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Abstract

We consider off-policy policy evaluation with
function approximation (FA) in average-reward
MDPs, where the goal is to estimate both the
reward rate and the differential value function.
For this problem, bootstrapping is necessary and,
along with off-policy learning and FA, results in
the deadly triad (Sutton & Barto, 2018). To ad-
dress the deadly triad, we propose two novel al-
gorithms, reproducing the celebrated success of
Gradient TD algorithms in the average-reward
setting. In terms of estimating the differential
value function, the algorithms are the first con-
vergent off-policy linear function approximation
algorithms. In terms of estimating the reward
rate, the algorithms are the first convergent off-
policy linear function approximation algorithms
that do not require estimating the density ratio.
We demonstrate empirically the advantage of the
proposed algorithms, as well as their nonlinear
variants, over a competitive density-ratio-based
approach, in a simple domain as well as challeng-
ing robot simulation tasks.

1. Introduction
A fundamental problem in average-reward Markov Decision
Processes (MDPs, see, e.g., Puterman (1994)) is policy
evaluation, that is, estimating, for a given policy, the reward
rate and the differential value function. The reward rate of
a policy is the average reward per step and thus measures
the policy’s long term performance. The differential value
function summarizes the expected cumulative future excess
rewards, which are the differences between received rewards
and the reward rate. The solution of the policy evaluation
problem is interesting in itself because it provides a useful
performance metric, the reward rate, for a given policy. In
addition, it is an essential part of many control algorithms,
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which aim to generate a policy that maximizes the reward
rate by iteratively improving the policy using its estimated
differential value function (see, e.g., Howard (1960); Konda
(2002); Abbasi-Yadkori et al. (2019)).

One typical approach in policy evaluation is to learn from
real experience directly, without knowing or learning a
model. If the policy followed to generate experience (be-
havior policy) is the same as the policy of interest (target
policy), then this approach yields an on-policy method; oth-
erwise, it is off-policy. Off-policy methods are usually more
practical in settings in which following bad policies incurs
prohibitively high cost (Dulac-Arnold et al., 2019). For
policy evaluation, we can use either tabular methods, which
maintain a look-up table to store quantities of interest (e.g.,
the differential values for all states) separately, or use func-
tion approximation, which represents these quantities collec-
tively, possibly in a more efficient way (e.g., using a neural
network). Function approximation methods are necessary
for MDPs with large state and/or action spaces because they
are scalable in the size of these spaces and also generalize
to states and actions that are not in the data (Mnih et al.,
2015; Silver et al., 2016). Finally, for the policy evaluation
problem in average reward MDPs, the agent’s stream of
experience never terminates and thus actual returns cannot
be obtained. Because of this, learning algorithms have to
bootstrap, that is, the estimated values must be updated to-
wards targets that include existing estimated values instead
of actual returns.

In this paper, we consider methods for solving the average-
reward policy evaluation problem with all the above three
elements (off-policy learning, function approximation and
bootstrapping), which comprise the deadly triad (see Chap-
ter 11 of Sutton & Barto (2018) and Section 3). The main
contributions of this paper are two newly proposed meth-
ods to break this deadly triad in the average-reward setting,
both of which are inspired by the celebrated success of the
Gradient TD family of algorithms (Sutton et al., 2009b;a) in
breaking the deadly triad in the discounted setting.

Few methods exist for learning differential value functions.
These are either on-policy linear function approximation
methods (Tsitsiklis & Van Roy, 1999; Konda, 2002; Yu &
Bertsekas, 2009; Abbasi-Yadkori et al., 2019) or off-policy
tabular methods (Wan et al., 2020). The on-policy methods
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use the empirical average of received rewards as an estimate
for the reward rate. Thus they are not straightforward to
extend to the off-policy case. And, as we show later with a
counterexample, the naive extension of the off-policy tabular
method by Wan et al. (2020) to the linear function approx-
imation setting can diverge, exemplifying the deadly triad.
By contrast, the two algorithms we propose are the first
provably convergent methods for learning the differential
value function via off-policy linear function approximation.

All existing methods for estimating reward rate in off-policy
function approximation setting require learning the density
ratio, i.e., the ratio between the stationary distribution of
the target policy and the sampling distribution (Liu et al.,
2018a; Zhang et al., 2020a;b; Mousavi et al., 2020; Lazic
et al., 2020). Interestingly, while density-ratio-based meth-
ods dominate off-policy policy evaluation with function
approximation in average-reward MDPs, in the discounted
MDPs, both density-ratio-based (Hallak & Mannor, 2017;
Liu et al., 2018a; Gelada & Bellemare, 2019; Nachum et al.,
2019a; Uehara & Jiang, 2019; Xie et al., 2019; Tang et al.,
2019; Zhang et al., 2020a;b) and value-based (Baird, 1995;
Sutton et al., 2009b;a; 2016; Thomas et al., 2015; Jiang & Li,
2015) methods have succeeded. It thus remains unknown
whether a convergent value-based method could be found
for such a problem and if it exists, how it performs compared
with density-ratio-based methods. The two algorithms we
propose are the first provably convergent differential-value-
based methods for reward rate estimation via off-policy
linear function approximation, which answer the question
affirmatively. Furthermore, our empirical study shows that
our value-based methods consistently outperform a compet-
itive density-ratio-based approach, GradientDICE (Zhang
et al., 2020b), in the tested domains, including both a simple
Markov chain and challenging robot simulation tasks.

2. Background
In this paper, we use ‖·‖M to denote the vector norm
induced by a positive definite matrix M , i.e., ‖x‖M =√
x>Mx. We also use ‖·‖M to denote the corresponding

induced matrix norm. When M = I , we ignore the sub-
script I and write ‖·‖ for simplicity. All vectors are column
vectors. 0 denotes an all-zero vector whose dimension can
be deduced from the context. 1 is similarly defined. When
it does not confuse, we use a function and a vector inter-
changeably. For example, if f is a function from X to R,
we also use f to denote the corresponding vector in R|X |.

We consider an infinite horizon MDP with a finite state
space S, a finite action space A, a reward function r : S ×
A → R, and a transition kernel p : S × S × A → [0, 1].
When an agent follows a policy π : A× S → [0, 1] in the
MDP, at time step t, the agent observes a state St, takes an
action At ∼ π(·|St), receives a reward r(St, At), proceeds

to the next time step and observes the next state St+1 ∼
p(·|St, At). The reward rate of policy π is defined as

rπ
.
= C- limt→∞ E[r(St, At) | π, S0], (1)

where C-limT→∞ zT
.
= limT→∞

1
T+1

∑T
i=0 zi is the Ce-

saro limit. The Cesaro limit in (1) is assumed to exist and
is independent of S0. The most general assumption that
guarantees these is the following one:
Assumption 2.1. Policy π induces a unichain.

The action-value function in the average-reward
setting is known as the differential action-
value function and is defined as qπ(s, a)

.
=

C- limT→∞
∑T
t=0 E[r(St, At)− rπ | S0 = s,A0 = a].

Note that if a stronger ergodic chain assumption is used
instead, the Cesaro limit in defining rπ and qπ is equivalent
to the normal limit. The action-value Bellman equation is

q = r − r̄1 + Pπq, (2)

where q ∈ R|S||A| and r̄ ∈ R are free variables and
Pπ ∈ R|S||A|×|S||A| is the transition matrix, that is,
Pπ((s, a), (s′, a′))

.
= p(s′|s, a)π(a′|s′). It is well-known

(Puterman, 1994) that r = rπ is the unique solution for r
and all the solutions for q form a set {qπ + c1 : ∀c ∈ R}.
In this paper, we consider a special off-policy learning set-
ting, where the agent learns from i.i.d. samples drawn from
a given sampling distribution. In particular, at the k-th iter-
ation, the agent draws a sample (Sk, Ak, Rk, S

′
k, A

′
k) from

a given sampling distribution dµπ . Distribution dµπ can be
any distribution satisfying
Assumption 2.2. Rk = r(Sk, Ak), S′k ∼ p(·|Sk, Ak),
A′k ∼ π(·|S′k), and dµ(s, a) > 0 for all (s, a),

where dµ(s, a) denotes the marginal distribution of
(Sk, Ak). The last part of Assumption 2.2 means that every
state-action pair is possible to be sampled. This is a neces-
sary condition for learning the differential value function
accurately for all state-action pairs. In the rest of the paper,
the expectation E is taken w.r.t. dµπ .

If no sampling distribution is given, one could instead
draw samples in the following way. First randomly sam-
ple (Sk, Ak, Rk, S

′
k) from a batch of transitions collected

by one or multiple agents, with all agents following pos-
sibly different unknown policies in the same MDP. Then
sample A′k ∼ π(· | S′k). Assuming that the number of all
state-action pairs in the batch grows to infinity as the batch
size grows to infinity then sampling from the batch is ap-
proximately equivalent to sampling from some distribution
satisfying Assumption 2.2.

