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A. Proof
Proof of Lemma 2: Based on the implicit function theorem (Lorraine et al., 2020), or we simply set L1(w∗,α)

∂w = 0 since
the model weights w achieved the local optimal in the training set with α, we have:

∂L1(w∗(α), α)

∂w
= 0, (10)

and we have
∂

∂α

(
∂L1(w∗(α), α)

∂w

)
= 0,

∂2L1

∂α∂w
+

∂2L1

∂w∂w

∂(w∗(α))

∂α
= 0,

∂(w∗(α))

∂α
= −

[
∂2L1

∂w∂w

]−1
∂2L1

∂α∂w
.

(11)

In this way, the hypergradient could be formulated as

∇αL2 =
∂L2

∂α
− ∂L2

∂w

[
∂2L1

∂w∂w

]−1
∂2L1

∂α∂w
. (12)

�

Proof of Corollary 1: The key in this proposition is to use the Neumann series to approximate the
[
∂2L1

∂w∂w

]−1

.

Based on the Neumann series approximation, for ‖I −A‖ < 1, we have:

A−1 =

∞∑
k=0

(I −A)k. (13)

Based Assumption 2.1, we have ∂2L1

∂w∂w < L∇w1 . With γ < 1

L∇w1

, we have
∥∥∥I − γ ∂2L1

∂w∂w

∥∥∥ < 1 (Shaban et al., 2019; Lorraine

et al., 2020). When we conduct the Neumann series approximation for
[
∂2L1

∂w∂w

]−1

in the optimal point, we have:

[
∂2L1

∂w∂w

]−1

= γ(I − I + γ
∂2L1

∂w∂w
)−1 = γ

∞∑
j=0

[
I − γ ∂

2L1

∂w∂w

]j
. (14)

So that:

∇αL2 =
∂L2

∂α
− γ ∂L2

∂w

∞∑
j=0

[
I − γ ∂

2L1

∂w∂w

]j
∂2L1

∂α∂w
. (15)

�

Proof of Theorem 1 Based on the Eq. (8) and (7), we have

∇αL2 −∇αL̃2 = γ
∂L2

∂w

∞∑
j=K+1

[
I − γ ∂

2L1

∂w∂w

]j
∂2L1

∂α∂w
. (16)

Since the L1 is µ-strongly convex, and γµI � γ ∂2L1

∂w∂w � I , we have

∞∑
j=K+1

[
I − γ ∂

2L1

∂w∂w

]j
≤

∞∑
j=K+1

[I − γµ]
j
. (17)
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Based on the sum of geometric sequence, we have

∞∑
j=K+1

[
I − γ ∂

2L1

∂w∂w

]j
≤ 1

γµ
(1− γµ)K+1. (18)

Since ∂L2

∂w and ∂2L1

∂α∂w are bounded, we have∥∥∥∇αL2 −∇αL̃2

∥∥∥ 6 CLwα1
CLw2

1

µ
(1− γµ)K+1. (19)

�

Proof: Corollary 2 Based on the definitions, the hypergradient of truncated back-propagation and the proposed Neumann
approximation based hypergradient are defined in Eq.(4) and Eq.(8). When we assume that wt has converged to a stationary
point w∗ in the last K steps, we have

wi(α) = wj(α) = w∗(α), for all i, j ∈ [T −K + 1, T ];

∂Φ(wi, α)

∂wi
=
∂Φ(wj , α)

∂wj
=
∂Φ(w∗(α), α)

∂w∗(α)
= AT , for all i, j ∈ [T −K + 1, T ];

∂Φ(wi, α)

∂α
=
∂Φ(wj , α)

∂α
=
∂Φ(w∗(α), α)

∂α
= BT , for all i, j ∈ [T −K + 1, T ].

(20)

Now the truncated back-propagation could be formulated as:

hT−K =
∂L2

∂α
+
∂L2

∂wT
(

T∑
t=T−K+1

BtAt+1...AT )

=
∂L2

∂α
+
∂L2

∂wT
(

K∑
t=0

BTA
t
T ).

