
Probabilistic Sequential Shrinking: A Best Arm Identification Algorithm for Stochastic Bandits with Corruptions

A. Notations

[n] set {1, · · · , n} for any n ∈ N

[L] ground set of size L

ν(i) reward distribution of item i ∈ [L]

w(i) mean reward of item i ∈ [L]

Wt(i) random reward of item i at time step t

ct(i) corruption added on random reward item i at time step t

W̃t(i) corrupted reward of item i at time step t

it pulled item at time step t

C total corruption budget

P probability law of the process {W̃t = (W̃t(1), . . . , W̃t(L))}Tt=1

∆1,i gap between mean rewards of item 1 and i

ε optimality gap of item

π non-anticipatory algorithm

iπt pulled item of algorithm π at time step t

iπ,Tout output of algorithm π

φπ,T final recommendation rule of algorithm π

Ft observation history

εC bound on ∆1,iπ,Tout

δ failure probability

u parameter in Algorithm 1

M amount of phases in Algorithm 1

N length of one phase in Algorithm 1

Am active set in Algorithm 1

qm probability to pull an active item during phase m in Algorithm 1

nm expected number of pulls of an active item during phase m in Algorithm 1

ŵm(i) corrupted empirical mean of item i during phase m in Algorithm 1

H̃2(w,L, u) difficulty of the instance {w(i)}Li=1 for PSS(u)

H2(w) intrinsic difficulty of the instance {w(i)}Li=1

Bern(a) Bernoulli distribution with parameter a ∈ [0, 1]

Lε number of item i with ∆1,i ≤ ε
∆ equals to ∆1,2

λ parameter in the analysis of corruption strategies

Cm amount of corruptions during phase m

E(U)
m,i (a), E(L)

m,i(a) “nice events” in the analysis of Algorithm 1

m1 index of the phase during which item 1 turns from active to inactive

j1 item in Am1 with the least mean reward
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ai equals to ∆1,i/8 for all items 2 ≤ i ≤ L

B. Useful theorems
Theorem B.1 (Standard multiplicative variant of the Chernoff-Hoeffding bound; Dubhashi & Panconesi (2009), Theorem
1.1). Suppose that X1, . . . , XT are independent [0, 1]-valued random variables, and let X =

∑T
t=1Xt. Then for any ε > 0,

Pr[ X − EX ≥ εEX ] ≤ exp

(
−ε

2

3
EX
)
, Pr[ X − EX ≤ −εEX ] ≤ exp

(
−ε

2

3
EX
)
.

Theorem B.2 (Beygelzimer et al. (2011), Theorem 1; Gupta et al. (2019), Theorem 10). Suppose that X1, . . . , XT is a
martingale difference sequence with respect to a filtration {Ft}Tt=1, and let X =

∑T
t=1Xt. Assume that |Xt| ≤ b for all t,

and define V =
∑T
t=1 E[X2

t |Ft–1]. Then for any δ > 0,

Pr

[
X ≤ V

b
+ b ln

1

δ

]
≥ 1− δ.

Theorem B.3 (Multiplicative Chernoff Bound (Mitzenmacher & Upfal, 2017; Chen et al., 2016)). Let X1, · · · , Xn

be Bernoulli random variables taking values in {0, 1} such that E [Xt|X1, · · · , Xt−1] ≥ µ for all t ≤ n, and Y =
X1 + . . .+Xn. Then, for all δ ∈ (0, 1)

Pr[Y ≤ (1− δ)nµ] ≤ e−
δ2nµ

2 .

C. Proofs of main results
In this section, we provide proofs of Lemmas 5.1 – 5.3, complete the proof of Theorem 4.1, and provide the proofs of
Theorem 4.2 – 4.4.

C.1. Proof of Lemma 5.1

Lemma 5.1. It holds that NM ≤ T and |AM | = 1.

Proof. (i) NM = bT/Mc ·M ≤ T/m ·M = T.

(ii) Since M = dlogu Le, |AM | =
⌈
L/uM

⌉
, we have

L ≤ uM ⇒ |AM | ≤
⌈
uM

uM

⌉
= 1,

L

uM−1
> 0 ⇒ |AM | ≥ 1.