Our goal is to approximate, using the data generated from
dµπ, both the reward rate and the differential value func-
tion. The reward rate rπ is approximated by a learnable
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scalar r̂. The differential value function qπ is only approx-
imated up to a constant. That is, we are only interested in
approximating qπ + c1 for some c ∈ R. This is sufficient if
the approximated value function is only used for policy im-
provement in a control algorithm. However, when the state
and/or action spaces are large, function approximation may
be necessary to represent qπ+c1. This paper mainly consid-
ers linear function approximation, where the agent is given
a feature mapping x that generates a K-dimensional vector
x(s, a) given a state-action pair (s, a). The agent further
maintains a learnable weight vector w ∈ RK and adjusts it
to approximate, for all (s, a), qπ(s, a) + c using x(s, a)>w.
Let X ∈ R|S||A|×K be the feature matrix whose (s, a) row
is x(s, a)>. For the uniqueness of the solution for w, it is
common to make the following assumption:

Assumption 2.3. X has linearly independent columns.

3. Differential Semi-Gradient Q Evaluation
We first present Differential Semi-gradient Q Evaluation
(Diff-SGQ), which is a straightforward extension of the
tabular off-policy Differential TD-learning algorithm (Wan
et al., 2020) to linear function approximation.

At the k-th iteration, the algorithm draws a sample
(Sk, Ak, Rk, S

′
k, A

′
k) from dµπ and updates wk and r̂k as

wk+1
.
= wk + αkδk(wk, r̂k)xk, (3)

r̂k+1
.
= r̂k + αkδk(wk, r̂k), (4)

where αk is the stepsize used at k-th iteration, xk
.
=

x(Sk, Ak), x′k
.
= x(S′k, A

′
k), and δk(w, r̂)

.
= Rk − r̂ +

x′>k w − x>k w is the temporal difference error. From (2), it
is easy to see rπ = d>(r+Pπqπ − qπ) holds for any proba-
bility distribution d; in particular, it holds for d = dµ, which
is the intuition behind the r̂ update (4).Diff-SGQ iteratively
solves

E[δk(w, r̂)xk] = 0, and E[δk(w, r̂)] = 0, (5)

whose solutions, if they exist, are TD fixed points. A TD
fixed point is an approximate solution to (2) using linear
function approximation. We consider the quality of the
approximation in the next section. All the proposed algo-
rithms in this paper aim to find a TD fixed point up to some
regularization bias if necessary.

In general, there could be no TD fixed point, one TD fixed
point, or infinitely many TD fixed points, as in the dis-
counted setting. To see this, let yk

.
= [1, x>k ]>, y′k

.
=

[1, x′>k ]>, u
.
= [r̂, w>]>, and e1

.
= [1, 0, · · · , 0]> ∈ RK+1.

Then combining (3) and (4) gives

E[δk(u)yk] = 0, (6)

where δk(u)
.
= Rk − e>1 u + y′>k u − y>k u. Writing (6) in

vector form, we have Au+ b = 0, where

A
.
= E[yk(−e1 + y′k − yk)>]

= Y >D(Pπ − I)Y − Y >dµe>1

=

[
−1 1>D(Pπ − I)X

−X>dµ X>D(Pπ − I)X

]
,

b
.
= E[ykRk] = Y >Dr, Y

.
= [1, X], D

.
= diag(dµ).

If and only if A is invertible, there exists a unique TD fixed
point

uTD
.
= −A−1b. (7)

Otherwise, there is either no TD fixed point or there are
infinitely many.

Unfortunately, even if there exists a unique TD fixed point,
Diff-SGQ can still diverge, which exemplifies the deadly
triad (Sutton & Barto, 2018) in the average-reward setting.
The following example confirms this point.

Example 1 (The divergence of Diff-SGQ). Consider a
two-state MDP (Figure 1). The expected Diff-SGQ up-

date per step can be written as
[
r̂k+1

wk+1

]
=

[
r̂k
wk

]
+

α

(
A

[
r̂k
wk

]
+ b

)
=

[
r̂k
wk

]
+ α

[
−1 6
−2 6

][
r̂k
wk

]
. Here, we

consider α a constant stepsize. The eigenvalues of A =[
−1 6
−2 6

]
are both positive. Hence, no matter what posi-

tive stepsize is picked, the expected update diverges. The
sample updates (3) and (4) using standard stochastic ap-
proximation stepsizes, therefore, also diverge. Furthermore,
because both eigenvalues are positive, A is an invertible
matrix, implying the unique existence of the TD fixed-point.

Figure 1. An example showing the divergence of Diff-SGQ.

4. One-Stage Differential Gradient Q
Evaluation

We now present an algorithm that is guaranteed to converge
to the TD fixed point (6) if it uniquely exists. Motivated
by the Mean Squared Projected Bellman Error (MSPBE)
defined in the discounted setting and used by Gradient TD
algorithms, we define the MSPBE in the average-reward
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setting as

MSPBE1(u) =
∥∥ΠY δ̄(u)

∥∥2

D
, (8)

where ΠY
.
= Y (Y >DY )−1Y >D is the projection matrix

and δ̄(u)
.
= r − e>1 u1 + PπY u − Y u is the vector of TD

errors for all state-action pairs. The vector ΠY δ̄(u) is the
projection of the vector of TD errors on the column space of
Y . The existence of the matrix inverse in ΠY , (Y >DY )−1,
is guaranteed by Assumption 2.2 and

Assumption 4.1. For any w ∈ RK and c ∈ R, Xw 6= c1.

The above assumption guarantees that if w∗ is a solution for
w in (5), then no other solution’s approximated action-value
function would be identical to Xw∗ up to a constant. This
assumption is also used by Tsitsiklis & Van Roy (1999)
in their on-policy policy evaluation algorithms in average-
reward MDPs. Apparently the assumption does not hold
in the tabular setting (i.e., when X = I). However, with
function approximation, we usually have many more states
than features (i.e., |S| � K), in which case the above
assumption would not be restrictive.

Let C .
= Y >DY , we have Π>DΠ = DY C−1Y >D, with

which we give a different form for (8):

MSPBE1(u) =
∥∥Y >Dδ̄(u)

∥∥2

C−1 = ‖Au+ b‖2C−1 (9)

= E[δk(u)yk]>E[yky
>
k ]−1E[δk(u)yk].

It can be seen that if (6) has a solution, then that solution
also minimizes (9), in which case solving (6) can be con-
verted to minimizing (9). However, when (6) does not have
a unique solution, the set of minimizers of (9) could be
unbounded and thus algorithms minimizing MSPBE1 risk
generating unbounded updates. To ensure the stability of
our algorithm when (6) does not have a unique solution, we
use a regularized MSPBE1 as our objective:

J1,η(u)
.
= ‖Au+ b‖2C−1 + ηu>I0u,

where I0
.
= diag(1 − e1), η is a positive scalar, and

ηu>I0u = η‖w‖2 is a ridge regularization term on w.

To minimize J1,η(u), one could proceed with techniques
used in TDC (Sutton et al., 2009a), which we leave for
future work. In this paper, we proceed with the saddle-point
formulation of GTD2 introduced by Liu et al. (2015), which
exploits Fenchel’s duality:

u>M−1u = max
ν

2u>ν − ν>Mν,

for any positive definite M , yielding

J1,η(u) (10)

=maxν∈RK+1 2ν>Y >Dδ̄(u)− ν>Cν + ηu>I0u.

So minu J1,η(u) = minu maxν J1,η(u, ν), where

J1,η(u, ν)
.
= 2ν>Y >Dδ̄(u)− ν>Cν + ηu>I0u.

As J1,η(u, ν) is convex in u and concave in ν, we have
now reduced the problem into a convex-concave saddle
point problem. Applying primal-dual methods to this
problem, that is, performing gradient ascent for ν fol-
lowing ∇νJ1,η(u, ν) and gradient descent for u following
∇uJ1,η(u, ν), we arrive at our first new algorithm, One-
Stage Differential Gradient Q Evaluation, or Diff-GQ1. At
the k-th iteration, with a sample (Sk, Ak, Rk, S

′
k, A

′
k) from

dµπ , Diff-GQ1 updates uk and νk as

δk
.
= Rk − e>1 uk + y′>k uk − y>k uk, (11)

νk+1
.
= νk + αk(δk − y>k νk)yk,

uk+1
.
= uk + αk(yk − y′k + e1)y>k νk − αkηI0uk,

where {αk} is the sequence of learning rates satisfying the
following standard assumption:

Assumption 4.2. {αk} is a positive deterministic nonin-
creasing sequence s.t.

∑
k αk =∞ and

∑
k α

2
k <∞.

