
Few-shot Neural Architecture Search

A. Additional Notations

We use two additional notations for pseudocode description:
(i) Sid denotes a set of sub-supernets that is split by id
numbers of edges. (ii) Sn

id denotes the nth sub-supernet in
Sid.

B. End-to-end Pipeline Pseudocode

Below we list the pseudocode for the end-to-end split and
training pipeline in Algorithm 1, the pseudocode for random
split the one-shot model into sub-supernets in Algorithm 2,
and the pseudocode for training (sub-)supernets in Algo-
rithm 3.

Algorithm 1 (Sub)-supernets split and training

1: S0 = {S}
2: define global T  TIME BUDGET
3: Train(S , NONE)
4: S0  S
5: id 0
6: while total time < T do

7: j  random(0,#N)
8: i random(0, j)
9: Sid+1  RandomSplit(Sid, Eij)

10: for n = 1! sizeof(Sid+1) do

11: Train(Sn
id+1, S 0

id)
12: end for

13: id id+ 1
14: end while

Algorithm 2 RandomSplit(Sid, Eij)

1: Snew  split Sid to m sub-supernets given m
operations

2: return Snew

Algorithm 3 Train(s, parent)
1: if parent IS NOT NONE then

2: Ws  Wparent

3: end if

4: While s NOT CONVERGE do

5: forward(s)
6: backward(s)
7: end While

C. Experiment Setup for Section 2

Each architecture was trained for 150 epochs with a batch
size of 128. The initial channel is 16. We used the SGD
optimizer with an initial learning rate of 0.025, followed
by a cosine learning rate schedule through the training. We

set the momentum rate to 0.9 and a weight decay of 3 ⇥
10�4. The training setup of supernet and sub-supernets is
consistent with architecture candidates. These experiments
ran on 50 P100 GPUs.

D. Experiment Setup for Section 4

(Sub-)supernet Training Setup for NasBench-201.

Each architecture was trained for 200 epochs with 256 batch
size. The initial channel is 16. We used the SGD optimizer
with an initial learning rate of 0.1, followed by a cosine
learning rate schedule through the training. The momentum
rate was set to 0.9. We used a weight decay of 5 ⇥ 10�4

and a norm gradient clipped at 5. The cutout technique was
not used in training. The supernet training setup is consis-
tent with architecture candidates. For supernet training, we
changed the initial learning rate to 0.025 and total epochs
to 300. The batch size is 128, and the weight decay was
set to 1 ⇥ 10�4. Each sub-supernet approximately took
40-50 epochs to converge after transfer learning. For each
NAS algorithm, we used the same setup as described in
the NasBench-201 (Dong & Yang, 2020). We used 6 P100
GPUs to train the supernet and 5 sub-supernets.

Search Setup for DARTS on CIFAR-10. We used the
same search space and training setup as described in the
original DARTS paper (Liu et al., 2019b). Specifically, the
available operations in the search space include 3 x 3 and 5
x 5 separable convolutions, 3 x 3 and 5 x 5 dilated separable
convolutions, 3 x 3 max pooling, 3 x 3 average pooling,
identity, and zero. We trained 8 cells using DARTS for
50 epochs, with batch size 64 (for both the training and
validation sets). The initial number of channels was set to
16. Each sub-supernet took 5-20 epochs to converge. We
used the momentum SGD optimizer with an initial learning
rate of 0.025, followed by a cosine learning rate schedule
through the training. We used a momentum rate of 0.9 and a
weight decay of 3⇥ 10�4. This experiment ran on 10 P100
GPUs for training both supernet and sub-supernets.

We trained the network for 1500 epochs using a batch size
of 128 and use a momentum SGD optimizer with an initial
learning rate of 0.025, followed by a cosine learning rate
schedule through the training. We use weight decay as the
regularization.

Search Setup for DARTs on PTB. The search space
and the training setup of (sub)supernets are identical to
DARTS (Liu et al., 2019b). Concretely, both the embed-
ding and the hidden sizes were set to 300. We used 6 P100
GPUs to train both the supernet and 5 (sub)supernets. Each
(sub)supernet was trained for 50 epochs using SGD without
momentum, with a learning rate of 20. The batch size was
set to 256, and the weight decay was set to 3 ⇥ 5�7. We



Few-shot Neural Architecture Search

applied a variational dropout of 0.2 to word embeddings,
0.75 to the cell input, and 0.25 to all the hidden nodes. We
also applied a dropout rate of 0.75 to the output layer.

Search Setup for ImageNet (Gong et al., 2019). For
proxylessNas, we exactly keep the same search pipeline
with original paper (Cai et al., 2019). We randomly sample
50,000 images from the training set as a validation set dur-
ing the architecture search. For our few-shot NAS, we split
3 sub-supernets. The (sub)supernets parameters are updated
using the Adam optimizer with an initial learning rate of
0.001. The (sub)supernets are trained on the remaining train-
ing images with batch size 256. For once for all NAS, the
search setup is also consistent with the original OFA (Cai
et al., 2020). In specific, we use the same architecture space
as MobileNetV3 (Howard et al., 2019); for supernet training,
we use the standard SGD optimizer with Nesterov momen-
tum 0.9, and weight decay is set to 3 ⇥ 10�5. The initial
learning rate is 2.6, and we use the cosine schedule for learn-
ing rate decay. We split 5 sub-supernets. The (sub)supernets
are trained for 180 epochs with batch size 2048 on 64 32G
V100 GPUs.

Search Setup for AutoGAN (Gong et al., 2019). Our
search and training settings were identical to Auto-
GAN (Gong et al., 2019), which followed spectral normal-
ization GAN (Miyato et al., 2018a) when training the (sub-
)-supernets. We split the supernet (shared GAN in (Gong
et al., 2019)) into 3 sub-supernets. The learning rate of both
generator and discriminator was set to 2e�4. We used the
hinge loss and an Adam optimizer. The batch size of the
discriminator was 64, and the generator was 128. The initial
learning rate was set to 3.5e�4. The AutoGAN searched
for 90 iterations for one supernet. For each iteration, the
shared GAN (supernet) was trained for 15 epochs, and the
controller was trained for 30 steps. After the shared GAN
(supernet) was trained, we transferred the weight to each
sub-supernets and trained them for 12 epochs. We trained
the controller with 30 steps. The discovered architectures
were trained for 50,000 generator iterations. We used 4
P100 GPUs in this experiment.

E. One-shot NAS v.s. Few-shot NAS by

Robust DARTS (Zela et al., 2020a)

Table 7. Few-shot Robust DARTS vs. One-shot Robust DARTS
over 4 Search Space

Method Space Top 1 Acc(%)

one-shot s1 96.49
few-shot s1 96.81

one-shot s2 96.22
few-shot s2 96.55

one-shot s3 97.19
few-shot s3 97.28

one-shot s4 95.60
few-shot s4 96.30

We use our few-shot NAS with Robust DARTS searching
architectures over 4 different search spaces defined by the
original paper (Zela et al., 2020a). For table 7, we can see
that the accuracy of architectures searched by our few-shot
is significantly better than one-shot over all 4 search spaces.
Our training setup is strictly the same as its original paper.