C.2. Proof of Lemma 5.2

Lemma 5.2. Let E denote the complement of any event E . For any fixed m, i ∈ Am−1 and a ∈ (0, 1),

P
[
E(U)
m,i (a)

]
≤2 exp

[
− a2·nm

3

]
, P
[
E(L)
m,i(a)

]
≤2 exp

[
− a2·nm

3

]
.

Proof. (i) Let Yt(i) be an indicator for item i being pulled at time step t and ñm(i) be the number of pulls of item i during
phase m. Recall that Wt(i) is the stochastic reward of item i at time step t and ct(i) = W̃t(i) −Wt(i) is the corruption
added to this item by the adversary at this time step. Note that ct(i) may depend on all the stochastic rewards up to (and
including) time step t, and also on all previous choices of the algorithm (though not the choice at step t). We denote
Em := [Tm−1 + 1, . . . , Tm] as the N many time steps in phase m. Then

ŵm(i) =
1

nm

∑
t∈Em

Yt(i)[Wt(i) + ct(i)].
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For ease of analysis, let us break the sum above into two, and define

Am(i) =
∑
t∈Em

Yt(i)Wt(i) and Bm(i) =
∑
t∈Em

Yt(i)ct(i).

(ii) Let us first bound the deviation of Am(i). Observe that Wt(i) is an independent draw from a [0, 1]-valued r.v. with
mean w(i) and Yt(i) is an independent random variable drawn from {0, 1} with mean qm. Moreover, we have that
E[Am(i)] = N · [qmw(i)] = nmw(i) ≤ nm. Hence, for any a1,m,i > 0, a Chernoff-Hoeffding bound (a multiplicative
version thereof) as in Theorem B.1 implies that

P
[
Am(i)

nm
− w(i) ≥ a1,m,i

]
≤ exp

[
−
a2

1,m,i · nm
3

]
, P

[
Am(i)

nm
− w(i) ≤ −a1,m,i

]
≤ exp

[
−
a2

1,m,i · nm
3

]
.

(iii) Next, we turn to bound the deviation of Bm(i). Consider the sequence of r.v.s X1, . . . , XT defined by Xt =
[Yt(i)–qm] · ct(i) for all t. Then {Xt}Tt=1 is a martingale difference sequence with respect to the filtration {F̃t}Tt=1, where

F̃t = σ({Ys(i)}s≤t,i∈[L], {Ws(i)}s≤t+1,i∈[L], {cs(i)}s≤t+1,i∈[L]).

According to the problem setup, the adversary obtains more information than the agent, which results in the difference
between Ft defined in Section 2 and F̃t here. Since the corruption ct(i) becomes a deterministic value when conditioned on
F̃t−1 (as we assume a deterministic adversary), and since E[Yt(i)|F̃t−1] = qm, we have

E[Xt|F̃t−1] = E[Yt(i)–qm|F̃t−1] · ct(i) = 0.

Further, we have |Xt|, |ct(i)| ≤ 1 for all t, and we can bound the predictable quadratic variation of this martingale as

V =
∑
t∈Em

E[X2
t |F̃t−1] =

∑
t∈Em

E
[

[Yt(i)–qm]2|F̃t−1

]
· ct(i)2 ≤

∑
t∈Em

|ct(i)| · E
[

[Yt(i)–qm]2|F̃t−1

]
=
∑
t∈Em

|ct(i)| ·Var[Yt(i)] =
∑
t∈Em

|ct(i)| · qm · (1− qm) ≤ qm ·
∑
t∈Em

|ct(i)|.

Applying a Freedman-type concentration inequality for martingales (Theorem B.2), we obtain that except with probability
δ2,m,i (setting b = 1 in Theorem B.2),

Bm(i)

nm
≤ qm
nm
·
∑
t∈Em

|ct(i)|+
V + log(1/δ2,m,i)

nm
≤ 2qm

nm
·
∑
t∈Em

|ct(i)|+
log(1/δ2,m,i)

nm
.

Since qm = nm/N , We have

P

[
Bm(i)

nm
≥

2
∑
t∈Em |Ct(i)|
N

+
log(1/δ2,m,i)

nm

]
≤ δ2,m,i.

Similar arguments show that −Bm(i)/nm satisfies this bound with probability δ2,m,i.

(iv) Let

a2,m,i =
log(1/δ2,m,i)

nm
.