The algorithm is one-stage because, while there are two
weight vectors updated in every iteration, both converge
simultaneously.

Theorem 1. If Assumptions 2.1, 2.2, 4.1, & 4.2 hold, then
for any η > 0, almost surely, the iterate {uk} generated
by Diff-GQ1 (11) converges to u∗η, where u∗η

.
= −(ηI0 +

A>C−1A)−1A>C−1b is the unique minimizer of J1,η(u).
Further, if A is invertible, then for η = 0, {uk} converges
almost surely to the uTD defined in (7).

We defer the full proof to Section A.1.

Proof. (Sketch) With κk
.
= [ν>k , u

>
k ]>, we rewrite (11) as

κk+1
.
= κk + αk(Gk+1κk + hk+1),

where

Gk+1
.
=

[
−yky>k yk(y′k − yk)> − yke>1

(yk − y′k)y>k + e1y
>
k −ηI0

]
,

hk+1
.
=

[
ykrk

0

]
.

The asymptotic behavior of {κk} is governed by

Ḡ
.
= E[Gk+1] =

[
−C A
−A> −ηI0

]
, h̄

.
= E[hk+1] =

[
b
0

]
.

The convergence of κt to a unique point can be guaranteed
if Ḡ is a Hurwitz matrix, or equivalently, if the real part
of any eigenvalue of Ḡ is strictly negative. Therefore, it is
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important to first ensure that Ḡ is nonsingular. If A was
nonsingular, we can show Ḡ being nonsingular easily even
with η = 0. However, in general, A may not be nonsingular
and therefore, we require η > 0 to ensure Ḡ being nonsingu-
lar. We can easily show that the real part of any eigenvalue
of Ḡ is strictly negative and thus Ḡ is Hurwitz. Standard
stochastic approximation results (Borkar, 2009) then show
limk κk = −Ḡ−1h̄. Define u∗η as the lower half of −Ḡ−1h̄,
we have u∗η = −(ηI0 + A>C−1A)−1A>C−1b. It is easy
to verify (e.g., using the first order optimality condition of
J1,η(u)) that u∗η is the unique minimizer of J1,η(u).

Quality of TD Fixed Points. We now analyze the quality
of TD fixed points. For our analysis, we make the following
assumption.

Assumption 4.3. There exists at least one TD fixed point.

Let u∗ = [r̂∗, w∗>]> be one fixed point (a solution of (6)).
We are interested in the upper bound of the absolute value
of the difference between the estimated reward rate and the
true reward rate |r̂∗ − rπ| and also the upper bound of the
minimum distance between the estimated differential value
function to the set {qπ + c1}. In general, as long as there
is representation error, the TD fixed point can be arbitrarily
poor in terms of approximating the value function, even in
the discounted case (see Kolter (2011) for more discussion).
In light of this, we study the bounds only when dµ is close to
dπ , the stationary state-action distribution of π, in the sense
of the following assumption. Let ξ ∈ (0, 1) be a constant,

Assumption 4.4. F is positive semidefinite, where

F
.
=

[
X>DX X>DPπX

X>P>π DX ξ2X>DX

]
.

A similar assumption about F is also used by Kolter (2011)
in the analysis of the performance of the MSPBE minimizer
in the discounted setting. Kolter (2011) uses ξ = 1 while
we use ξ < 1 to account for the lack of discounting. In
Section D.1, we show with simulation that this assumption
holds with reasonable probability in our randomly generated
MDPs. Furthermore, we consider the bounds when all the
features have zero mean under the distribution dµ.

Assumption 4.5. X>dµ = 0.

This can easily be done by subtracting each feature vector
sampled in our learning algorithm by some estimated mean
feature vector, which is the empirical average of all the
feature vectors sampled from dµ. Note without this mean-
centered feature assumption, a looser bound can also be
obtained. Our intention here is to show that bounds of
our algorithms are on par with their counterparts in the
discounted setting and thus one does not lose these bounds
when one moves from the discounted setting to the average-
reward setting.

Proposition 1. Under Assumptions 2.1, 2.2, 4.1, 4.3 - 4.5,

inf
c∈R
‖Xw∗ − qcπ‖D ≤

‖Pπ‖D + 1

1− ξ inf
c∈R
‖ΠXq

c
π − qcπ‖D,

|rπ − r̂∗|

≤ ‖d
>
µ (Pπ−I)‖

D−1 (‖Pπ‖D+1)

1−ξ infc∈R ‖ΠXq
c
π − qcπ‖D,

where qcπ
.
= qπ + c1 and ΠX = X(X>DX)−1X>D.

We defer the proof to Section A.2. As a special case, there
exists a unique TD fixed point in the on-policy case (i.e.,
dµ = dπ) under Assumptions 2.1, 2.3, and 4.1. Then |rπ −
r̂∗| = 0 as d>π (Pπ − I) = 0 and a tighter bound for the
estimated differential value function can be obtained. See
Tsitsiklis & Van Roy (1999) for details.

Finite Sample Analysis. We now provide finite sample
analysis for a variant of Diff-GQ1, Projected Diff-GQ1,
which is detailed in Section A.3 in the appendix. Projected
Diff-GQ1 is different from Diff-GQ1 in three ways: 1) for
each iteration, Projected Diff-GQ1 projects the two updated
weight vectors to two bounded closed sets to ensure that the
weight vectors do not become too large, 2) Projected Diff-
GQ1 uses a constant stepsize, and 3) Projected Diff-GQ1
does not impose ridge regularization, that is, it considers the
objective MSPBE1 directly.

Proposition 2. (Informal) Under standard assumptions, if
Assumption 4.4 holds and A is nonsingular, with proper
stepsizes, with high probability, the iterates {r̂k}, {wk} gen-
erated by Projected Diff-GQ1 satisfy

(¯̂rk − rπ)2 = O(infc∈R ‖Xw̄k − qcπ‖2)

=O(k−
1
2 ) +O(infc∈R ‖ΠXq

c
π − qcπ‖2D),

where ¯̂rk
.
= (1/k)

∑k
i=1 r̂i, w̄k

.
= (1/k)

∑k
i=1 wi.

We defer the precise statement and its proof to Section A.3.

5. Two-Stage Differential Gradient Q
Evaluation

While Assumption 4.1 is not restrictive, we present in this
section a new algorithm that does not require it but can still
converge to the TD fixed point if it uniquely exists. The
algorithm achieves this by drawing one more sample from
dµπ for each iteration, and performing two learning stages,
where r̂ converges only when w has converged. We call this
algorithm Two-Stage Differential Gradient Q Evaluation, or
Diff-GQ2, and derive it as follows.

Consider the TD fixed point (5). Writing E[δk(w, r̂)] = 0
in vector form, we have

r̂ = d>µ (r + PπXw −Xw). (12)
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Replacing r̂ in E[δk(w, r̂)xk] = 0 with (12), we have:

X>D(r + PπXw −Xw)

−X>D1d>µ (r + PπXw −Xw) = 0,

or equivalently

A2w + b2 = 0, (13)

where A2
.
= X>(D − dµd>µ )(Pπ − I)X , b2

.
= X>(D −

dµd
>
µ )r. The combination of (12) and (13) is an alternative

definition for TD fixed points. When A2 is invertible, the
unique TD fixed points are

wTD
.
= −A−1

2 b2, (14)

r̂TD
.
= d>µ (r + PπXwTD −XwTD).

It is easy to verify that uTD = [r̂TD, w
>
TD]>, where uTD is

defined in (7).

Denote r̄w
.
= r + PπXw −Xw, then (13) can be written

as X>D(r̄w − d>µ r̄w1) = 0, from which we define a new
MSPBE objective:

MSPBE2(w)
.
=
∥∥ΠX(r̄w − d>µ r̄w1))

∥∥2

D
,

where C2
.
= X>DX in ΠX is invertible under Assump-

tion 2.2. MSPBE2 is different from MSPBE1 defined in (9)
in that MSPBE2 is a function of w only while MSPBE1

is a function of both w and r̂. However, the solutions
of MSPBE2(w) = 0 are exactly the solutions of w in
MSPBE1(u) = 0, if both solutions exist.

After introducing a ridge term with η > 0 for the same
reason as Diff-GQ1, we arrive at the objective that Diff-
GQ2 minimizes:

J2,η(w)
.
=
∥∥X>D(r̄w − d>µ r̄w1)

∥∥2

C−1
2

+ η‖w‖2.

Applying Fenchel’s duality on J2,η(w) yields
minw J2,η(w) = minw maxν J2,η(w, ν), where

J2,η(w, ν)
.
=2ν>X>D(r̄w − d>µ r̄w1)− ν>C2ν + η‖w‖2.