(21)

We have

AT =
∂Φ(w∗(α), α)

∂w∗(α)
=
∂(w∗ − η ∂L1

∂w )

∂w∗
= I − γ ∂

2L1(w∗)

∂w∂w
,

BT =
∂Φ(w∗(α), α)

∂α
=
∂(w∗ − η ∂L1

∂w )

∂α
= −γ ∂

2L1(w∗)

∂α∂w
.

(22)

From the above, we have

hT−K =
∂L2

∂α
+
∂L2

∂wT
(

K∑
t=0

BTA
t
T )

=
∂L2

∂α
− γ ∂L2

∂w

K∑
j=0

[
I − γ ∂

2L1

∂w∂w

]j
∂2L1

∂α∂w

= ∇αL̃2.

(23)

�

Proof of Lemma 4: First, for ∀(α, α′), we have

‖∇αL2(w,α)−∇αL2(w,α′)‖ = ‖∇αL2(·, α)−∇αL2(·, α′) +∇αL2(w(α), ·)−∇αL2(w(α′), ·)‖
= ‖∇αL2(·, α)−∇αL2(·, α′) +∇wL2(w(α), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α′)‖
≤‖∇αL2(·, α)−∇αL2(·, α′)‖+ ‖∇wL2(w(α), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α′)‖ .

(24)
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Then we divide Eq.(24) to two parts. For the first part, based on the Assumption 1.2, we have:

‖∇αL2(·, α)−∇αL2(·, α′)‖ ≤ L∇α2 (α− α′). (25)

And for the second part of Eq.(24), we have

‖∇wL2(w(α), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α′)‖
= ‖∇wL2(w(α), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α′) +∇wL2(w(α′), ·)∇αw(α)‖
≤‖∇wL2(w(α′), ·)−∇wL2(w(α′), ·)‖ ‖∇αw(α)‖+ ‖∇wL2(w(α′), ·)‖ ‖∇αw(α)−∇αw(α′)‖ .

(26)

Based Assumption 1.3, we have

‖∇wL2(w(α′), ·)−∇wL2(w(α′), ·)‖ ≤ L∇w2 ‖w(α)− w(α′)‖ , (27)

and based Assumption 2.2 that we have

‖w(α)− w(α′)‖ ≤ Lw ‖α− α′‖ , and ‖∇αw(α)−∇αw(α′)‖ ≤ L∇αw ‖α− α′‖ . (28)

Based on Assumption 1.3, we know ∇wL2(w(α′), ·) is bounded that ∇wL2(w(α′), ·) ≤ Lw2 . ∇αw(α) is also bounded by
‖∇αw(α)‖ ≤ Lw. In this way, Eq.(26) could be rephrased as:

‖∇wL2(w(α), ·)∇αw(α)−∇wL2(w(α′), ·)∇αw(α′)‖ ≤ L∇w2 L2
w ‖α− α′‖+ Lw2 L∇αw ‖α− α′‖ . (29)

Based on Eq. (24), Eq. (25) and (29) we have

‖∇αL2(w,α)−∇αL2(w,α′)‖ ≤ (L∇α2 + L∇w2 L2
w + Lw2 L∇αw) ‖α− α′‖ . (30)

Therefore, Lemma 4 is proved.

�

Proof of Theorem 2: We first define the noise term between the stochastic estimate∇αLi2 and the true gradient∇αL2 as:

εi = ∇αL2 −∇αLi2, (31)

and the error between the approximated hypergradient∇αL̃2 and the exact hypergradient∇αL2 as:

em = ∇αL2(w∗(αm), αm)−∇αL̃2(w∗(αm), αm). (32)

We then prove that∇αLi2(w∗(αm), αm) is an unbiased estimate of∇αL2(w∗(αm), αm) that:

E[∇αLi2(w∗(αm), αm) | αm] = ∇αL2(w∗(αm), αm). (33)

Based on IFT in Eq.(7), we have

∇αLi2(w∗(αm), αm) =
∂Li2(w∗(αm), αm)

∂α
− ∂Li2(w∗(αm), αm)

∂w

[
∂2Lj1(w∗(αm), αm)