Altogether, we have

P

[
ŵm(i) ≥ w(i) +

2
∑
t∈Em |Ct(i)|
N

+ a1,m,i + a2,m,i

]
≤ exp

[
−
a2

1,m,i · nm
3

]
+ exp[−a2,m,i · nm],

P

[
ŵm(i) ≤ w(i)−

2
∑
t∈Em |Ct(i)|
N

− a1,m,i − a2,m,i

]
≤ exp

[
−
a2

1,m,i · nm
3

]
+ exp[−a2,m,i · nm].
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Note that
∑
t∈Em |ct(i)| ≤ Cm. For a1,m,i = a2,m,i = a ∈ (0, 1), we have

P

[
ŵm(i) ≥ w(i) +

2Cm
N

+ 2a

]
≤ 2 exp

[
− a2 · nm

3

]
,

P

[
ŵm(i) ≤ w(i)− 2Cm

N
− 2a

]
≤ 2 exp

[
− a2 · nm

3

]
.

C.3. Proof of Lemma 5.3

Lemma 5.3. Conditioned on E(L)
m,1(ai) and E(U)

m,i (ai), where ai = ∆1,i/8 for each 2 ≤ i ≤ L, we have

{1 ∈ Am−1, 1 /∈ Am, i ∈ Am} ⊂
{

∆1,i ≤
8Cm
N

}
.

Proof. First of all,

{1 ∈ Am−1, 1 /∈ Am, i ∈ Am} ⊂ {1, i ∈ Am−1, i ∈ Am, ŵm(1) ≤ ŵm(j) ∀j ∈ Am}
⊂ {1, i ∈ Am−1, ŵm(1) ≤ ŵm(i)}.

Assume E(L)
m,1(ai) and E(U)

m,i (ai) hold. We have

w(1)− 2Cm
N
− 2ai < ŵm(1) ≤ ŵm(i) < w(i) +

2Cm
N

+ 2ai.

In other words,

w(1)− w(i) <
4Cm
N

+ 4ai.

Note that ai = ∆1,i/8, we have

∆1,i <
4Cm
N

+
∆1,i

2
⇒ ∆1,i <

8Cm
N

as desired.

C.4. Final steps to prove Theorem 4.1

(i) Assume E(L)
m1,1

(aj1) and E(U)
m1,j1

(aj1) hold.

Case 1: 1 6= iout. Lemma 5.3 implies that for any realization of j1, m1,

∆1,j1 ≤
8Cm1

N
.

Since iout ∈ Am for all 1 ≤ m ≤M , we have iout ∈ Am1
. In addition, since

j1 := arg min
i∈Am1

w(i),

we have ∆1,iout ≤ ∆1,j1 . Therefore,

∆1,iout
≤ ∆1,j1 ≤

8Cm1

N
≤ 8C

N
.

Case 2: 1 = iout. It is trivial to see ∆1,iout ≤ 8C/N .
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Hence, when E(L)
m1,1

(aj1) and E(U)
m1,j1

(aj1) hold, we always have ∆1,iout ≤ 8C/N .

(ii) Altogether, for any realization of m1, j1,

P
[{

∆1,iout >
8C

N

}⋂
{m1 = m, j1 = i}

]
≤ P

[(
E(L)
m1,1

(aj1)
⋂
E(U)
m1,j1

(aj1)
)⋂
{m1 = m, j1 = i}

]
. (C.1)

In addition, we have

P
[(
E(L)
m1,1

(aj1)
⋂
E(U)
m1,j1

(aj1)
)⋂
{m1 = m, j1 = i}

]
≤ P

[
E(L)
m1,1

(aj1)
⋂
{m1 = m, j1 = i}

]
+ P

[
E(U)
m1,j1

(aj1)
⋂
{m1 = m, j1 = i}

]
≤ P

[
E(L)
m1,1

(aj1)
⋂
{u · i ≥ |Am−1|}

]
+ P

[
E(U)
m1,j1

(aj1)
⋂
{u · i ≥ |Am−1|}

]
(C.2)

≤ 4 exp

[
− a2

i · nm
3

]
· I{u · i ≥ |Am−1| } (C.3)

= 4 exp

[
−

∆2
1,i ·N

192|Am−1|

]
· I{u · i ≥ |Am−1| } (C.4)

≤ 4 exp

[
−

∆2
1,i ·N

192 ·min{u · i, L}

]
(C.5)

≤ 4 exp

[
− N

192H̃2(w,L, u)

]
. (C.6)

Line (C.2) results from the definitions of j1, Am (1 ≤ m ≤M), which implying that

j1 ≥ |Am1
| =

⌈
L

um1

⌉
=

⌈
L

u · um1−1

⌉
≥
⌈

L
um1−1

⌉
u

=
|Am1−1|

u
.

