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Abstract
Modern tasks in reinforcement learning have large
state and action spaces. To deal with them effi-
ciently, one often uses predefined feature mapping
to represent states and actions in a low dimen-
sional space. In this paper, we study reinforce-
ment learning for discounted Markov Decision
Processes (MDPs), where the transition kernel
can be parameterized as a linear function of cer-
tain feature mapping. We propose a novel algo-
rithm which makes use of the feature mapping
and obtains a Õ(d

√
T/(1 − γ)2) regret, where

d is the dimension of the feature space, T is the
time horizon and γ is the discount factor of the
MDP. To the best of our knowledge, this is the
first polynomial regret bound without accessing to
a generative model or making strong assumptions
such as ergodicity of the MDP. By constructing
a special class of MDPs, we also show that for
any algorithms, the regret is lower bounded by
Ω(d
√
T/(1− γ)1.5). Our upper and lower bound

results together suggest that the proposed rein-
forcement learning algorithm is near-optimal up
to a (1− γ)−0.5 factor.

1. Introduction
Designing efficient algorithms that learn and plan in se-
quential decision-making tasks with large state and action
spaces has become the central goal of modern reinforce-
ment learning (RL) in recent years. Due to numerous pos-
sible states and actions, traditional tabular reinforcement
learning methods (Watkins, 1989; Jaksch et al., 2010; Azar
et al., 2017) which directly access each state-action pair are
computationally intractable. A common method to design
reinforcement learning algorithms for large-scale state and
action spaces is to make use of feature mappings such as
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linear functions or neural networks to map states and actions
to a low-dimensional space and solve the decision-making
problem in the feature space. Despite the empirical success
of feature mapping based reinforcement learning methods
(Singh et al., 1995; Bertsekas, 2018), the theoretical un-
derstanding and the fundamental limits of these methods
remain largely understudied.

In this paper, we aim to develop provable reinforcement
learning algorithms with feature mapping for discounted
Markov Decision Processes (MDPs). Discounted MDP is
one of the most widely used models to formulate the mod-
ern reinforcement learning tasks such as Atari games (Mnih
et al., 2015) and deep recommendation system (Zheng et al.,
2018). With feature mapping, a series of recent work (Yang
& Wang, 2019a; Lattimore et al., 2020; Bhandari et al.,
2018; Zou et al., 2019) have proposed provably efficient al-
gorithms along with theoretical guarantees. However, these
existing results either rely on a special oracle called gener-
ative model (Kakade et al., 2003) that allows an algorithm
to query any possible state-action pairs and return both the
reward and the next state (Yang & Wang, 2019a; Lattimore
et al., 2020), or needs strong assumptions such as uniform
ergodicity (Bhandari et al., 2018; Zou et al., 2019) on the
underlying MDP. A natural question arises:

Can we design provably efficient RL algorithms with feature
mapping for discounted MDPs under mild assumptions?

We answer this question affirmatively. To be more specific,
we consider a special class of discounted MDPs called lin-
ear kernel MDP, where the transition probability kernel
can be represented as a linear function of a predefined d-
dimensional feature mapping. A similar model has been
studied in earlier work Jia et al. (2020); Ayoub et al. (2020)
for finite horizon episodic MDPs, where the authors call it
linear mixture model. Linear kernel MDP is a rich MDP
class, which covers many classes of MDPs proposed in pre-
vious work (Yang & Wang, 2019b; Modi et al., 2019) as
special cases. We propose a novel provably efficient algo-
rithm namely Upper-Confidence Linear Kernel reinforce-
ment learning (UCLK) to solve this MDP. We prove both
upper and lower regret bounds and show that our algorithm
is near-optimal under the linear kernel MDP setting.
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Our contributions are summarized as follows.