J2,η(w, ν) is convex in w and concave in ν. To ap-
ply primal-dual methods for finding the saddle point
of J2,η(w, ν), we need to obtain unbiased samples
of X>D(r̄w − d>µ r̄w1). As this term includes two
nested expectations (i.e., D and dµ), Diff-GQ2 re-
quires two i.i.d. samples (Sk,1, Ak,1, Rk,1, S

′
k,1, A

′
k,1) and

(Sk,2, Ak,2, Rk,2, S
′
k,2, A

′
k,2) from dµπ at the k-th iteration

for a single gradient update. This is not the notorious double
sampling issue in minimizing the Mean Square Bellman
Error (see, e.g., Baird (1995) and Section 11.5 by Sutton &

Barto (2018)), where two successor states s′1 and s′2 from
a single state action pair (s, a) are required, which is not
possible in the function approximation setting. Sampling
two i.i.d. tuples from dµπ is completely feasible.

At the k-th iteration, Diff-GQ2 updates ν and w as

νk+1
.
= νk + αk

(
Rk,1 + x′>k,1wk − x>k,1wk (15)

− (Rk,2 + x′>k,2wk − x>k,2wk)− x>k,1νt
)
xk,1,

wk+1
.
= wk + αk

(
xk,1 − x′k,1 + (xk,2 − x′k,2)

)
x>k,1νk

− αkηwk,

where xk,i
.
= x(Sk,i, Ak,i), x

′
k,i

.
= x(S′k,i, A

′
k,i), {αk},

again, satisfies Assumption 4.2. Additionally, follow-
ing (12), Diff-GQ2 updates r̂ as

r̂k+1
.
= r̂k + βk

(
1
2

∑2
i=1(Rk,i + x′>k,iwk − x>k,iwk)

− r̂k
)
, (16)

where {βk} satisfies the same assumption as {αk}.
Assumption 5.1. {βk} is a positive deterministic nonin-
creasing sequence s.t.

∑
k βk =∞ and

∑
k β

2
k <∞.

Theorem 2. If Assumptions 2.1, 2.2, 2.3, 4.2, & 5.1 hold,
then almost surely, the iterates {wk}, {r̂k} generated by
Diff-GQ2 (15) & (16) satisfy

lim
k→∞

wk = w∗η, lim
k→∞

r̂k = d>µ (r + PπXw
∗
η −Xw∗η),

wherew∗η
.
= −(ηI+A>2 C

−1
2 A2)−1A>2 C

−1
2 b2 is the unique

minimizer of J2,η(w). Define w∗0
.
= limη↓0 w

∗
η , we have∥∥w∗η − w∗0∥∥ ≤ ηU0

for some constant U0. Further, if Assumption 4.3 holds, then
A2w

∗
0 + b2 = 0, and if A2 is invertible, then for η = 0, wk

and r̂k converge almost surely to wTD and r̂TD defined in
(14).

We defer the full proof to Section A.4. Similar to Projected
Diff-GQ1, we provide a finite sample analysis for a variant
of Diff-GQ2, Projected Diff-GQ2, in Section A.5.

6. Experiments
In light of the reproducibility challenge in RL research
(Henderson et al., 2017), we perform a grid search with
30 independent runs for hyperparameter tuning in all our
experiments. Each curve corresponds to the best hyperpa-
rameters minimizing the error of the reward rate prediction
at the end of training and is averaged over 30 independent
runs with the shaded region indicating one standard devi-
ation. To the best of our knowledge, GradientDICE is the
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Figure 2. Boyan’s chain with linear function approximation. We vary π0 in {0.1, 0.3, 0.5, 0.7, 0.9}. In the first row, we use µ0 = π0; in
the second row, we use µ0 = 0.5; in the third row, we use µ0 = 1− π0. ¯̂r is the average r̂ of recent 100 steps.

Figure 3. A variant of Boyan’s chain for policy evaluation in the
average-reward setting. There are 13 states {s0, . . . , s12} and
two actions {a0, a1} in the chain. For any i ∈ {0, . . . , 12},
r(si, a0) = 1 and r(si, a1) = 2. For any i ≥ 2, p(si−2|si, a0) =
1 and p(si−1|si, a1) = 1. At s1, both actions lead to s0. At s0,
both actions lead to a random state in {s0, . . . , s12} with equal
probability.

only density-ratio-based approach for off-policy policy eval-
uation in average-reward MDPs that is provably convergent
with general linear function approximation and has O(K)
computational complexity per step. We, therefore, use Gra-
dientDICE as a baseline. See Section B.1 for more details
about GradientDICE. All the implementations are publicly
available. 1

Linear Function Approximation. We benchmark Diff-
SGQ, Diff-GQ1, Diff-GQ2, and GradientDICE in a variant
of Boyan’s chain (Boyan, 1999), which is the same as the
chain used in Zhang et al. (2020b) except that we introduce
a nonzero reward for each action for the purpose of policy
evaluation. The chain is illustrated in Figure 3. We consider
target policies of the form π(a0|si) = π0 for all si, where

1https://github.com/ShangtongZhang/DeepRL

π0 ∈ [0, 1] is some constant. The sampling distribution we
consider has the form dµ(si, a0) = µ0

13 and dµ(si, a0) =
1−µ0

13 for all si, where µ0 ∈ [0, 1] is some constant. Even if
µ0 = π0, the problem is still off-policy. We consider linear
function approximation and use the same state features as
Boyan (1999), which are detailed in Section C. We use
an one-hot encoding for actions. Concatenating the state
feature and the one-hot action feature yields the state-action
feature we use in the experiments.

We use constant learning rates α for all compared algo-
rithms, which is tuned in

{
2−20, 2−19, . . . , 2−1

}
. For Diff-

GQ1 and Diff-GQ2, besides tuning α in the same way as
Diff-SGQ, we tune η in {0, 0.01, 0.1}. For GradientDICE,
besides tuning (α, η) in the same way as Diff-GQ1, we tune
λ, the weight for a normalizing term, in {0, 0.1, 1, 10}.
We run each algorithm for 5× 103 steps. Diff-GQ2 updates
are applied every two steps as one Diff-GQ2 update requires
two samples. The results in Figure 2 suggest that the three
differential-value-based algorithms proposed in this paper
consistently outperform the density-ratio-based algorithm
GradientDICE in the tested domain.

Nonlinear Function Approximation. The value-based off-
policy policy evaluation algorithms proposed in this paper
can be easily combined with neural network function ap-
proximators. For Diff-SGQ, we use a target network (Mnih
et al., 2015) to stabilize the training of neural networks.
For Diff-GQ1 and Diff-GQ2, we introduce neural network
function approximators in the saddle-point objectives (i.e.,

https://github.com/ShangtongZhang/DeepRL
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Figure 4. MuJoCo tasks with with neural network function approximation. ¯̂r is the average r̂ of recent 100 steps.

J1,η(u, ν) and J2,η(w, ν)) directly, similar to Zhang et al.
(2020b) in GradientDICE. The details are provided Sec-
tions B.2, B.3, and B.4.

We benchmark Diff-SGQ, Diff-GQ1, Diff-GQ2, and Gra-
dientDICE in several MuJoCo domains. To this end, we
first train a deterministic target policy π0 with TD3 (Fu-
jimoto et al., 2018). The behavior policy µ0 is com-
posed by introducing Gaussian noise to π0, i.e., µ0(a|s) .

=
N (π0(s), σ2I). The ground truth reward rate of π0 is
computed with Monte Carlo methods by running π0 for
106 steps. We vary σ from {0.1, 0.5, 0.9}. More de-
tails are provided in Section C. For Differential FQE,
Diff-GQ1, and Diff-GQ2, we tune the learning rate from
{0.1, 0.05, 0.01, 0.005, 0.001}. For GradientDICE, we ad-
ditionally tune λ from {0.1, 1, 10}. The results with σ = 0.9
are reported in Figure 4, where Diff-GQ1 consistently per-
forms the best. The results with σ = 0.1 and σ = 0.5
are deferred to Section D.2, where Diff-GQ1 consistently
performs the best as well.

7. Related Work and Discussion
In this paper, we addressed the policy evaluation problem
with function approximation in the model-free setting. If
the model is given or learned by the agent, such a prob-
lem could be solved by, for example, classic approximate
dynamic programming approaches (Powell, 2007), search
algorithms (Russell & Norvig, 2002), and other optimal
control algorithms (Kirk, 2004). For more discussion about
learning a model, see, for example, Sutton (1990); Sutton
et al. (2012); Liu et al. (2018b); Chua et al. (2018); Wan et al.
(2019); Gottesman et al. (2019); Yu et al. (2020); Kidambi
et al. (2020).