Line (C.3) follows from Lemma 5.2. Line (C.4) applies the definitions of ai and nm for all i, v,m:

ai =
∆1,i

8
∀ 2 ≤ i ≤ L, and nm =

N

|Am−1|
∀ 1 ≤ m ≤M.

Lines (C.5) and (C.6) result from the fact that |Am| ≤ L for all m and the definition of H̃2(w,L, u) in (4.2), i.e.,

H̃2(w,L, u) = max
i 6=1

min{u · i, L}
∆2

1,i

.

(iii) Combining (C.1) and (C.6), we have

P
[
∆1,iout

>
8C

N

]
≤

M∑
m=1

L∑
i=2

P
[{

∆1,iout
>

8C

N

}⋂
{m1 = m, j1 = i}

]
≤ 4M(L− 1) exp

[
− N

192H̃2(w,L, u)

]
.

We complete the proof of Theorem 4.1 with N = bT/Mc, M = dlogu Le.

C.5. Proof of Theorem 4.2

Theorem 4.2. Fix λ ∈ (0, 1) and ∆ ∈ (0, 1/2). For any online algorithm, there is a BAI with an adversarial corruption
instance in T steps, corruption budget C = 1 + (1 + λ)2∆T , and optimality gap ∆, such that

P[∆1,iout
> 0] = P[∆1,iout ≥ ∆] = P[iout 6= 1]

≥ 1

2
·
[
1− exp

(
− 2λ2∆T

3

)]
.
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Proof. We fix w = {w(i)}i∈[L], where 1 > w(1) > w(2) > w(3) ≥ . . . ≥ w(L) > 0, and we define ∆ = w(1)− w(2).
We assume w(2)−∆ > w(3) > 0. We prove the Theorem by a coupling argument between two Bernoulli instances I, I ′,
both on the ground set [L]. Both involve T time steps and corruption budget C = (1 + λ)2∆T .

In instance I, the uncorrupted reward distribution of item i is Bern(w(i)), and the adversary corrupts the rewards of item 1
probabilistically, as detailed in the forthcoming coupling in Algorithm 2. In instance I ′ the uncorrupted reward distribution
of the items are:

• Bern(u(1)), where u(1) = w(2)−∆, for item 1,

• Bern(u(i)), where u(i) = w(i), for item i ∈ [L] \ {1},
but the adversary does not corrupt any of the rewards on instance I ′. The optimal items in instances I, I ′ are different, and
they are item 1, item 2 respectively. Both instances have optimality gap ∆, since in instance I ′ we have u(2) > u(1) >
u(3) ≥ . . . ≥ u(L) > 0.

We denote the original and corrupted rewards of item i at time step t in instance I as Wt(i), W̃t(i) respectively, and the
original and corrupted rewards of item i at time step t in instance I ′ as Ut(i), Ũt(i) respectively. Since there is no corruption
on I ′, we have Ut(i) = Ũt(i) for all t, i always.

Fix a BAI algorithm π, and considering running π on the instances I, I ′. When π is randomized, we assume that π has the
same random seed in the two runs, so that π recommends the same item in both instances I, I ′ if W̃t(i) = Ũt(i) for all t, i.
Now, we couple the instances as shown I, I ′ in Algorithm 2.

Algorithm 2 Coupling on instances I, I ′
1: Set remaining corruption budget B ← C.
2: for time step t = 1, . . . , T do
3: Adversary observes {Wt(i)}i∈[L], where Wt(i) ∼ Bern(w(i)).
4: Adversary generates Gt ∼ Bern(2∆/w(1)), independent of Wt.
5: if B ≥ 1 then
6: if Wt(1) = 0 then
7: Set W̃t(1)← 0.
8: else if Wt(1) = 1, Gt = 1 then
9: Set W̃t(1)← 0 (ct(1) = −1).