• We propose a novel algorithm UCLK to learn the op-
timal value function with the help of predefined fea-
ture mapping. We show that the regret (See Defini-
tion 3.5) for UCLK to learn the optimal value function
is Õ(d

√
T/(1− γ)2). It is worth noting that the regret

is independent of the cardinality of the state and ac-
tion spaces, which suggests that UCLK is efficient for
large-scale RL problems. To the best of our knowledge,
this is the first feature-based reinforcement learning
algorithm that attains a polynomial regret bound for
discounted MDPs without accessing the generative
model or making strong assumptions on MDPs such as
ergodicity1.

• We also show that for any reinforcement learning algo-
rithms, the regret to learn the optimal value function
in linear kernel MDP is at least Ω(d

√
T/(1 − γ)1.5).

This lower bound result suggests that UCLK is opti-
mal concerning feature mapping dimension d and time
horizon T , and it is near-optimal concerning the dis-
count factor up to (1− γ)−0.5. Our proof is based on a
specially constructed linear kernel MDP, which could
be of independent interest.

After we posted the first version of this paper online, we
were informed that the linear kernel MDP setting is the same
as the so-called parameterized transition model or linear
mixture model in earlier work (Jia et al., 2020; Ayoub et al.,
2020).

The remainder of this paper is organized as follows. In
Section 2, we review the related work in the literature. We
introduce preliminaries in in Section 3, and our algorithm
in Section 4. In Section 5, we present our main theoreti-
cal results including both upper and lower regret bounds,
followed by a proof sketch of the main theory in Section 6.
Finally, we conclude this paper in Section 7. The detailed
proofs are deferred to the supplementary material.

Notation We use lower case letters to denote scalars, and
use lower and upper case bold face letters to denote vectors
and matrices respectively. Let 1(·) denote the indicator
function. For a vector x ∈ Rd and matrix Σ ∈ Rd×d, we
denote by ‖x‖2 the Euclidean norm and denote by ‖x‖Σ =√

x>Σx. For two sequences {an} and {bn}, we write
an = O(bn) if there exists an absolute constant C such that
an ≤ Cbn, and we write an = Ω(bn) if there exists an
absolute constant C such that an ≥ Cbn. We use Õ(·) to
further hide the logarithmic factors.

1Without a generative model (simulator) or further assumptions
on MDP, some states may never be visited starting from certain
initial states, which makes it impossible to find a near-optimal
policy on them. Therefore, it is not meaningful to consider the
sample complexity of UCLK to find an ε-optimal policy.

2. Related Work
Finite-horizon MDPs with feature mappings. There is
a series of work focusing on solving finite-horizon MDP
using RL with function approximation (Jin et al., 2019;
Yang & Wang, 2019b; Wang et al., 2019; Modi et al., 2019;
Jiang et al., 2017; Zanette et al., 2020; Du et al., 2019).
For instance, Jin et al. (2019) assumed the underlying tran-
sition kernel and reward function are linear functions of
a d-dimensional feature mapping and proposed an RL al-
gorithm with Õ(

√
d3H3T ) regret, where H is the length

of an episode. Yang & Wang (2019b) assumed the proba-
bility transition kernel is bilinear in two feature mappings
in dimension d and d′, and proposed an algorithm with
Õ(dH2

√
T ) regret. Wang et al. (2019) assumed the Bell-

man backup of any value function is a generalized linear
function of certain feature mapping and proposed an algo-
rithm with a regret guarantee. Modi et al. (2019) assumed
the underlying MDP can be represented as a linear com-
bination of several base models and proposed an RL al-
gorithm to solve it with a provable guarantee. Jiang et al.
(2017) assumed the underlying MDP is of low inherent Bell-
man error and proposed an algorithm with polynomial PAC
bounds. Jia et al. (2020) studied the linear mixture model
and proposed a UCRL-VTR algorithm for finite-horizon
MDPs which achieves a Õ(d

