logK).
Combining for allK−1 phases, the time complexity isO(K2 log(N/K2)+K2 logK). For space complexity, one needs to
save the samples for each arm and also updates information (quantiles) for each arm, so the space complexity is O(N +K)
for both algorithms. One could save time and space for estimating quantiles by using online algorithms. For example,
instead of performing binary search from scratch, one can retain an estimate of the quantile and update the estimate given
the new samples. This is the key idea of online algorithms such as stochastic gradient descent. Such approaches (and their
analysis) is beyond the scope of this paper.

Understanding IHR Distributions: The hazard rate of random variables provide an useful way to think about real
phenomena. For example, let the random variable X denote the age of a car when it has a serious engine problem for the
first time. One would expect the hazard rate increases over time. If the random variable X denotes the time before you win
a lottery, then the hazard rate would be approximately constant.
Some examples of general distributions with IHR include:
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• Gamma distribution with two parameters λ > 0, α > 0, with p.d.f. f(x) = λαxα−1 exp{−λx}
Γ(α) for x > 0, where the gamma

function Γ(α) =
∫∞

0
xα−1 exp{−x}dx. When α ≥ 1, the hazard rate is non-decreasing. The case α = 1 corresponds to

the exponential distribution (Definition 4) and the hazard rate is constant.
• Weibull Distribution with two parameters λ > 0, p > 0, with p.d.f. f(x) = pλpxp−1 exp{−(λx)

p} for x > 0. When
p ≥ 1, the hazard rate is non-decreasing. The Weibull distribution reduces to the exponential distribution (Definition 4)
when p = 1.
• Absolute Gaussian distribution (Definition 3). The lower bound of hazard rate for the centered Absolute Gaussian
distribution is 1

σ
√

2π
.

Recall that the IHR assumption allows us to consider distributions of unbounded rewards. It does so by constraining the tails
of the density. The random variable with IHR is light-tailed, i.e. having tails the same as or lighter than an exponential
distribution. Light-tailed distributions include a wide range of distributions, including sub-gamma and sub-Gaussian
distributions.

Estimate Lower Bound of Hazard Rate and Concentration Inequality In practice, one can estimate the lower bound of
hazard rate L by estimating the p.d.f. and c.d.f. around 0 (with non-negative support and IHR assumption). So one can
design a UCB-type of algorithms by adaptively estimating L. But in practice, introducing new variables to estimate would
influence the stability of the algorithm.