10: Update B ← B − 1.
11: else if Wt(1) = 1, Gt = 0 then
12: Set W̃t(1)← 1.
13: end if
14: Set W̃t(i)←Wt(i) for all i ∈ [L] \ {1}.
15: Set Ut(i)← W̃t(i), Ũt(i)← W̃t(i) for all i ∈ [L].
16: else
17: Set W̃t(i)←Wt(i) for all i ∈ [L] (ct(i) = 0).
18: Set Ut(i)← W̃t(i), Ũt(i)← W̃t(i) for all i ∈ [L] \ {1}.
19: Sample Ut(1) = Ũt(1) ∼ Bern((w(2)−∆)) (recall u(1) = w(2)−∆).
20: end if
21: end for

We make two crucial observation on the coupling in Algorithm 2:

1. If the corruption budget C is sufficient, that is if we have B ≥ 1 at the start of time step T , then W̃t(i) = Ũt(i) for all
i, t, so that the algorithm π recommends the same item in both instances.

2. The coupling is valid, in the sense that:

(a) The corruption budget is never exceeded,
(b) We always have Wt(i) ∼ Bern(w(i)),
(c) We always have Ũt(i) = Ut(i) ∼ Bern(u(i)).
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The claims (a, b) are clearly true, and for claim (c), we need to verify that Ũt(1) = Ut(1) ∼ Bern(u(1)). Indeed, at a
time step t:

• If B < 1, then Line 19 imposes that Ut(1) ∼ Bern(u(1)).
• If B ≥ 1, then by the if loop in Line 5, we have

P[Ut(1) = Ũt(1) = 1|B ≥ 1 at the start of time step t]
= P[Wt(1) = 1, Gt = 0) = P[Wt(1) = 1] · P[Gt = 0]

= w(1) ·
(

1− 2∆

w(1)

)
= w(1)− 2∆ = w(2)−∆ = u(1).

The key to the proof is that the optimal item in instances I, I ′ are 1, 2 respectively which are different item. By observation
1, if B ≥ 1 at the start of time T , then the algorithm π cannot identify the optimal item in both instances. Denote events
A1 = {π outputs item 1 in I} and A2 = {π outputs item 2 in I ′}, and denote P as the probability measure under the
coupling in Algorithm 2 and the algorithm π. Now,

P[A1 ∩ A2]

≤ P[ π outputs different items on I, I ′ ]
≤ P[ W̃t(1) 6= Ũt(1) for some t ∈ [T ] ]

≤ P[ At the start of time step T , we have B < 1 ]

= P

[
T−1∑
t=1

I{Wt(1) = 1, Gt = 1} > C − 1

]

≤ P

[
T∑
t=1

I{Wt(1) = 1, Gt = 1} > (1 + λ)2∆T

]
.

To this end, note that the random variables in {I{Wt(1) = 1, Gt = 1}}Tt=1 are i.i.d. with mean

E[I{Wt(1) = 1, Gt = 1}] = E[I{Wt(1) = 1}] · E[I{Gt = 1}] = w(1) · 2∆

w(1)
= 2∆.

By applying Theorem B.3, we have

P[A1 ∩ A2] ≤ P

[
T∑
t=1

I{Wt(1) = 1, Gt = 1)} > (1 + λ)2∆T

]
≤ exp

(
−2λ2∆T

3

)
.

Finally, we have

P[A1] + P[A2] = P[A1 ∪ A2] + P[A1 ∩ A2] ≤ 1 + exp

(
−2λ2∆T

3

)
,

so that

min {P[A1],P[A2]} ≤ 1

2

[
1 + exp

(
−2λ2∆T

3

)]
,

completing the proof of the theorem.

C.6. Proof of Theorem 4.3

Theorem 4.3. Fix L > 1, λ ∈ (0, 1) and ∆ ∈ (0, 1/4). For the SH algorithm, there is a BAI with adversarial corruption
instance with T time steps, corruption budget C = (1 + λ)2∆T/(L log2 L), and optimality gap ∆, such that if T is
sufficiently large,

P[∆1,iout > 0] = P[∆1,iout ≥ ∆] = P[iout 6= 1] ≥ 1/2.
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Proof. Consider Theorem 4.2’s attack strategy, but applied to SH in phase 1.