√
H3T ) regret, where H is the

episode length. Ayoub et al. (2020) considered the same
model but with general function approximation, and proved
a regret bound depending on Eluder dimension (Russo &
Van Roy, 2013). Jia et al. (2020); Ayoub et al. (2020) also
proved a lower bound of regret by considering the hard tab-
ular MDP firstly proposed in Jaksch et al. (2010). Zanette
et al. (2020) studied a similar MDP as Jin et al. (2019) and
proposed an algorithm with tighter regret bound. Du et al.
(2019) suggested that the sample complexity to learn the
optimal policy can be exponential if the approximation error
to the value function is moderate. More discussions and
insights regarding these negative results can be found in
Van Roy & Dong (2019); Lattimore et al. (2020).

Discounted MDPs with a generative model. For tabu-
lar discounted MDPs, many work focuses on RL with the
help of a generative model (or called a simulator) (Kakade
et al., 2003). To learn the optimal value function, Azar
et al. (2013) proposed Empirical QVI, which learns an ε-
suboptimal value function with Õ(|S||A|/((1−γ)3ε2)) opti-
mal sample complexity. To learn the optimal policy, Kearns
& Singh (1999) proposed Phased Q-Learning which learns
an ε-suboptimal policy with Õ(|S||A|/((1− γ)7ε2)) sam-
ple complexity. Sidford et al. (2018b) proposed a Sublinear
Randomized Value Iteration algorithm which achieves a
Õ(|S||A|/((1− γ)4ε2)) sample complexity. Sidford et al.
(2018a) further proposed Variance-Reduced QVI algorithm
which achieves the optimal Õ(|S||A|/((1−γ)3ε2)) sample
complexity. For discounted MDPs with function approxima-
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tion, Yang & Wang (2019a) assumed the probability transi-
tion kernel can be parameterized by a d-dimensional feature
mapping and proposed a Phased Parametric Q-Learning
algorithm which learns an ε-suboptimal policy with the op-
timal Õ(d/((1 − γ)3ε2)) sample complexity. Lattimore
et al. (2020) considered a similar setting to Yang & Wang
(2019a) and proposed a Phased Elimination algorithm with
Õ(d/((1− γ)4ε2)) sample complexity.

Discounted MDPs without a generative model. Another
line of work aims at learning the discounted MDP with-
out accessing to the generative model. Szita & Szepesvári
(2010) proposed an MoRmax algorithm which achieves
Õ(|S||A|/((1− γ)6ε2)) sample complexity of exploration.
Lattimore & Hutter (2012) proposed UCRL algorithm which
achieves Õ(|S|2|A|/((1−γ)3ε2)) sample complexity of ex-
ploration. Strehl et al. (2006) proposed delay-Q-learning
with Õ(|S||A|/((1− γ)8ε4)) sample complexity of explo-
ration. Dong et al. (2019) proposed Infinite Q-learning
with UCB which achieves Õ(|S||A|/((1− γ)7ε2)) sample
complexity of exploration. Liu & Su (2020) proposed the
regret definition for discounted MDPs and presented Dou-
ble Q-Learning to achieve Õ(

√
|S||A|T/(1− γ)2.5) regret.

Our work falls into this category, and also uses regret to
characterize the performance of RL.

3. Preliminaires
We consider infinite-horizon discounted Markov Deci-
sion Processes (MDPs), which is denoted by a tuple
M(S,A, γ, r,P). Here S is a countable state space (may
be infinite), A is the action space, γ : 0 ≤ γ < 1 is the dis-
count factor, r : S ×A → [0, 1] is the reward function. For
simplicity, we assume the reward function r is deterministic
and known. P(s′|s, a) is the transition probability function
which denotes the probability for state s to transfer to state
s′ given action a. A (nonstationary) policy π is a collection
of policies πt, where each πt : {S × A}t−1 × S → A
maps history s1, a1, . . . , st−1, at−1, st to an action a. Let
{st, at}∞t=1 are states and actions deduced by P and π. We
denote the action-value function Qπt (s, a) and value func-
tion V πt (s, a) as follows

Qπt (s, a) = E
[ ∞∑
i=0

γir(st+i, at+i)

∣∣∣∣s1, . . . , st = s, at = a

]
,

V πt (s) = E
[ ∞∑
i=0

γir(st+i, at+i)

∣∣∣∣s1, . . . , st = s

]
.