The on-policy average-reward policy evaluation problem
was studied by Tsitsiklis & Van Roy (1999), which pro-
posed and solved a Projected Bellman Equation (PBE). The
reward rate in PBE is a known quantity, which is trivial to
estimate in the on-policy case. The reward rate, however,
cannot be obtained easily in the off-policy case and needs
to be estimated cleverly. Such a challenge is resolved in
our work by optimizing a novel objective, MSPBE1, which

has the reward rate estimate as a free variable to optimize.
Moreover, by proposing the other novel objective MSPBE2,
we showed that the reward rate or its direct estimate does
not even have to appear in an objective. In fact, for the
uniqueness of the solution, our algorithms did not optimize
MSPBE1 and MSPBE2, but optimized a regularized version
of these objectives, where the weight of the regularization
term can be arbitrarily small. Introducing a regularization
term in MSPBE-like objectives is not new though; see, for
example, Mahadevan et al. (2014); Yu (2017); Du et al.
(2017); Zhang et al. (2020d;b). One could, of course, apply
regularization to Diff-SGQ directly, similar to Diddigi et al.
(2019) in the discounted off-policy linear TD. Unfortunately,
the weight for their regularization term has to be sufficiently
large to ensure convergence.

Fenchel’s duality, which we used in the derivation of our
algorithms, is not new in RL research. For example, it has
been applied to cope with the double sampling problem (see,
e.g., Liu et al. (2015); Macua et al. (2014); Dai et al. (2017);
Xie et al. (2018); Nachum et al. (2019a;b); Zhang et al.
(2020a;b)) or to construct novel policy iteration frameworks
(Zhang et al., 2020c).

8. Conclusion
In this paper, we provided the first study of the off-policy
policy evaluation problem (estimating both reward rate and
differential value function) in the function approximation,
average-reward setting. Such a problem encapsules the ex-
isting off-policy evaluation problem (estimating only the
reward rate; see, e.g., Li (2019)). To this end, we proposed
two novel MSPBE objectives and derived two algorithms
optimizing regularized versions of these objectives. The
proposed algorithms are the first provably convergent algo-
rithms for estimating the differential value function and are
also the first provably convergent algorithms for estimating
the reward rate without estimating density ratio in this set-
ting. In terms of estimating the reward rate, though our goal
is not to achieve new state of the art, our empirical results
confirmed that the proposed value-based methods consis-
tently outperform a competitive density-ratio-based method
in tested domains. We conjecture that this performance ad-
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vantage results from the flexibility of value-based methods,
that is, for any c, qπ + c1 is a feasible learning target. By
contrast, the density ratio dπ(s,a)

dµ(s,a) is unique. Overall, our
empirical study suggests that value-based methods deserve
more attention in future research on off-policy evaluation in
average-reward MDPs.
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A. Proofs
We first state a general result from Borkar (2009) which will be repeatedly used. Consider updating κ ∈ RK as

κk+1
.
= κk + αk(Gk+1κk + hk+1 + o(1)),

where Gk+1 ∈ RK×K , hk+1 ∈ RK , and o(1) denotes some bounded random or deterministic noise that converges to 0 as
k →∞. Assuming
Assumption A.1. {αk} is a positive deterministic nonincreasing sequence satisfying

∑
k αk =∞,∑k α

2
k <∞

Assumption A.2. There exist Ḡ ∈ RK×K and h̄ ∈ RK such that

Mk+1
.
= Gk+1κk + hk+1 − Ḡκk − h̄

satisfies

1. E[Mk+1 | Fk] = 0 a.s..

2. E[‖Mk+1‖2 | Fk] ≤ C(1 + ‖κk‖2) for some constant C > 0 a.s..

Here

Fk .
= σ(x0,M1,M2, . . . ,Mk),

where σ(·) denotes the σ-field.
Assumption A.3. The real part of every eigenvalue of Ḡ is strictly negative.
Theorem 3. (Borkar, 2009) Under Assumptions A.1- A.3, almost surely,

lim
k→∞

κk = −Ḡ−1h̄

Theorem 3 combines the third extension of Theorem 2 in Chapter 2.2 and Theorem 7 in Chapter 3 of Borkar (2009).

A.1. Proof of Theorem 1

Proof. The proof mimics the convergence proof of GTD2 in Sutton et al. (2009a). We proceed by verifying Assumptions A.1-
A.3 thus invoking Theorem 3. With κk

.
= [ν>k , u

>
k ]>, we rewrite (11) as

κk+1
.
= κk + αk(Gk+1κk + hk+1),

where

Gk+1
.
=

[
−yky>k yk(y′k − yk)> − yke>1

(yk − y′k)y>k + e1y
>
k −ηI0

]
,

hk+1
.
=

[
ykrk

0

]
, I0

.
=

[
0 0>

0 I

]
.

The asymptotic behavior of {κk} is governed by

Ḡ
.
= E[Gk+1] =

[
−C A
−A> −ηI0

]
,

h̄
.
= E[hk+1] =

[
b
0

]
,

where

A
.
= Y >D(Pπ − I)Y − Y >dµe>1

=

[
−1 1>D(Pπ − I)X

−X>dµ X>D(Pπ − I)X

]
b
.
=

[
Y >Dr

0

]
.



Average-Reward Off-Policy Policy Evaluation with Function Approximation

Assumption A.1 is satisfied by our requirement on {αk}. For Assumption A.2, we define

Mk+1
.
= Gk+1κk + hk+1 − Ḡκk − h̄.

It is easy to see

E[Mk+1 | Fk] = E[Gk+1]κk + E[hk+1]− Ḡκk − h̄ = 0

E[‖Mk+1‖2 | Fk] ≤ 1

2
E[
∥∥Gk+1 − Ḡ

∥∥2‖κk‖2 +
∥∥hk+1 − h̄

∥∥2|Fk].

Because our samples are generated in an i.i.d fashion, Assumption A.2 is guaranteed to hold.

To verify Assumption A.3, we first show det
(
Ḡ
)
6= 0. Using the rule of block matrix determinant, we have

det
(
Ḡ
)

= det(C) det
(
ηI0 +A>C−1A

)
.

Assumption 4.1 ensures C is positive definite and A>C−1A is positive semidefinite, implying ηI0 +A>C−1A is positive

semidefinite. For any z 6= 0 ∈ Rk+1, z>I0z = 0 if and only if z has the form
[
c
0

]
for some c 6= 0 ∈ R, implying A>z 6= 0,

i.e., z>A>C−1Az 6= 0. So as long as η > 0, z>(ηI0 +A>C−1A)z 6= 0, implying ηI0 +A>C−1A is positive definite. It
follows easily that det

(
Ḡ
)
6= 0. Let λ ∈ C be an eigenvalue of Ḡ. det

(
Ḡ
)
6= 0 implies λ 6= 0. Let z 6= 0 ∈ C2K+2 be the

corresponding normalized eigenvector of λ, i.e., zHz = 1, where zH is the conjugate transpose of z. Let z =

[
z1

z2

]
, we have

λ = zHḠz = −zH1 Cz1 − zH2 A>z1 + zH1 Az2 − ηzH2 I0z2.

As (zH2 A
>z1)H = zH1 Az2, we have Re(−zH2 A>z1 + zH1 Az2) = 0, where Re(·) denotes the real part. So

Re(λ) = −zH1 Cz1 − ηzH2 I0z2 ≤ 0.

Because λ 6= 0, we have Re(λ) < 0. Assumption A.3 then holds. Invoking Theorem 3 yields

lim
k
κk = −Ḡ−1h̄ almost surely.

Let u∗η be the lower half of −Ḡ−1h̄, we have

u∗η
.
= −(ηI0 +A>C−1A)−1A>C−1b.

From (10), we can rewrite J1,η(u) as

J1,η(w) = ‖Au+ b‖2C−1 + ηu>I0u

It is easy to verify (e.g., using the first order optimality condition of J1,η(u)) that u∗η is the unique minimizer of J1,η(u).

It can also be seen that if η = 0 and A is invertible, det
(
Ḡ
)
6= 0 as well and u∗η=0 = −A−1b = uTD.

A.2. Proof of Proposition 1

Proof. u∗ is a TD fixed point implies

E[δk(u∗)yk] = 0,

which implies

Y >D(Pπ − I)Y u∗ − Y >dµe>1 u∗ + Y >Dr = 0,

expanding which yields

r̂∗ − d>µ (r + PπXw
∗ −Xw∗) = 0,

X>D(r − r̂∗1 + PπXw
∗ −Xw∗) = 0.
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So we have ∥∥X>D(r − r̂∗1 + PπXw
∗ −Xw∗)

∥∥2

C−1 = 0,

implying

‖ΠX(r − r̂∗1 + PπXw
∗ −Xw∗)‖2D = 0.