We claim that there is a BAI instance I with T time steps, gap ∆ and C = (1 + λ)2∆T/(L log2 L), such that

Pr(∆1,iout ≥ ∆) = Pr

(
∆1,iout ≥

C · L log2 L

2(1 + λ)T )

)
≥ 1/2

when T is sufficiently large. This is a matching lower bound for SH in Table 1.

Consider a Bernoulli instance {w(i)}i∈[L] with w(1) ∈ [1/2, 1] and w(i) = w(1)−∆ for i ∈ [L] \ {1}. In phase 1, SH
pulls each i ∈ [L] for τ = dT/(L log2 L)e times, computes the empirical means {ŵ1(i)}i∈[L], and removes the dL/2e
items with smallest ŵ1(i) from consideration.

During phase 1, SH pulls item 1 at fixed time steps {ts}τs=1. When the adversary determines {cts(i)}i∈[L], he knows
{Wts(i)}i∈[L], and knows that item 1 will be pulled at time ts. The adversary attacks by solely corrupting item 1 solely at
times {ts}τt=1.

If the corruption budget is not exhausted, set

Pr(W̃ts(1) = 0|Wts(1) = 1) =
2∆

w(1)
= 1− Pr(W̃ts(1) = 1|Wts(1) = 1),

Pr(W̃ts(1) = 0|Wts(1) = 0) = 1,

which implies that

Pr(W̃ts(1) = 1) = w(1)− 2∆,

Pr(cts(1) = −1) = Pr(W̃ts(1) = 0|Wts(1) = 1) Pr(Wts(1) = 1) = 2∆.

If exhausted, no corruption.

Let X1, . . . , Xτ ∼ Bern(w(1)− 2∆), Y1, . . . , Yτ ∼ Bern(2∆) be i.i.d. random variables and event

E := {corruption budget not exhausted at end of phase 1}.

Then

Pr

(
ŵ1(i) ≤ w(1)− 3∆

2

)
≥ Pr

(
ŵ1(i) ≤ w(1)− 3∆

2

∣∣∣∣E) · Pr (E)

= Pr

(
1

τ

τ∑
s=1

Xs ≤ w(1)− 3∆

2

)
· Pr

(
τ∑
s=1

Ys ≤
(1 + λ)2∆T

L log2 L

)
,

which exceeds 1− exp
[
− T∆2

2L log2 L

]
− exp

[
− 2λ2T∆

3L log2 L

]
. Thus, for all i 6= 1,

Pr

(
ŵ1(i) > w(1)− 3∆

2

)
≥ 1− exp

[
− T∆2

2L log2 L

]
.

Lastly, by the union bound,

Pr(Item 1 removed after phase 1) ≥ 1− (L+ 1) exp

[
− T max{1, λ2}∆2

2L log2 L

]
.

We complete the proof by noting that

1− (L+ 1) exp

[
− T max{1, λ2}∆2

2L log2 L

]
≥ 1/2

for T large enough.



Probabilistic Sequential Shrinking: A Best Arm Identification Algorithm for Stochastic Bandits with Corruptions

C.7. Proof of Theorem 4.4

Theorem 4.4. Fix any λ, ε ∈ (0, 1). If C ≥ L · {1− (1− λ)[1− w(1)]} · T , Strategy (I)’s attack results in

P[∆1,iout
> ε] ≥ 1− Lε

L
− exp

[
− λ2TL[1− w(1)]

2

]
.

If instead C ≥ L · [1− (1− λ)w(L)] · T , Strategy (II)’s attack results in

P[∆1,iout
> ε] ≥ 1− Lε

L
− exp

[
− λ2TLw(L)

2

]
.

Proof. Part (a). LetX1, · · · , Xn be Bernoulli random variables taking values in {0, 1} such that E [Xt|X1, · · · , Xt−1] ≤ µ
for all t ≤ n, and Y = X1 + . . . + Xn. Let X ′t = 1 −Xt for all 1 ≤ t ≤ n, µ′ = 1 − µ, Y ′ = X ′1 + . . . + X ′n. Then,
Theorem B.3 indicates for all δ ∈ (0, 1)

Pr[Y ′ ≤ (1− δ)nµ′] ≤ exp

(
− δ2nµ′

2

)
⇒ Pr[n− Y ≤ (1− δ)n(1− µ)] ≤ exp

[
− δ2n(1− µ)

2

]
⇒ Pr[Y ≥ n− (1− δ)n(1− µ)] ≤ exp

[
− δ2n(1− µ)

2

]
.

