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A. Gradient Derivation
We derive the gradient with respect to quantization parame-
ters θ = {q, {ĝi}bi=1} in detail.

Gradient w.r.t. q. Let x,xq be two vectors stacking values
before and after quantization (x and xq) respectively, the
gradient of the loss function with respect to each entry qk is
given by

∂L
∂qk

=

N∑
i=1

∂L
∂xiq

∂xiq
∂qk

(1)

where xiq = Q(xi;θ). From the definition of Q(xi;θ) in
Eqn.(3), we obtain

∂xiq
∂qk

=

{
1

ZU
if k = argminj | 1

ZU
(UTq)j − xi|

0 otherwise
(2)

Hence, we have

∂L
∂qk

=
1

ZU

∑
i∈Sk

∂L
∂xiq

, (3)

where Sk = {m |m ∈ [N ] and (xm
o )k = 1} represents a

set of indexes of the values discretized to the quantization
level qk.

Remark. ForA ∈m1×n1 ,B ∈m2×n2 , then

B ⊗A = Tm1,m2(A⊗B)Tn1,n2 (4)

where Tm,n =
∑m

i=1(ei
T ⊗ In ⊗ ei) =

∑n
j=1(ej ⊗ Im ⊗

ej
T) is the perfect shuffle permutation matrix. ei denotes

the i-th canonical vector that is the vector with 1 in the i-th
coordinate and 0 elsewhere. ⊗ is the Kronecker product. In
is a n-by-n identity matrix.

Gradients w.r.t. gk. The gradients back-propagated
through the Heaviside step function gk = H(ĝk) can be ap-
proximated by the Straight-Through Estimator (STE) (Ben-
gio et al., 2013; Yin et al., 2019a). Denote Ũk =
⊗K

t=k+1Ut ⊗k−1
t=1 Ut, U can be reformulated by Remark

A as follows

U = 1
ZU

(
T k−1
2b−1,2

)
Uk ⊗ Ũk

(
T k−1
2b−1,2

)
T.

(5)
Note that ZU is also a function of gk and ZU =

∏b
i=1(2−

gi), the derivative of U w.r.t. gk can be derived as follows:

∂U

∂gk
=

1

ZU
T k−1
2b−1,2

[[
0 −1
−1 0

]
⊗ Ũk

](
T k−1
2b−1,2

)
T

− 1

ZU (2− gk)
T k−1
2b−1,2

[[
1 1− gk

1− gk 1

]
⊗ Ũk

](
T k−1
2b−1,2

)
T

=
1

ZU (2− gk)
T k−1
2b−1,2

[[
1 −1
−1 1

]
⊗ Ũk

](
T k−1
2b−1,2

)
T.

(6)

where T k−1
2b−1,2

is a perfect shuffle permutation matrix (Davio,
1981). From Eqn.(6), we obtain ∂U

∂gk
|gk=1= 2b+1 ∂U

∂gk
|gk=0,

Figure 1. Training dynamics of fixed precision DDQ w/ (or w/o)
gradient correction.

implying that DDQ assigns smaller gradients to those in-
hibited gate (gk = 0). In other words, once gk decreases
to 0, it is unlikely to return to 1, making DDQ appealing
to achieve mixed-precision training. With Eqn.(1) and (6),
the quantization parameters of DDQ and the weights of the
network can be jointly optimized by using SGD.

B. Summary of Existing Quantization
Approach

Table 1 gives an overall summary of existing quantization
methods. For uniform quantization methods, to reduce quan-
tization error, (Zhou et al., 2016; Mishra et al., 2017; Choi,
2018) use tanh function to project quantization levels, but
they restrict quantization levels in specific patterns. Be-
sides, other methods such as (Choi, 2018; McKinstry et al.,
2018; Jain et al., 2019), calibrate quantizer with estimated
or learned centre points and thresholds, also yielding better
performance. (Miyashita et al., 2016; Zhou et al., 2017;
Cai et al., 2017) show that non-uniform quantization levels
can outperform uniform counterparts in specific situations,
and they can perform better if we learn them from data, as
discussed in (Zhang et al., 2018; Jung et al., 2019). More
recently, Mixed precision quantization techniques are intro-
duced by (Wang et al., 2019; Yazdanbakhsh et al., 2018)
and (Uhlich et al., 2020), further improving quantization
methods by assigning different bitwidth to each layer using
Reinforcement-Learning or Gradient-based methods. As
shown in Table 1, the proposed DDQ can integrate main
properties of above methods, learning to select optimal quan-
tization policy according to corresponding data and model
architectures.