Using the Schur complement, Assumption 4.4 implies (see Kolter (2011) for more details)

‖ΠXPπXw‖D ≤ ξ‖Xw‖D
holds for any w ∈ RK . We have

‖Xw∗ − qcπ‖D
≤‖Xw∗ −ΠXq

c
π‖D + ‖ΠXq

c
π − qcπ‖D

=‖ΠX(r + PπXw
∗ − r̂∗1)−ΠX(r + Pπq

c
π − rπ1)‖D + ‖ΠXq

c
π − qcπ‖D

≤‖ΠXPπXw
∗ −ΠXPπq

c
π‖D + ‖ΠX(r̂∗1− rπ1)‖D + ‖ΠXq

c
π − qcπ‖D

=‖ΠXPπXw
∗ −ΠXPπq

c
π‖D +

∥∥X(X>DX)−1(X>D1)(r̂∗ − rπ)
∥∥
D

+ ‖ΠXq
c
π − qcπ‖D

=‖ΠXPπXw
∗ −ΠXPπq

c
π‖D + ‖ΠXq

c
π − qcπ‖D (Using X>dµ = 0)

≤‖ΠXPπXw
∗ −ΠXPπΠXq

c
π‖D + ‖ΠXPπΠXq

c
π −ΠXPπq

c
π‖D + ‖ΠXq

c
π − qcπ‖D

≤ξ‖Xw∗ −ΠXq
c
π‖D + ‖Pπ‖D‖ΠXq

c
π − qcπ‖D + ‖ΠXq

c
π − qcπ‖D

=ξ‖Xw∗ − qcπ‖D + (‖Pπ‖D + 1)‖ΠXq
c
π − qcπ‖D.

From the above derivation we have

‖Xw∗ − qcπ‖D ≤
‖Pπ‖D + 1

1− ξ ‖ΠXq
c
π − qcπ‖D.

Take the infimum

inf
c∈R
‖Xw∗ − qcπ‖D ≤ inf

c∈R

‖Pπ‖D + 1

1− ξ ‖ΠXq
c
π − qcπ‖D.

For the reward rate at the fixed point, we have, for all c ∈ R,

|rπ − r̂∗| = |d>µ (Pπ − I)(Xw∗ − qcπ)|
= |d>µ (Pπ − I)D−

1
2D

1
2 (Xw∗ − qcπ)|

≤
∥∥d>µ (Pπ − I)

∥∥
D−1‖Xw∗ − qcπ‖D,

where the inequality is due to the Cauchy-Schwarz inequality.

A.3. Projected Diff-GQ1

The Projected Diff-GQ1 optimizes the MSPBE1 objective:

MSPBE1(u) = max
ν∈RK+1

J1,η=0(u, ν),

where

J1,η=0(u, ν)
.
= 2ν>Y >Dδ̄(u)− ν>Cν.

Similar to the Revised GTD Algorithms in Liu et al. (2015), the Projected Diff-GQ1 update uk and νk as

νk+1
.
= ΠΘ1

(
νk + α

(
− yky>k νk + yk(y′k − yk)>uk − yke>1 uk + ykRk

))
,

uk+1
.
= ΠΘ2

(
uk + α

(
(yk − y′k)y>k νk + e1y

>
k νk

))
,
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where α is a constant learning rate, Θi is a compact subset in RK+1 and ΠΘi is projection into Θi w.r.t. ‖·‖. If A is
nonsingular, J1,η=0(u, ν) has a unique saddle point, which we refer to as (u∗, ν∗). It is easy to see u∗ is the unique
minimizer of J1,η=0(u). We have

Proposition 3. If Assumptions 2.1, 2.2, 2.3, 4.1, 4.4, & 4.5 hold, ν∗ ∈ Θ1, u
∗ ∈ Θ2, and A is nonsingular, with properly

tuned α, for any δ ∈ (0, 1), at least with probability 1− δ, the iterate
{
ûk = [r̂k, w

>
k ]>

}
generated by Projected Diff-GQ1

satisfies

(
¯̂rk − rπ

)2
= O

(
C1δ − C2δ ln δ√

k

)
+O

(
inf
c∈R
‖ΠXq

c
π − qcπ‖2D

)
,

inf
c∈R
‖Xw̄k − qcπ‖2 = O

(
C1δ − C2δ ln δ√

k

)
+O

(
inf
c∈R
‖ΠXq

c
π − qcπ‖2D

)
,

where qcπ
.
= qπ + c1, ¯̂rk

.
= (1/k)

∑k
i=1 r̂i, w̄k

.
= (1/k)

∑k
i=1 wi, C1, C2 > 0 are constants

Proof. We first state a lemma.

Lemma 1. With at least probability 1− δ,∥∥∥∥∥1

k

k∑
i=1

ui − u∗
∥∥∥∥∥

2

≤ K0

√
5

k

(
8 + 2 ln

2

δ

)
δ = O

(
C1δ − C2δ ln δ√

k

)
,

where K0, C1, C2 > 0 are constants.

Proof. The proof is the same as the finite sample analysis of GTD2 in Liu et al. (2015) up to change of notations (see
Proposition 3, the proof of Theorem 1, the proof of Proposition 5 in Liu et al. (2015)). We, therefore, omit the proof to avoid
verbatim repetition.

Note that (
1

k

k∑
i=1

r̂i − rπ
)2

≤ 2

(
1

k

k∑
i=1

r̂i − r∗
)2

+ 2(r∗ − rπ)2 ≤ 2

∥∥∥∥∥1

k

k∑
i=1

ui − u∗
∥∥∥∥∥

2

+ 2(r∗ − rπ)2,

and for any c ∈ R,∥∥∥∥∥1

k

k∑
i=1

Xwi − qcπ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥1

k

k∑
i=1

Xwi −Xw∗
∥∥∥∥∥

2

+ 2‖Xw∗ − qcπ‖2 ≤ 2‖X‖2
∥∥∥∥∥1

k

k∑
i=1

ui − u∗
∥∥∥∥∥

2

+ 2‖Xw∗ − qcπ‖2.

Invoking Proposition 1 and Lemma 1 to bound the RHS of the above equations completes the proof.

A.4. Proof of Theorem 2

Proof. With κk
.
= [ν>k+1, w

>
k+1]>, we rewrite (15) as

κk+1 = κk + αk(Gk+1κk + hk+1),

where

Gk+1
.
=

[ −xk,1x>k,1 xk,1(x′>k,1 − x>k,1)− xk,1(x′>k,2 − x>k,2)

−(xk,1 − x′k,1)x>k,1 + (xk,2 − x′k,2)x>k,1 −ηI

]
,

hk+1
.
=

[
rk,1xk,1 − rk,2xk,1

0

]
.
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The asymptotic behavior of {κk} is governed by

Ḡ
.
= E[Gk+1] =

[ −C2 A2

−A2
> −ηI

]
h̄
.
= E[hk+1] =

[
b2
0

]
,

where A2
.
= X>(D − dµd>µ )(Pπ − I)X, b2

.
= X>(D − dµd>µ )r. Similar to the proof of Theorem 1 in Section A.1, up to

change of notations, we can get

lim
k→∞

wk = w∗η,

where

w∗η
.
= −(ηI +A>2 C

−1
2 A2)−1A>2 C

−1
2 b2

is the unique minimizer of J2,η(w). We then rewrite (16) as

r̂k+1
.
= r̂k + βk

(1

2

2∑
i=1

(rk,i + x′>k,iw
∗
η − x>k,iw∗η)− r̂k + o(1)

)
.

Similar to the convergence proof of {κk}, we can obtain

lim
k→∞

r̂k = d>µ (r + PπXw
∗
η −Xw∗η).

Assumption 4.3 implies there exists w such that,

A2w + b2 = 0,

or equivalently,

C
− 1

2
2 A2w + C

− 1
2

2 b2 = 0

has unique or infinite manly solutions. From standard results of system of linear equations, this is equivalent to

C
− 1

2
2 A2(C

− 1
2

2 A2)†C
− 1

2
2 b2 = C

− 1
2

2 b2,

where (·)† denotes the Moore-Penrose pseudoinverse, which always exists for any matrix. By the property of the Moore-
Penrose pseudoinverse, it is easy to see

w∗0
.
= lim

η↓0
w∗η = −(C

− 1
2

2 A2)†C
− 1

2
2 b2.

Consequently, we have

C
− 1

2
2 (A2w

∗
0 + b2) = −C−

1
2

2 A2(C
− 1

2
2 A2)†C

− 1
2

2 b2 + C
− 1

2
2 b2 = 0,

implying

A2w
∗
0 + b2 = 0.

It can also be seen that if A is invertible, w∗0 = wTD and d>µ (r + PπXw
∗
0 −Xw∗0) = r̂TD. Applying SVD to C−

1
2

2 A2 and
using σ to denote its minimum nonzero singular value, it is easy to see∥∥w∗η − w∗0∥∥ ≤ η

σ3

∥∥∥C− 1
2

2 b2

∥∥∥.
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A.5. Projected Diff-GQ2

The Projected Diff-GQ2 objective is

J2,η=0(w) = ‖A2w + b2‖2C−1
2

= max
ν∈RK

J2,η=0(w, ν),

where

J2,η=0(w, ν)
.
= 2ν>X>D(r̄w − d>µ r̄w1)− ν>C2ν.