∂w∂w

]−1
∂2Lj1(w∗(αm), αm)

∂α∂w
. (34)

So that

E
[
∇αLi2(w∗(αm), αm) | αm

]
=E

∂Li2(w∗(αm), αm)

∂α
− ∂Li2(w∗(αm), αm)

∂w

[
∂2Lj1(w∗(αm), αm)

∂w∂w

]−1
∂2Lj1(w∗(αm), αm)

∂α∂w
| αm

 . (35)
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Based on the linear assumption for Lj1 in the condition 4 of the Theorem 2, we have ∂2Lj1(w∗(αm),αm)
∂w∂w = ∂2L1(w∗(αm),αm)

∂w∂w ,
and

E
[
∇αLi2(w∗(αm), αm) | αm

]
=

1

R

R∑
i=1

∂Li2(w∗(αm), αm)

∂α
− 1

R

R∑
i=1

∂Li2(w∗(αm), αm)

∂w

[
∂2L1(w∗(αm), αm)

∂w∂w

]−1
1

J

J∑
j=1

∂2Lj1(w∗(αm), αm)

∂α∂w

=
∂L2(w∗(αm), αm)

∂α
− ∂L2(w∗(αm), αm)

∂w

[
∂2L1(w∗(αm), αm)

∂w∂w

]−1
∂2L1(w∗(αm), αm)

∂α∂w

= ∇αL2(w∗(αm), αm).

(36)

Based on the Lemma 4, we know that ∇αL2(w∗(αm), αm) is Lipschitz continuous with L∇αL2
= L∇α2 + L∇w2 L2

w +
Lw2 L∇αw. Based on Lipschitz condition, we have

E [L2(w∗(αm+1), αm+1) | αm] ≤ E [L2(w∗(αm), αm) | αm]

+ E [〈∇αL2(w∗(αm), αm), αm+1 − αm〉 | αm] +
L∇αL2

2
E
[
‖αm+1 − αm‖2

]
= L2(w∗(αm), αm) +

〈
E [∇αL2(w∗(αm), αm)] ,−γαmE

[
∇αLi

′

2 (w∗(αm), αm) | αm
]〉

+
L∇αL2

2
γ2
αmE

[∥∥∥∇αLi′2 (w∗(αm), αm)
∥∥∥2
]
.

(37)

From our definitions, we have

E [∇αL2(w∗(αm), αm)] = E
[
∇αL̃2(w∗(αm), αm) + em

]
= E

[
∇αL̃2(w∗(αm), αm)

]
+ E [em] ,

E
[
∇αL̂i2(w∗(αm), αm) | αm

]
= E

[
∇αL̃2(w∗(αm), αm)− εm | αm

]
= E

[
∇αL̃2(w∗(αm), αm)

]
,

E

[∥∥∥∇αL̂i2(wj(αm), αm)
∥∥∥2

| αm
]

= E

[∥∥∥∇αL̃2(w∗(αm), αm)− εm
∥∥∥2
]

= E

[∥∥∥∇αL̃2(w∗(αm), αm)
∥∥∥2
]

+ E
[
‖εm‖2

]
,

(38)

since E(εm) = 0. In this way, we have

E [L2(w∗(αm+1), αm+1) | αm] ≤ E [L2(w∗(αm), αm) | αm]− γαmE
[∥∥∥∇αL̃2(w∗(αm), αm)

∥∥∥2
]

− γαmE
〈
em,∇αL̃2(w∗(αm), αm)

〉
+
L∇αL2

2
γ2
αmE

[∥∥∥∇αL̃2(w∗(αm), αm)
∥∥∥2
]

+
L∇αL2

2
γ2
αmE

[
‖εm‖2

]
.

