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A. Proof for Theorem 3.1
In this section, we provide the details of proof of Theorem 3.1.

Theorem 3.1 Given the training set Sd = {xi}ni=1 that consists of n i.i.d samples drawn from a distribution S with K
classes, and the set of corresponding adversarial examples Sadvd = {xadvi }ni=1 drawn from the underlying distribution Sadv ,
if the loss function l(·) of DNN fθ is k-Lipschitz, then for any δ > 0, with the probability at least 1− δ, we have
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where dθ(x
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d̂θ(z, Ci) = E[fθ(zadv)− fθ(z)|z ∈ Ci] (3)

with Ni being the set of index of training data for class i, Ci the set of ith class data of the whole set and z is data sampled
from Ci with corresponding adversarial example zadv , M the upper bound of loss of the whole data manifold S.

Proof: Let Ni be the set of index of points of training set Sd = {si}ni=1 that fall into the Ci and (|N1|, ..., |NK |) is an i.i.d
multinomial random variable with parameters n and (µ(C1), ..., µ(CK)). The following holds by the Breteganolle-Huber-
Carol inequality (cf Proposition A6.6 of (Van & Wellner, 2000) ):
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Hence, with the probability at least 1− δ, we have:
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The upper bound of robust generalization can be formulated as:
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Here, we assume |l(fθ(x1), y1)− l(fθ(x2), y2)| ≤ k‖fθ(x1)− fθ(x2)‖22 and then we have
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where dθ(xadv) = fθ(x
adv)− fθ(x) and d̂θ(z, Ci) = E[fθ(zadv)− fθ(z)|z ∈ Ci].

B. Additional Experiment Details
B.1. The Performance of FS-SCR for Different Attack Budgets

We further evaluate the model robustness against PGD and CW attacks under different attack budgets with a fixed attack
step of 20 over CIFAR-10, CIFAR-100 and SVHN. These results are shown in Figure 1. The Feature Scattering method
(FS) can improve the model robustness across a wide range of attack budgets. The proposed approach FS-SCR further
boosts the performance over Feature Scattering by a large margin under different attack budgets for both PGD and CW
attacks,especially for large attack budgets.
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Figure 1. Model performance under PGD and CW attacks with different attack budgets.

B.2. Sensitivity Analysis

For our proposed SCR, there are two important hyper parameters, trade-off parameter λ and attack iteration c2 (as in
Algorithm 1) for SCR. We plot the test acurracy of FS-SCR over different λ and c2 in Figure 2. It can be noted that the best
accuracy is achieved when λ = 0.01 with fixed c2 = 3. Weighing the accuracy and computation complexity, we set c2 = 3.

B.3. Black-box results on CIFAR-10

We conduct more evaluations on the transfer-based black-box attacks on CIFAR-10. We report the results in Table 1. It can
be observed that our proposed methods (FS-SCR and AT-SCR) overall outperform baseline methods (FS and AT) in most of
the cases on CIFAR-10. Surprisingly, the baselines perform better than our methods in four cases. This also partially reveals
the more challenging nature of defending black-box attacks than white-box attacks.

Table 1. Accuracy under black-box attack on CIFAR-10

DEFENSE
MODELS

ATTACKED MODELS (CIFAR-10)

VANILLA TRAINING ADVERSARIAL TRAINING FS FS+SCR PGD+SCR

FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20

AT 84.62 84.89 84.83 72.2 63.77 63.27 82.26 80.56 79.31 84.45 81.47 81.70 72.57 64.07 63.48
FS 88.64 89.25 89.31 77.18 66.59 66.40 82.8 81.01 78.34 88.00 82.81 83.09 76.47 67.18 67.14
AT+SCR 84.78 84.84 84.74 72.43 63.78 63.41 82.65 81.17 79.89 84.56 81.84 82.1 72.66 63.95 63.69
FS+SCR 89.84 91.89 91.81 79.33 67.44 66.62 84.76 83.22 81.17 90.43 81.45 82.09 79.14 67.43 66.67

B.4. Illustration of Feature Shift

In addition, we plot the feature shifts caused by adversarial perturbations (CW attack) for both the training data and test
data in Figure 3 where the feature shift for a data sample x is defined as fθ(xadv) − fθ(x). Comparing Figure 3(a) 3(b)
and 3(c) 3(d), it can be noted that our method obtains the more consistent feature shifts and the feature shifts of FS are more
dispersed. Thus, our method can obtain the similar latent features of training and test data which leads to better robust
generalization.
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Figure 2. Model performance under different iteration and trade-off parameter on CIFAR-10
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Figure 3. The feature shifts of the training and test data (Attacked by CW).