The Projected Diff-GQ2 update wk, νk and r̂k as

νk+1
.
= ΠΘ1

(
νk + α

(
− xk,1x>k,1νk + xk,1(x′>k,1 − x>k,1)wk − xk,1(x′>k,2 − x>k,2)wk +Rk,1xk,1 −Rk,2xk,1

))
,

wk+1
.
= ΠΘ2

(
wk + α

(
− (xk,1 − x′k,1)x>k,1νk + (xk,2 − x′k,2)x>k,1νk

)
,

w̄k+1
.
=
kw̄k + wk+1

k + 1

r̂k+1
.
= r̂k + β

(1

2

2∑
i=1

(rk,i + x′>k,iw̄k − x>k,iw̄k)− r̂k
)
,

where α and β are constant learning rates, Θi is a compact subset in RK and ΠΘi is projection into Θi w.r.t. ‖·‖. If A2

is nonsingular, J2,η=0(w, ν) has a unique saddle point, which we refer to as (w∗, ν∗). It is easy to see w∗ is the unique
minimizer of J2,η=0(w). We have

Proposition 4. If Assumptions 2.1, 2.2, 2.3, 4.4, & 4.5 hold, ν∗ ∈ Θ1, w
∗ ∈ Θ2, and A2 is nonsingular, then with properly

tuned α and β, for any δ ∈ (0, 1), at least with probability 1− δ, the iterate {wk}, {r̂k} generated by Projected Diff-GQ2
satisfies

inf
c∈R
‖Xw̄k − qcπ‖2 = O

(
C1δ − C2δ ln δ√

k

)
+O

(
inf
c∈R
‖ΠXq

c
π − qcπ‖2D

)
,

1

k

k∑
i=1

E
[
(r̂i − rπ)

2
]

= O
(
C1δ − C2δ ln δ√

k

)
+O

(
inf
c∈R
‖ΠXq

c
π − qcπ‖2D

)
+O (1) ,

where C1, C2 > 0 are constants, w̄k
.
= (1/k)

∑k
i=1 wi, and the term O (1) depends on the variance of x(Sk,i, Ak,i) and

x(S′k,i, A
′
k,i).

Proof. We first state a lemma.

Lemma 2. With at least probability 1− δ,

‖w̄k − w∗‖2 ≤ K0

√
5

k
(8 + 2 ln

2

δ
)δ,

where K0 > 0 is a constant.

Proof. The proof is the same as the proof of Lemma 1. We, therefore, omit the proof to avoid verbatim repetition.

We have

‖Xw̄k − qcπ‖2 ≤ 2‖X‖2‖w̄k − w∗‖2 + 2‖Xw∗ − qcπ‖2.

Taking infimum both sides and invoking Lemma 2 and Proposition 1 to bound RHS completes the proof of the first half.
Let f(r̂)

.
= 1

2 (r̂∗ − r̂)2, gk
.
= 1

2

∑2
i=1(rk,i + x′>k,iw̄k − x>k,iw̄k), g∗k

.
= 1

2

∑2
i=1(rk,i + x′>k,iw

∗ − x>k,iw∗), we rewrite the r̂k
update as

r̂k+1 = r̂k − βξk,
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where

ξk
.
= −(g∗k − r̂k)− (gk − g∗k),

in other words, r̂k is updated following a noisy stochastic gradient ξk. Let Ek denote the expectation w.r.t. dµπ for
Sk,i, Ak,i, S

′
k,i, A

′
k,i. As w̄k does not depend on the samples at the k-th iteration, we have

‖Ek[∇f(r̂k)− ξk|r̂k]‖ = ‖Ek[gk − g∗k|r̂k]‖ ≤
∥∥d>µ (Pπ − I)X

∥∥‖w̄k − w∗‖
Ek[‖∇f(r̂k)− ξk‖2|r̂k] ≤ 2Ek[‖∇f(r̂k) + (g∗k − r̂k)‖2 + ‖gk − g∗k‖2|r̂k]

≤ 2Ek[‖∇f(r̂k) + (g∗k − r̂k)‖2|r̂k] + 2K1‖w̄k − w∗‖2

≤ 2(K2 +K1‖w̄k − w∗‖2),

where K1 and K2 are some constants and K2 depends on the variance of x(Sk,i, Ak,i) and x(S′k,i, A
′
k,i). Using Lemma 2

to bound ‖w̄k − w∗‖ and invoking Theorem 4 in the appendix of Liu et al. (2019) yields

1

k

k∑
i=1

E[‖∇f(r̂i)‖2] ≤ 2

k
(f(r̂0)− f(r̂∗)) + 2K2 +

2

k
K1K0(8 + 2 ln

2

δ
)δ

k∑
i=1

√
5

i
,

in other words,

1

k

k∑
i=1

E
[
(r̂i − r̂∗)2

]
= O

(
(C1δ − C2δ ln δ)√

k

)
+O(1),

combining which and Proposition 1 yields

1

k

k∑
i=1

E
[
(r̂i − rπ)

2
]

= O
(
C1δ − C2δ ln δ√

k

)
+O

(
inf
c∈R
‖ΠXq

c
π − qcπ‖2D

)
+O (1) ,

which completes the proof.

B. Algorithm Details
B.1. GradientDICE with Linear and Nonlinear Function Approximation

Let dπ(s, a) be the stationary state action distribution under the target policy π (assuming it exists), GradientDICE aims to
learn the density ratio dπ(s,a)

dµ(s,a) . Let τ : S ×A → R, parameterized by θτ ∈ RK1 , be the function to approximate the density
ratio, GradientDICE considers the following problem to optimize θτ :

min
θτ∈RK1

max
θν∈RK2 ,u∈R

E[Lk], where

Lk
.
= τ(Sk, Ak)ν(S′k, A

′
k)− τ(Sk, Ak)ν(Sk, Ak)− 1

2
ν(Sk, Ak)2 + λ(uτ(Sk, Ak)− u− u2

2
) +

η

2
‖θτ‖2.

Here ν : S × A → R, parameterized by θν , is an auxiliary function and u is an auxiliary variable. GradientDICE uses
primal-dual algorithms to optimize θτ , θν , u. Let α be a learning rate, GradientDICE updates are

θτ,k+1
.
= θτ,k − α∇θτLk,

θν,k+1
.
= θν,k + α∇θνLk,

uk+1
.
= uk + α∇uLk.

We could then use 1
N

∑N
k=1 τ(Sk, Ak)Rk as an estimate of the reward rate, which is, however, computationally expensive.

To obtain the average-reward estimate in an efficiently way, we additionally maintain a scalar estimate r̂ directly, which is
updated as

r̂k+1
.
= r̂k + α(τ(Sk, Ak)Rk − r̂k).
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B.2. Diff-SGQ with Nonlinear Function Approximation

Let qθ : S ×A → R be the function to estimate the differential action-value function parameterized by θ ∈ RK1 and r̂ ∈ R
be the scalar estimate for the average-reward, Diff-SGQ updates θ and r̂ as

θk+1
.
= θk + α(Rk − ¯̂r + qθ̄(S

′
k, A

′
k)− qθ(Sk, Ak))∇θqθ(Sk, Ak),

r̂k+1
.
= r̂k + α(Rk + qθ̄(S

′
k, A

′
k)− qθ̄(Sk, Ak)− r̂k),

where θ̄ and ¯̂r are parameters of the target network, which are synchronized with θ and r̂ periodically.

B.3. Diff-GQ1 with Nonlinear Function Approximation

Let q ∈ R|S||A|, r̂ ∈ R be our estimates for the differential action-value function and the average-reward, we have

‖r − r̂1 + Pπq − q‖2D
=E[

(
Rk − r̂ + q(S′k, A

′
k)− q(Sk, Ak)

)2
]

=E[max
τ∈R

2
(
Rk − r̂ + q(S′k, A

′
k)− q(Sk, Ak)

)
τ − τ2]

= max
τ∈R|S||A|

E[2
(
Rk − r̂ + q(S′k, A

′
k)− q(Sk, Ak)

)
τ(Sk, Ak)− τ(Sk, Ak)2].

When using function approximation, we assume q : S ×A → R is parameterized by θ ∈ RK1 and consider the following
problem:

min
θ∈RK1 ,r̂∈R

max
θτ∈RK2

E[Lk], where

Lk
.
= 2
(
Rk − r̂ + q(S′k, A

′
k)− q(Sk, Ak)

)
τ(Sk, Ak)− τ(Sk, Ak)2

Here the auxiliary function τ : S ×A → R is parameterized by θτ ∈ RK2 . Diff-GQ1 updates are then

θk+1
.
= θk − α∇θLk,

r̂k+1
.
= r̂k − α∇r̂Lk,

θτ,k+1
.
= θτ,k + α∇θτLk.