(39)

Based on Theorem 1, we have ‖em‖ 6 CLwα1
CLw2

1
µ (1− γµ)K+1. In this way, for all∇αL̃2(w∗(αm), αm), we have

〈
em,∇αL̃2(w∗(αm), αm)

〉
≥ −CLwα1

CLw2
1

µ
(1− γµ)K+1

∥∥∥∇αL̃2

∥∥∥
= −

CLwα1
CLw2 (1− γµ)K+1

µ
∥∥∥∇αL̃2

∥∥∥
∥∥∥∇αL̃2

∥∥∥2

= −P
∥∥∥∇αL̃2

∥∥∥2

,

(40)
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where P =
CLwα1

CLw2
(1−γµ)K+1

µ‖∇αL̃2‖ . In this way, we have:

E [L2(w∗(αm+1), αm+1)] ≤ E [L2(w∗(αm), αm)]− γαm(1− P )E

[∥∥∥∇αL̃2

∥∥∥2
]

+
L∇αL2

2
γ2
αm(1 +D)E

[∥∥∥∇αL̃2

∥∥∥2
]

≤ E [L2(w∗(αm), αm)]− γαm [(1− P )− L∇αL2

2
γαm(1 +D)]E

[∥∥∥∇αL̃2

∥∥∥2
]
.

(41)

If we choose γαm to make (1−P )− L∇αL2
2 γαm(1 +D) > 0, we have γαm < (1−P )

L∇αL2
2 (1+D)

. In addition, since the learning

rate should be positive, we should make that 1 − P > 0, which could be reached by choose appropriate γ and K that
CLwα1

CLw2
(1−γµ)K+1

µ‖∇αL̃2‖ < 1, where 0 < 1− γµ ≤ 1. In this way, we could find that L2 is decreasing with αm, and we know

that with sufficiently large m, L2 will decrease and converge since L2 is bounded.

Furthermore, we have:

E [L2(w∗(αm), αm)]− E [L2(w∗(αm+1), αm+1)]

≥γαm [(1− P )− L∇αL2

2
γαm(1 +D)]E

[∥∥∥∇αL̃2(w∗(αm), αm)
∥∥∥2
]
.

(42)

By telescoping sum, we can show that

E [L2(w∗(α0), α0)]− E [L2(w∗(αm), αm)] ≥
K∑
k=0

qtE

[∥∥∥∇αL̃2(w∗(αm), αm)
∥∥∥2
]
, (43)

where qt = γαm [(1−P )−L∇αL2
2 γαm(1+D)] > 0. SinceL2 is bounded, we have

∑K
k=0

K→∞
qtE

[∥∥∥∇αL̃2(w∗(αm), αm)
∥∥∥2
]
<

∞. In addition, based on condition 3, we have
∑K
k=0

K→∞
qt =∞, which imply that lim

k→∞
E
[∥∥∥∇αL̃2(w∗(αm), αm)

∥∥∥] = 0, so

as lim
m→∞

E
[∥∥∥∇αL̂i2(wj(αm), αm)

∥∥∥] = 0.

�

B. Practical implementation of hypergradient
As described, our iDARTS is built based on the DARTS framework with reformulation the hypergradient calculation as:

∇αL̃2 =
∂L2

∂α
− γ ∂L2

∂w

K∑
k=0

[
I − γ ∂

2L1

∂w∂w

]k
∂2L1

∂α∂w
. (44)

where the different part is the
[
I − γ ∂2L1

∂w∂w

]k
. As known, it is costly to calculate the Hessian matrix ∂2L1

∂w∂w and ∂2L1

∂α∂w for a
large neural network, and we propose two approximations to reduce the computational cost for pracyical implementation, as
described below.

Approximation 1: Although it is hard to directly calculate the Hessian matrix ∂2L1

∂w∂w , we could consider Hessian-vector

product technique with autograd to calculate ∂L2

∂w ·
∂2L1

∂w∂w . In this way, we can calculate ∂L2

∂w

∑K
k=0

[
I − γ ∂2L1

∂w∂w

]k
step by

step:

∂L2

∂w

K∑
k=0

[
I − γ ∂

2L1

∂w∂w

]k
=

K∑
k=0

∂L2

∂w

[
I − γ ∂

2L1

∂w∂w

]k
=

K∑
k=0

V0 [I − γH]
k

= V0 + V1 + V2 + ...+ Vk. (45)
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(a) Validation error with T=1
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(b) Test errors with T=1