We define the optimal value function V ∗ and the optimal
action-value function Q∗ as V ∗(s) = supπ V

π
1 (s) and

Q∗(s, a) = supπ Q
π
1 (s, a). For simplicity, for any function

V : S → R, we denote [PV ](s, a) = Es′∼P(·|s,a)V (s′).
Therefore we have the following Bellman equation, as well

as the Bellman optimality equation:

Qπt (st, at) = r(st, at) + γ[PV πt+1](st, at),

Q∗(st, at) = r(st, at) + γ[PV ∗](st, at).

In this work, we consider a special class of MDPs called lin-
ear kernel MDPs, where the transition probability function
can be represented as a linear function of a given feature
mapping φ : S × A × S → Rd. It is worth noting that
this is essentially the same MDP class as linear mixture
model considered in Jia et al. (2020); Ayoub et al. (2020).
Formally speaking, we have the following assumption for a
linear kernel MDP.

Definition 3.1. M(S,A, γ, r,P) is called a linear kernel
MDP if there exist a known feature mapping φ(s′|s, a) :
S × A × S → Rd and an unknown vector θ ∈ Rd with
‖θ‖2 ≤

√
d, such that

• For any state-action-state triplet (s, a, s′) ∈ S ×A× S,
we have P(s′|s, a) = 〈φ(s′|s, a),θ〉;

• For any bounded function V : S → [0, R] and any tuple
(s, a) ∈ S × A, we have ‖φV (s, a)‖2 ≤

√
dR, where

φV (s, a) =
∑
s′ φ(s′|s, a)V (s′) ∈ Rd.

We denote the linear kernel MDP by Mθ for simplicity.

As we will show in the following examples, linear kernel
MDPs cover several MDPs studied in previous work as
special cases.

Example 3.2 (Tabular MDPs). For an MDP
M(S,A, γ, r,P) with |S|, |A| ≤ ∞, the transition
probability function can be parameterized by |S|2|A|
unknown parameters. The tabular MDP is a special case of
linear kernel MDPs with the following feature mapping and
parameter vector: d = |S|2|A|, φ(s′|s, a) = e(s,a,s′) ∈
Rd, θ = [P(s′|s, a)] ∈ Rd, where e(s,a,s′) denotes the
corresponding natural basis in the d-dimensional Euclidean
space.

Example 3.3 (Linear combination of base models (Modi
et al., 2019)). For an MDP M(S,A, γ, r,P), suppose
there exist m base transition probability functions
{pi(s′|s, a)}mi=1, a feature mappingψ(s, a) : S×A → ∆d′

where ∆d′ is a (d′ − 1)-dimensional simplex, and an
unknown matrix W ∈ Rm×d′ ∈ [0, 1]m×d

′
such that

P(s′|s, a) =
∑m
k=1[Wψ(s, a)]kpk(s′|s, a). Then it is a

special case of linear kernel MDPs with feature mapping and
parameter vector defined as follows: d = md′, φ(s′|s, a) =
vec(p(s′|s, a)ψ(s, a)>) ∈ Rd, θ = vec(W) ∈ Rd,
where vec(·) is the vectorization operator, and p(s′|s, a) =
[pk(s′|s, a)] ∈ Rm.
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Example 3.4 (Feature embedding of a transition model
(Yang & Wang, 2019b)). For an MDP M(S,A, γ, r,P),
suppose that there exist feature mappings ψ1(s, a) : S ×
A → Rd1 satisfying ‖ψ1(s, a)‖2 ≤

√
d1, ψ2(s′) : S → R

satisfying for any V : S → [0, R], ‖
∑
s V (s)ψ2(s)‖2 ≤ R

and an unknown matrix M ∈ Rd1×d2 satisfying ‖M‖F ≤√
d1 such that P(s′|s, a) = ψ1(s, a)>Mψ2(s′). Then it is

a special case of linear kernel MDPs with the following fea-
ture mapping and parameter vector d = d1d2, φ(s′|s, a) =
vec
(
ψ2(s′)ψ1(s, a)>

)
∈ Rd, θ = vec(M) ∈ Rd.