If both q and τ are linear, the above updates are the same as (11) with η = 0.

B.4. Diff-GQ2 with Nonlinear Function Approximation

Let q ∈ R|S||A| be our estimates for the differential action-value function, we have∥∥r − d>µ (r + Pπq − q)1 + Pπq − q
∥∥2

D

=E[
(
Rk − d>µ (r + Pπq − q) + q(S′k, A

′
k)− q(Sk, Ak)

)2
]

=E[max
τ∈R

2
(
Rk − d>µ (r + Pπq − q) + q(S′k, A

′
k)− q(Sk, Ak)

)
τ − τ2]

= max
τ∈R|S||A|

E[2
(
Rk − d>µ (r + Pπq − q) + q(S′k, A

′
k)− q(Sk, Ak)

)
τ(Sk, Ak)− τ(Sk, Ak)2].

When using function approximation, we assume q : S ×A → R is parameterized by θ ∈ RK1 and consider the following
problem:

min
θ∈RK1

max
θτ∈RK2

E[Lk], where

Lk
.
= 2

(
Rk,1 −

(
Rk,2 + q(S′k,2, A

′
k,2)− q(Sk,2, Ak,2)

)
+ q(S′k,1, A

′
k,1)− q(Sk,1, Ak,1)

)
τ(Sk,1, Ak,1)

− τ(Sk,1, Ak,1)2.
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Here the auxiliary function τ : S ×A → R is parameterized by θτ ∈ RK2 . Diff-GQ2 updates are then

θk+1
.
= θk − α∇θLk,

θτ,k+1
.
= θτ,k + α∇θτLk,

r̂k+1
.
= r̂k + α

(1

2

2∑
i=1

(
Rk,i + q(S′k,i, A

′
k,i)− q(Sk,i, Ak,i)

)
− r̂k

)
,

where r̂ is a scalar estimate for the reward rate. If both q and τ are linear, the above updates are the same as (11) with η = 0.

C. Implementation Details
C.1. Boyan’s Chain

The state features we use are provided in Section C.1 of Zhang et al. (2020b).

C.2. MuJoCo

The dataset is composed by running the behavior policy for 106 steps. For GradientDICE, we use neural networks to
parameterize τ and ν. For Diff-SGQ, we use neural networks to parameterize q. For Diff-GQ1 and Diff-GQ2, we use
neural networks to parameterize q and τ . All the networks have the standard architecture, which are exactly the same as
Zhang et al. (2020b). They are two-hidden-layer networks with each hidden layer consisting of 64 hidden units and ReLU
(Nair & Hinton, 2010) activation function. The output layer does not have nonlinear activation function. The r̂ for all
algorithms is always a global scalar parameter. For GradientDICE, we find using an additional parameter r̂ for reward rate
prediction performs better and is much more computationally efficient than using 1

N

∑N
k=1 τ(Sk, Ak)Rk, where N = 106

is the number of transitions in the dataset. As recommended by Zhang et al. (2020b), we use SGD to train all algorithms and
do not use ridge regularization. We sample 100 transitions each step to form a minibatch for training. Diff-GQ2 performs
one gradient update every two steps. For Diff-SGQ, we update the target network every 100 steps.

D. Other Experimental Results
D.1. Simulation of Assumption 4.4

We provide simulation results investigating when Assumption 4.4 is likely to hold. For each trial, we first generate a random
Pπ ∈ R|S||A|×|S||A|, each row of which is randomly sampled from a simplex. We then compute its stationary distribution dπ
analytically. The sampling distribution dµ is composed by adding Gaussian noise to dπ , i.e., dµ(s, a) = dπ(s, a)+N (0, σ2).
We then normalize dµ by 1∑

s,a dµ(s,a) . If the normalized dµ still does not lie in a simplex, we then apply softmax to dµ.

We use D = diag(dµ) and generate the feature matrix X ∈ R|S||A|×K randomly, each element of which is sampled
from N (0, 1) and K is uniformly randomly sampled from {1, 2, . . . , |S||A|}. We then analytically compute if F in
Assumption 4.4 is positive semidefinite or not. We conduct 104 trials for each (|S||A|, σ, ξ) and report the probability that
F is positive semidefinite in Tables 1 and 2.

σ = 0 σ = 0.001 σ = 0.01 σ = 0.1 σ = 1
|S||A| = 5 0.70 0.69 0.70 0.65 0.52
|S||A| = 10 0.64 0.65 0.63 0.56 0.42
|S||A| = 50 0.55 0.50 0.44 0.41 0.36
|S||A| = 100 0.52 0.42 0.43 0.38 0.35

Table 1. The probability of F being positive semidefinite with ξ = 0.9.

D.2. Additional Results on MuJoCo

The results on MuJoCo tasks with σ = 0.1 and σ = 0.5 are reported in Figure 5.
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σ = 0 σ = 0.001 σ = 0.01 σ = 0.1 σ = 1
|S||A| = 5 0.92 0.92 0.91 0.77 0.58
|S||A| = 10 0.92 0.92 0.84 0.68 0.50
|S||A| = 50 0.93 0.68 0.53 0.48 0.42
|S||A| = 100 0.93 0.51 0.49 0.45 0.42

Table 2. The probability of F being positive semidefinite with ξ = 0.99.
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Figure 5. MuJoCo tasks with with neural network function approximation. ¯̂r is the average r̂ of recent 100 steps.

E. Other Differential Gradient Q Evaluation Algorithms
In this section, we briefly discuss two other variants of Differential Gradient Q Evaluation algorithms, Diff-GQ3 and
Diff-GQ4. Diff-GQ1 uses Y as the feature matrix for both the primal variable u and the dual variable ν. Consequently,
to ensure the objective J1,η(u, ν) is strictly concave in ν, C has to be positive definite, i.e., Assumption 4.1 is assumed.
Diff-GQ2 uses X as the feature matrix for both the primal variable w and the dual variable ν. Consequently, to obtain
an estimate of the reward rate from w, two i.i.d. samples are required. To combine the advantages of both Diff-GQ1 and
Diff-GQ2, Diff-GQ3 uses Y as the feature matrix for the primal variable u but X as the feature matrix for the dual variable
ν. Diff-GQ3 considers the following MSPBE:

MSPBE3(u) =
∥∥ΠX δ̄(u)

∥∥2

D
.

Similar to the derivation of Diff-GQ1, we arrive at the Diff-GQ3 update:

δk
.
= Rk − e>1 uk + y′>k uk − y>k uk, (17)

νk+1
.
= νk + αk(δk − x>k νk)xk,

uk+1
.
= uk + αk(yk − y′k + e1)x>k νk − αkηuk.

Theorem 4. If Assumptions 2.1, 2.3, & 4.2 hold, and either η > 0 or that A3 is nonsingular holds, almost surely, the iterate
{uk} generated by Diff-GQ3 (17) converges to ũ∗η

.
= −(ηI +A>3 C

−1
2 A3)−1A>3 C

−1
2 b2, where

A3
.
= X>D(Pπ − I)Y −X>dµe>1 .
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The proof is the same as the proof of Theorem 1 up to change of notations and thus omitted. If η = 0 and A3 is nonsingular,
it is easy to see that

ũ∗0 = −A−1
3 b2

and ũ∗0 is the unique minimizer of MSPBE3(u). Though in the tabular setting (i.e., X = I), this u∗0 is the TD fixed point
uTD, in general they are not the same. Moreover, in Diff-GQ3, we apply ridge regularization to u = [r̂, w>]>. If ridge is
applied to only w like Diff-GQ1 and Diff-GQ2, the current proof of Theorem 4 will not hold. We leave more analysis of
Diff-GQ3 for future work.

We now briefly describe Diff-GQ4. Given a reward rate estimate r̂, we define

MSPBE4(w; r̂)
.
= ‖ΠX(r − r̂1 + PπXw −Xw)‖2D.

Importantly, in MSPBE4, r̂ is fixed and is not a learnable parameter of this MSPBE. By contrast, in MSPBE3, both r̂ and
w are learnable parameters of the MSPBE. Diff-GQ4 updates r̂ in the same way as Diff-SGQ but updates w following
∇wMSPBE3(w; r̂) under the current r̂, i.e.,

r̂k+1
.
= r̂k + αk(Rk + x′>k wk − x>k wk − r̂k),

νk+1
.
= νk + αk(Rk − r̂k + x′>k wk − x>k wk − x>k νk)xk,

wk+1
.
= wk + αk(xk − x′k)x>k νk − αkηwk.

Our preliminary work confirms the convergence of Diff-GQ4 when η is sufficiently large. We leave the analysis of Diff-GQ4
with a general η and its fixed point for future work.