(i) For all i ∈ [L], Wt(i) denotes the random reward of item i at time step t. Fix any λ ∈ (0, 1). We can apply the inequality
above with µ = w(1), n = TL to get

P

[
T∑
t=1

L∑
i=1

Wt(i) ≥ TL− (1− λ)TL[1− w(1)]

]
≤ exp

[
− λ2TL[1− w(1)]

2

]

⇒ P

[
T∑
t=1

L∑
i=1

I{Wt(i) = 1} ≥ TL · {1− (1− λ)[1− w(1)]}

]
≤ exp

[
− λ2TL[1− w(1)]

2

]
.

(ii) Let

Eλ,0 :=

{
T∑
t=1

L∑
i=1

I{Wt(i) = 1} < TL · {1− (1− λ)[1− w(1)]}

}
.

When Eλ,0 holds, throughout the whole horizon (T time steps), there are less than TL · {1− (1− λ)[1− w(1)]} random
rewards that equal to 1. If we additionally have

C ≥ TL · {1− (1− λ)[1− w(1)]} := Cλ,0,

the adversary can shift the random reward to 0 whenever it equals to 1, which implies that the agent get a corrupted reward
equals to 0 at each time step.

Altogether, when Eλ,0 holds and C ≥ Cλ,0, the agent get a corrupted reward equals to 0 at each time step. Therefore, the
observations of random rewards throughout the whole horizon provides no information about the mean reward w(i) for any
item i ∈ [L]. In this case, the best method for the agent to output an item is to randomly output any ground item with a
uniform probability of 1/L. As a result, for any item i,

P
[
{iout = i}

⋂
Eλ,0

]
≤ 1

L
.

Recall that Lε := |{i ∈ [L] : ∆1,i ≤ ε}| counts the items with mean reward at most ε worse than that of the optimal item,
we have

P
[
{∆1,iout ≤ ε}

⋂
Eλ,0

]
≤

∑
i∈[L],∆1,i≤ε

P
[
{iout = i}

⋂
Eλ,0

]
≤ Lε

L
.



Probabilistic Sequential Shrinking: A Best Arm Identification Algorithm for Stochastic Bandits with Corruptions

(iii) Therefore,

P[∆1,iout
≤ ε] = P

[
{∆1,iout

≤ ε}
⋂
Eλ,0

]
+ P

[
{∆1,iout ≤ ε}

⋂
Eλ,0

]
≤ P

[
{∆1,iout

≤ ε}
⋂
Eλ,0

]
+ P

[
Eλ,0

]
≤ Lε

L
+ exp

[
− λ2TL[1− w(1)]

2

]
,

Lastly,

P[∆1,iout
> ε] ≥ 1− Lε

L
− exp

[
− λ2TL[1− w(1)]

2

]
.

Part (b). (i) For all i ∈ [L], Wt(i) denotes the random reward of item i at time step t. Fix any λ ∈ (0, 1). We can apply
Theorem B.3 with µ = w(L), n = TL to get

P

[
T∑
t=1

L∑
i=1

Wt(i) ≤ (1− λ)TLw(L)

]
≤ exp

[
− λ2TLw(L)

2

]
.

Meanwhile, {
T∑
t=1

L∑
i=1

Wt(i) ≤ (1− λ)TLw(L)

}
=

{
T∑
t=1

L∑
i=1

I{Wt(i) = 1} ≤ (1− λ)TLw(L)

}

=

{
T∑
t=1

L∑
i=1

I{Wt(i) = 0} ≥ TL− (1− λ)TLw(L) = TL · [1− (1− λ)w(L)]

}
.

Therefore,

P

[
T∑
t=1

I{Wt(i) = 0} ≥ TL · [1− (1− λ)w(L)]

]
≤ exp

[
− λ2TLw(L)

2

]
.

(ii) Let

Eλ,1 :=

{
T∑
t=1

L∑
i=1

I{Wt(i) = 0} < TL · [1− (1− λ)w(L)]

}
.