Comparison with linear MDPs. Yang & Wang (2019a);
Jin et al. (2019) studied the so-called linear additive model
or linear MDP, which assumes the probability transition
function can be represented as P(·|s, a) = 〈ψ(s, a),µ(·)〉,
where ψ(s, a) is a known feature mapping and µ(·) is an
unknown measure. It is worth noting that linear kernel
MDPs studied in our paper and linear MDPs (Yang &
Wang, 2019a; Jin et al., 2019) are two different classes
of MDPs since they are based on different feature map-
pings, i.e., φ(s′|s, a) versus ψ(s, a). One cannot be cov-
ered by the other. For instance, some MDPs only fit linear
MDPs such as P(s′|s, a) =

∑d
i=1 φi(s, a)µi(s

′) satisfying
φi(s, a) > 0,

∑d
i=1 φi(s, a) = 1 and µi(s′) is an unknown

measure of s′. Some MDPs only fit linear kernel MDPs such
as S = R, A = R/{0}, P(s′|s, a) =

∑d
i=1 θipi(s

′|s, a),
pi(s

′|s, a) = exp(−(s′ − s− i)2/(2a2))/
√

2πa2. It is not
a linear MDP because pi(s′|s, a) can not be decomposed
as φi(s, a) · µi(s′). In the rest of this paper, we assume the
underlying linear kernel MDP is parameterized by θ∗ and
denote it by Mθ∗ .

In the online learning setting, the environment picks the
starting state s1 at the beginning. The goal is to design a
nonstationary policy π such that the expected discounted
return at step t, V πt (st), is close to the optimal expected
return V ∗(st). We formalize this goal as minimizing the
regret, which can be defined as follows, inspired by Liu &
Su (2020).

Definition 3.5. For any policy π, we define its regret on
MDP M(S,A, γ, r,P) in the first T rounds as the sum of
the suboptimality ∆t for t = 1, . . . , T , i.e.,

Regret(π,M, T ) =

T∑
t=1

∆t, where ∆t = V ∗(st)− V πt (st),

Due to the optimality of the optimal value function V ∗, we
know that ∆t ≥ 0 for any policy π. This fact suggests that
Regret(T ) can be regarded as a cumulative error for π to
learn the optimal value function of MDP M .

Relation to sample complexity of exploration. A related
quantity widely used for discounted MDPs is called the sam-
ple complexity of exploration N(ε, δ) (Szita & Szepesvári,

2010; Lattimore & Hutter, 2012; Dong et al., 2019), which
is defined as the number of rounds t where ∆t is greater
than ε with probability at least 1− δ. Note that algorithms
with smaller regret make fewer mistakes in total (for in-
stance, for any ε > 0, there does not exist Nε > 0 such
that for any t > Nε, ∆t ≥ ε), but they could make sev-
eral severe mistakes (for instance, ∆t = 1 may happen
infinite times). In comparison, algorithms with smaller
sample complexity of exploration do not make severe mis-
takes (since there are only finite number of ∆t satisfying
∆t ≥ ε), but they may suffer from a infinite number of ’less
severe’ mistakes (for instance, ∆t satisfying ε > ∆t ≥ ε/2)
in total. Therefore, these two quantities are not directly
comparable. For any algorithm with Õ(Cε−a) sample com-
plexity of exploration, where C is a problem dependent
constant (e.g., it may depend on |S|, |A|, γ, d), we can do
a conversion and show that the algorithm also enjoys a
Õ(C1/(a+1)(1− γ)−1/(a+1)T a/(a+1)) regret for the first T
rounds. The proof is deferred to Appendix A. More compar-
isons and discussions can also be found in Liu & Su (2020)
for the tabular setting.