0 5 10 15 20 25 30
Epoch

0.05

0.06

0.07

0.08

0.09

0.1

0.11

V
al

id
 E

rr
or

DARTS
K=1
K=2
K=3
K=4

(c) Validation error with T=5
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(d) Test errors with T=5

Figure 4. Ablation study on K for iDARTS with T = 1 and T = 5 on NAS-Bench-1Shot1.

where we define V0 = ∂L2

∂w , H = γ ∂2L1

∂w∂w , and V1 = V0(I −H), V2 = V1(I −H), ..., VK = VK−1(I −H). We can find

that, ∂L2

∂w

∑K
k=0

[
I − γ ∂2L1

∂w∂w

]k
could be calculated with K steps of Hessian-vector product.

Approximation 2: Apart from the Hessian matrix ∂2L1

∂w∂w , it is also costly to calculate ∂2L1

∂α∂w for large neural networks,

and we follow DARTS to use the Taylor expansion to approximate ∂2L1

∂α∂w . After calculating ∂L2

∂w

∑K
k=0

[
I − γ ∂2L1

∂w∂w

]k
,

considering the function ∂L1(w,α)
∂α with Taylor expansion, we have

∂L1(w + εA, α)

∂α
=
∂L1(w,α)

∂α
+
∂2L1(, α)

∂α∂w
εA+ ...,

∂L1(w − εA, α)

∂α
=
∂L1(w,α)

∂α
− ∂2L1(w,α)

∂α∂w
εA+ ...,

(46)

where ε is a very small scalar. When we replace A with ∂L2

∂w

∑K
k=0

[
I − γ ∂2L1

∂w∂w

]k
, we have

∂L2

∂w

K∑
k=0

[
I − γ ∂

2L1

∂w∂w

]k
∂2L1

∂α∂w
=

∂L1(w+εA,α)
∂α − ∂L1(w−εA,α)

∂α

2ε
. (47)

As described, the proposed approximated hypergradient∇αL̃2 is easy to implement based on the DARTS framework with

only replacing ∂L2

∂w to ∂L2

∂w

∑K
k=0

[
I − γ ∂2L1

∂w∂w

]k
, which could be computed using the the Hessian-vector product technique.

Therefor, we can practically implement our approximated hypergradient ∇αL̃2, so as the stochastic approximated hypergra-
dient ∇αL̂i2(wj(α), α) with minibatches based on the DARTS framework 2.

C. Ablation study on the number of approximation terms K
As we described before, there are two additional hyperparameters in our practical iDARTS, the inner optimization steps T
and the number of terms for the approximation in Eq.(8). We have analyzed T in previous experiments. In this section, we
analyze another hyperparameter K on the NAS-Bench-1Shot1 benchmark dataset. In the first experiment, we set a default
hyperparameter T = 1 the same as DARTS for the inner supernet training to remove the bias from T . From Eq.(8) and
(3), we could further find that the hypergradient calculation in our iDARTS with T = 1 and K = 0 is the same as DARTS.
Figure 4 (a) (b) plots the performance of iDARTS with different K on the NAS-Bench-1Shot1. As shown, our iDARTS is
very robust to K with limited training steps T = 1, where iDARTS with different K all outperform the DARTS baseline
with the same inner training steps T = 1, showing the superiority of the proposed approximation over DARTS. Another
interesting finding is that, our iDARTS with K = 1 and T = 1 even achieve slightly more competitive results than K > 1.
An underlying reason is that, when the inner training step is too small, it is hard to achieve the local optimal w∗ and the
corresponding hypergradient is not accurate.