When Eλ,1 holds, throughout the whole horizon (T time steps), there are less than TL · [1− (1− λ)w(L)] random rewards
that equal to 0. If we additionally have

C ≥ TL · [1− (1− λ)w(L)] := Cλ,1,

the adversary can shift the random reward to 1 whenever it equals to 0, which implies that the agent get a corrupted reward
equals to 1 at each time step.

Altogether, when Eλ,1 holds and C ≥ Cλ,1, the agent get a corrupted reward equals to 1 at each time step. Therefore, the
observations of random rewards throughout the whole horizon provides no information about the mean reward w(i) for any
item i ∈ [L]. In this case, the best method for the agent to output an item is to randomly output any ground item with a
uniform probability of 1/L. As a result, for any item i,

P
[
{iout = i}

⋂
Eλ,1

]
≤ 1

L
.

Recall that Lε := |{i ∈ [L] : ∆1,i ≤ ε}| counts the items with mean reward at most ε worse than that of the optimal item,
we have

P
[
{∆1,iout ≤ ε}

⋂
Eλ,1

]
≤

∑
i∈[L],∆1,i≤ε

P
[
{iout = i}

⋂
Eλ,1

]
≤ Lε

L
.
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(iii) Therefore,

P[∆1,iout
≤ ε] = P

[
{∆1,iout ≤ ε}

⋂
Eλ,1

]
+ P

[
{∆1,iout ≤ ε}

⋂
Eλ,1

]
≤ P

[
{∆1,iout

≤ ε}
⋂
Eλ,1

]
+ P

[
Eλ,1

]
≤ Lε

L
+ exp

[
− λ2TLw(L)

2

]
,

Lastly,

P[∆1,iout
> ε] ≥ 1− Lε

L
− exp

[
− λ2TLw(L)

2

]
.

D. Additional numerical results
D.1. Details of Figures 3(a) and 3(b)

Table A.1. Comparison of PSS(u) to Other Algorithms

λ w∗ w′ PSS(2) SH UP

0.5 0.4 0.2 76 42 12
0.5 0.5 0.2 91 64 13
0.5 0.5 0.3 74 51 19

0.9 0.4 0.2 72 45 9
0.9 0.5 0.2 83 64 7
0.9 0.5 0.3 60 40 12

Here, we provide the raw numbers of for Figures 3(a) and 3(b). We see that PSS(2) consistently and clearly outperform the
non-robust BAI algorithms on all instances here.

D.2. Further observations

To further evaluate the impact of T , L, and λ on the success probabilities of PSS(2), SH and UP, we run each algorithm for
1000 times independently with varying sets of parameters, while keeping the MAB instance at w∗ = 0.4 and w′ = 0.2 fixed.

Recall that according to Theorem 4.3, we set the CPS

C

T
=

2∆ · (1 + λ)

L log2 L
. (D.1)

This is the scaling of the CPS that ensures that SH fails with high probability as T grows. Notice that C/T grows with λ
and decreases with L. We implement the attack strategy as applied in Theorem 4.3 (see Algorithm 2) and vary L and T .

In each subplot in Figure A.1, we consider different number of items L and use different values of λ, resulting in different
CPSes. We let λ grows with L, so the identification of the best arm would pose significant difficulty to SH as prescribed by
Eqn. (D.1). The figures show that as T grows, the success (BAI) probabilities of PSS(2) demonstrate an increasing trend,
and in the case of L = 32, λ = 9 the percentage of successful BAI converges to 100%. In stark contrast, the percentages of
successful BAI for SH are always below 20%. In the case of L = 32, λ = 9, the percentage appears to converge to 0 as T
increases. This implies that SH fails with high probability when T is sufficiently large, which corroborates Theorem 4.3.
However, the randomization inherent in PSS(2) ensures that it remains extremely robust to the corruption strategy and it
successfully identifies the best item a large fraction of times as T → +∞; this corroborates our main result—Theorem 4.1.
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(a) L = 32, λ = 9

(b) L = 64, λ = 19

(c) L = 128, λ = 39

Figure A.1. Percentage of correct BAI of PSS(2), SH and UP. We fix the instance to be w∗ = 0.4, w′ = 0.2.