4. The Proposed Algorithm
In this section, we propose an algorithm namely UCLK
to learn the linear kernel MDP, which is illustrated in Al-
gorithm 1. UCLK is essentially a multi-epoch algorithm
inspired by Jaksch et al. (2010); Lattimore & Hutter (2012).
Specifically, the k-th epoch of Algorithm 1 starts at round
tk and ends at round tk+1 − 1. The length of each epoch is
not prefixed but depends on previous observations. In each
epoch, UCLK uses Extended Value Iteration (EVI) function
to compute the estimated optimal action-value function Qk
and selects the greedy policy according to the function. The
reason for using adaptive epoch length is that it can control
the amount of “switching error” which occurs when the
policy is updated. Each epoch of UCLK can be divided into
two phases, which we will discuss in detail in the sequel.

Planning phase (Line 4 to 6) Planning phase is executed
at the beginning of each epoch. In this phase, UCLK first
computes θ̂k as the estimate of θ∗, which is the minimizer
of the following regularized least-square problem:

θ̂k ← argmin
θ∈Rd

k−1∑
j=0

tj+1−1∑
i=tj

[〈
θ,φVj (si, ai)

〉
− Vj(si+1)

]2
+ λ‖θ‖22, (4.2)

which has a closed-form solution as shown in Line 4. Then
Algorithm 1 computes the confidence set of θ∗ as Ck based
on the confidence radius parameter β. Based on the confi-
dence set Ck, Algorithm 1 selects Algorithm 2 to compute
the next action-value functions Qk for the next steps.

Extended value iteration Algorithm 1 makes use of EVI
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Algorithm 1 Upper-Confidence Linear Kernel Reinforcement Learning (UCLK)
Require: Regularization parameter λ, confidence radius β, number of value iteration rounds U

1: Receive s1
2: Set t← 1, Σ1 ← λI, b1 = 0
3: for k = 0, . . . do
4: Set tk ← t, θ̂k ← Σ−1tk btk
5: Set Ck and Qk(·, ·) as follows:

Ck = {θ : ‖Σ1/2
tk

(θ − θ̂k)‖2 ≤ β}, Qk(·, ·)← EVI(Ck, U)

6: Set Vk(·)← maxa∈AQk(·, a)
7: repeat
8: Set πt(·)← argmaxaQk(·, a), take action at ← πt(st), receive st+1 ∼ P(·|st, at)
9: Set Σt+1 ← Σt + φVk(st, at)φVk(st, at)

>

10: Set bt+1 ← bt + φVk(st, at)Vk(st+1)
11: t← t+ 1
12: until det(Σt) > 2det(Σtk)
13: end for

Algorithm 2 Extended Value Iteration: EVI(C, U)

Require: Confidence set C, number of value iteration
rounds U

1: Let Q(0)(·, ·) = 1/(1− γ).
2: Q(·, ·)← Q(0)(·, ·)
3: if C ∩ B 6= ∅ then
4: for u = 1, . . . , U do
5: Let V (u−1)(·) = maxa∈AQ

(u−1)(·, a) and

Q(u)(·, ·)← r(·, ·) + γ max
θ∈C∩B

〈
θ,φV (u−1)(·, ·)

〉
(4.1)

6: end for
7: Let Q(·, ·)← Q(U)(·, ·)
8: end if

Ensure: Q(·, ·)

in Algorithm 2 to compute the action-value function corre-
sponding to the near-optimal MDP among all the plausible
MDPsMk induced by Ck. In detail, besides Ck, EVI needs
to access an additional set B defined as follows:

B =
{
θ : ∀(s, a), 〈φ(·|s, a),θ〉 is a probability distribution

}
.