2The codes and training log files could be found in the supplementary material. The best trained models on CIFAR-10, CIFR-100, and
ImageNet could be found https://github.com/MiaoZhang0525/iDARTS.

https://github.com/MiaoZhang0525/iDARTS
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Table 3. Ablation study on K for iDARTS with on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

DARTS(T = 1, K = 0) 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
iDARTS(T = 1, K = 1) 86.85±0.93 89.67±1.31 64.09±2.92 64.17±3.26 36.26±5.71 36.11± 5.77
iDARTS(T = 4, K = 0) 87.31±1.33 90.36±1.79 64.76±2.54 64.43±2.47 32.53±1.31 32.42±1.54
iDARTS(T = 4, K = 1) 89.30±1.47 92.44±1.14 67.88±1.86 68.17±2.81 37.11±7.79 36.61±7.47
iDARTS(T = 4, K = 2) 89.86±0.60 93.58±0.32 70.57±0.24 70.83±0.48 40.38±0.59 40.89±0.68
iDARTS(T = 4, K = 3) 89.35±0.03 92.29±0.26 68.51±0.77 68.58±1.18 42.37±0.48 42.26±0.41

To further investigate the effectiveness of the proposed approximation, we consider setting enough inner training steps
with T = 5, and Figure 4 (c) (d) plots the performance of iDARTS with different K on the NAS-Bench-1Shot1 under
T = 5. The first impression from Figure 4 is that increasing inner training steps could significantly improve the performance,
where all cases with T = 5 generally outperform T = 1. Another interesting finding is that, with enough inner training
steps, the number of approximation terms K has a positive impact on the performance of iDARTS. As shown in Figure 4
(c) (d), increasing K also helps iDARTS converge to excellent solutions faster, verifying that the proposed ∇αL̂i2 could
asymptotically approach to the exact hypergradient ∇αLi2 with the increase of approximation term K. Besides, we can find
that, K = 2 is large enough to result in competitive performance for our iDARTS on NAS-Bench-1shot1, which results in
similar performance as K ≥ 3.

We also conduct an ablation study on NAS-Bench-201 dataset to analyse the hyperparameter K, and Table 3 summarizes
the performance of iDARTS on NAS-Bench-201 with a different number of approximation term K. The results in Table
3 are similar to those on the NAS-Bench-1Shot1 dataset, also showing that K has a positive impact on the performance
of iDARTS. Firstly, we can find that, with the same inner training steps T = 1 as DARTS baseline, our iDARTS (T = 1,
K = 1) with one approximation term outperform DARTS by large margins in this case, verifying the superiority of the
proposed approximation over DARTS. Secondly, the results in Table 3 also demonstrate that considering more approximation
terms does indeed help improve our iDARTS to a certain degree. With enough inner training steps, the performance of
iDARTS increases with K from 0 to 2. Another interesting finding is that the performance of iDARTS does not always
increase with the K, and there is a decrease for K ≥ 3. One underlying reason may be that, the iDARTS with smaller K
brings more noises into the hypergradient, which in turn enhances the exploration. Several recent works (Chen & Hsieh,
2020; Zhang et al., 2020a) show the importance of the exploration in the differentiable NAS, where adding more noises into
the hypergradient could improve the performance. Our experimental results suggest that a K = 2 achieves an excellent
trade-off between the accuracy of hypergradient and the exploration, thus achieving the competitive performance on the
NAS-Bench-201 dataset.

D. Experimental settings in all experiments
In the first experimental set, we choose the third search space of NAS-Bench-1Shot1 (Zela et al., 2020b) to analyze iDARTS,
since it is much more complicated than the remaining two search spaces and is a better case to identify the advantages
of iDARTS. In Section 5.1, we analyzed the hyperparameter T for our iDARTS and compared it with baseline on the
NAS-Bench-1Shot1, and we set another hyperparameter K = 3 in all cases. In Appendix C, we further conduct the ablation
study to investigate another important hyperparameter K, where we consider two cases with T = 1 and T = 5, and the
remaining experimental settings are the same as the default settings.

In the second experimental set, we choose the NAS-Bench-201 dataset (Dong & Yang, 2020) to analyze differentiable NAS
methods. In Section 5.2, we first conduct a comparison experiment with several NAS baselines, and the hyperparameters for
our iDARTS in this experiments are T = 4, K = 2, and γ=0.01. Then we conduct a series ablation studies to investigate
three important hyperparameters, inner supernet training steps T , supernet learning rate γ, and architecture learning rate γα.
In the experiment for the investigation of T , see Figure 2 (a), we set K = 1 and other hyperparameters are default settings.
In the Figure 2 (b) and (c), we set T = 4 and K = 1 to investigate both the supernet learning rate γ and architecture learning
rate γα. In Appendix C, we also analyze the impact of K in iDARTS on NAS-Bench-201 dataset, where we set T = 4 and
γ=0.01, and the remaining settings are the default.