C. Experimental Details
C.1. Evaluation on ImageNet

The ImageNet dataset consists of 1.2M training and 50K val-
idation images. For ResNet and MobileNet, we adopt stan-
dard data preprocessing in the original paper (He et al., 2016;
Sandler et al., 2018). All DNN+DDQs are trained for 30
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Method Differentiablity Mixed Precision Quantization Level Step Size Quantizer Calibration Gradient Calibration
X-Nor-Net (Rastegari et al., 2016) X UQ
DoReFa-Net (Zhou et al., 2016) X UQ+Tanh
WPRN (Mishra et al., 2017) X UQ+Tanh
PACT (Choi, 2018) X UQ+Tanh X X
FAQ (McKinstry et al., 2018) X UQ X
NICE (Baskin et al., 2018) X UQ X
LSQ (Esser et al., 2020) X UQ X X X
BCGD (Yin et al., 2019b) X UQ X
TQT (Jain et al., 2019) X UQ X X X
HAQ (Wang et al., 2019) X UQ X X
Releq (Yazdanbakhsh et al., 2018) X UQ
Uhlich et al. (Uhlich et al., 2020) X X UQ/Non-UQ X X X
INQ (Zhou et al., 2017) Non-UQ
PoT (Miyashita et al., 2016) X Non-UQ
HWGQ (Cai et al., 2017) X Non-UQ X X X
QIL (Jung et al., 2019) X Learned X X
LQ-Net (Zhang et al., 2018) X Learned X
DDQ (ours) X X Learned X X X

Table 1. Overall summary of state-of-art quantiztaion methods. "Differentiablity" column shows whether this method can be implemented
with one-stage and gradient-based methods. "UQ" and "Non-UQ" indicate uniform / non-uniform quantization respectively. "Step Size"
column denotes the ability to adjust quantization step size. "Quantizer Calibration" means if the method calibrates the quantizer with
centre points and thresholds. "Gradient Calibration" shows if the quantization gradients for parameters in quantizer are corrected.

epochs with cosine learning rate scheme(Loshchilov & Hut-
ter, 2016) like (Esser et al., 2020). We choose PACT (Choi,
2018) with gradient calibration (Jain et al., 2019; Esser et al.,
2020; Jin et al., 2019; Li et al., 2020) pipeline as baselines.
All hyper-parameters follow prior arts such as PACT(Choi,
2018) for fair comparisons, e.g. l2-regularization coefficient
λ = 1e − 2. Network weights are quantized using uni-
form quantization (UQ), power-of-two quantization (PoT)
and DDQ respectively, and all activations are uniformly
quantized for fair comparison. For PACT, parameterized
clipping values are initialized to 6.0 for activations and 3.0
for weights. We adopt per-tensor quantization for activa-
tions and per-channel quantiztaion for weights as recom-
mended in (Rastegari et al., 2016; Krishnamoorthi, 2018;
Goncharenko et al., 2019) to handle the widely-varying
range between channels. Note that weights of all layers are
quantized with UQ/PoT/DDQ directly except those of first
and last layer, for which we employ 8-bit uniform quan-
tization to observe standard practice of all state-of-the-art
works. In addition, training DDQ will cause extra compu-
tation, but is still efficient and comparable to training UQ
and PoT. Specially, training DDQ-MobileNetV2 cost 29.3
min averagely for each epoch on 8 Nvidia GTX 1080Ti, less
than 5% longer than PoT (28.4 min) and UQ (27.9 min).

C.2. Gradient Correction.

For fixed-precision DDQ, we have an interesting observation
that the proposed gradient correction could stabilize training.
For instance, Fig. 1 illustrates training dynamics for 2/4-bit
DDQ-quantized MobileNetV2. With gradient correction,
the quantized model not only yields better performance
(both training and validation), but also converges with less
jitters in validation accuracy.

Methods Accuracy

2-bit 3-bit 4-bit

ResNet20
(FP : 92.4)

DoReFa-Ne (Zhou et al., 2016) 88.2 89.9 90.5
PACT (Choi, 2018) 89.7 91.1 91.7
LQ-Net (Zhang et al., 2018) 90.2 91.6 -
SAWB (Choi et al., 2018) 90.5 - -
TQT (Jain et al., 2019) 91.2 - -
Uhlich et al. (Uhlich et al., 2020) 91.4 - -
DDQ (mixed) 91.6 92.2 92.7

Table 2. Comparison of Cifar-10 Top1-accuracy towards existing
quantization methods. All the reported results use 32-bit activation
by following prior work.

C.3. Mixed Precision Training.

Figure.D shows depicts training dynamics of bitwidth for all
layers when quantizing a 4-bit ResNet18 using DDQ with
maximum bitwidth 8. As demonstrated, DDQ could learn
to assign bitwidth to each layer, in a data-driven manner.

D. Evaluation on Cifar-10
Additionally, we quantize ResNet20 on Cifar-10 with mixed
precision. For weight quantization, we adopt 2-/3-/4-bit
target bitwidth and initialize DDQ with maximum bitwidth
8. Tabel 2 compares our results with other weight-only
quantization methods. For Cifar-10, all layers of the model
are quantized using DDQ. The quantized models are trained
for 200 epochs with learning rate 0.01, batch size 1024 and
cosine scheduler.
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Figure 2. Evolution of bitwidth of layers when training ResNet18. We can see that DDQ can learn to assign bitwidth to each layer under
given memory footprint constraints.
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