In the common DARTS search space, we follow the experimental settings in (Liu et al., 2019) to compare with the state-of-
the-art NAS methods. We search for micro-cell structures on CIFAR-10 to stack more cells to form the final structure for
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Table 4. An overview of different hypergradient approximations.
Method Steps Memory Cost Hypergradient Calculation

Exact IFT hypergradient ∞ O(P +H) ∂L2

∂α −
∂L2

∂w

[
∂2L1

∂w∂w

]−1
∂2L1

∂α∂w

DARTS (Liu et al., 2019) 1 O(P +H) ∂L2

∂α − γ
∂L2

∂w
∂2L1

∂α∂w

T1 − T2 (Luketina et al., 2016) 1 O(P +H) ∂L2

∂α −
∂L2

∂w [I]−1 ∂2L1

∂α∂w

Reverse-mode (Franceschi et al., 2017) T O((P +H)T ) ∂L2

∂α + ∂L2

∂wT
(
∑T
t=0BtAt+1...AT )

Truncated Reverse-mode (Shaban et al., 2019) K O((P +H)K) ∂L2

∂α + ∂L2

∂wT
(
∑T
t=T−K BtAt+1...AT )

Neumann Series (Bengio, 2000) ∞ O(P +H) ∂L2

∂α − γ
∂L2

∂w

∑∞
j=0

[
I − γ ∂2L1

∂w∂w

]j
∂2L1

∂α∂w

Conjugate Gradient (Rajeswaran et al., 2019) S O(P +H) ∂L2

∂α −
(

argminx

∥∥∥x ∂2L1

∂w∂w −
∂L2

∂w

∥∥∥) ∂2L1

∂α∂w

Our Neumann approximation∇αL̂i2 K O(P +H) ∂L2

∂α − γ
∂L2

∂w

∑K
j=0

[
I − γ ∂2L1

∂w∂w

]j
∂2L1

∂α∂w

architecture evaluation. There are two types of cells with the unified search space: a normal cell αnormal and a reduction
cell αreduce. Cell structures are repeatedly stacked to form the final CNN structure. There are only two reduction cells in
the final CNN structure, located in the 1/3 and 2/3 depths of the network. The best architecture searched by our iDARTS on
the DARTS search space is obtained with T = 4 and K = 2. In CIFAR-10, we stack 20 cells to form the final structure
for training. The batch size is set as 96, and the number of initial filters is 36. We then transfer the best-searched cells to
CIFAR-100 and ImageNet to evaluate the transferability. The experiment setting for the evaluation in CIFAR-100 is the
same as CIFAR-10. In the ImageNet dataset, the experiment setting is slightly different from CIFAR-10 in that only 14 cells
are stacked, and the number of initial channels is changed to 48, and the batch size is set as 128. We use a linear learning
rate scheduler and also following PDART (Chen et al., 2019a) and PCDARTS (Xu et al., 2020) to use a smaller slope in the
last five epochs for the architecture evaluation on the ImageNet.

E. Comparison of methods to approximate the hypergradient
We compare different hypergradient approximations in Table 4, which summarizes the computational complexity and
memory cost for each method. Under the assumption that Hessian vector products are computed with the autograd, we
know that the compute time and memory cost for computing a Hessian vector product are with a constant factor of the
compute time and memory used for computing a single derivative ∂L2

∂w (Rajeswaran et al., 2019; Griewank, 1993; Griewank
& Walther, 2008). We denote that the memory cost for computing the gradient of supernet weight w and architecture
parameters α are P and H , respectively. We consider each step in the Steps means the computational time of computing a
Hessian vector product. The Conjugate Gradient considers iterative solver (e.g., CG) to calculate the inverse of Hessian,
where S is the CG solver optimization steps, and each step contains the computation of Hessian vector product.