The intuition of introducing set B is that since θ∗ ∈ B, then
Ck ∩ B is a tighter confidence set of θ∗. In addition, B is a
convex set since it is easy to verify that: for any θ1,θ2 ∈ B,
and any α ∈ [0, 1], we have αθ1 + (1 − α)θ2 belongs to
B. B contains all possible θ∗, which can be uniquely de-
cided by the MDP classM. For instance, whenM is the
global convex combination MDP class (Modi et al., 2019),
B is a d-dimensional simplex. At each iteration of Algo-
rithm 2, to obtain the new action-value function Q(u), EVI
performs one-step optimal value iteration (4.1) by selecting

the best possible MDP M̃ amongM to maximize the Bell-
man backup over the previous value function V (u−1). This
can be illustrated as follows:

Q(u)(·, ·)← r(·, ·) + γ max
θ∈C∩B

〈
θ,φV (u−1)(·, ·)

〉
= r(·, ·) + γ max

M̃∈M

[
P̃V (u−1)](·, ·).

EVI returns the last action-value function as its output and
sets Qk = Q(U).

Execution phase (Line 7 to 12) Execution phase is used
to execute the policy in each epoch, collect observations,
and update parameters. At round t, Algorithm 1 follows the
greedy policy πt induced by Qk to take the action πt(st)
and observes the new state st+1. Algorithm 1 then com-
putes vector φVk(st, at) according to Definition 3.1 and the
value function at st+1, i.e., Vk(st+1). Next, Algorithm 1
updates parameters Σt and bt by φVk(st, at). The loop
repeats until det(Σt) > 2det(Σtk). This is the same as
the stopping criterion used by Rarely Switching OFUL in
Abbasi-Yadkori et al. (2011).

Implementation of Algorithms 1 and 2 There are two
main implementation issues in Algorithms 1 and 2. First,
we need to compute the integration φV (s, a) efficiently.
Second, for Algorithm 2, we need to compute Q(·, ·) from
EVI efficiently. Both of them can be efficiently achieved by
Monte Carlo integration in some special cases, and we de-
ferred the details to the appendix. Finally, it is worth noting
that UCLK is an online reinforcement learning algorithm as
it does not need to store all the past observations. UCLK
only needs to maintain a vector bt and a matrix Σt, which
costs O(d2) space complexity.
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5. Main Theory
In this section, we provide the theoretical analysis of Algo-
rithm 1. We introduce a shorthand notation Regret(T ) for
Regret(UCLK,Mθ∗ , T ), when there is no confusion.

We present our main theorem, which gives an upper bound
of the regret for Algorithm 1.

Theorem 5.1. Let Mθ∗ be the underlying linear kernel
MDP. If we set β and U in Algorithm 1 as follows:

β =
1

1− γ

√
d log

λ(1− γ)2 + Td

δλ(1− γ)2
+
√
λd,

U =

⌈
log(T/(1− γ))

1− γ

⌉
, (5.1)

then with probability at least 1− 2δ, we have

Regret(T ) ≤ 6β

1− γ

√
dT log

λ+ T/(1− γ)2

λ
+

5

(1− γ)2

+
3
√
T log 1/δ

(1− γ)2
+

3d

(1− γ)2
log

2λ+ Td

λ(1− γ)2
.

(5.2)

Theorem 5.1 suggests that the regret of Algorithm 1 is in
the order of Õ(d

√
T/(1− γ)2).

Remark 5.2. Several aspects of Theorem 5.1 are worth
to comment. Thanks to the feature mapping φ and the
multi-epoch nature of Algorithm 1, the regret bound (5.2)
in Theorem 5.1 is independent of |S| and |A|, which sug-
gests that UCLK is sample efficient even for MDPs with
large state and action spaces. This is in sharp contrast to
the tabular RL algorithms, whose regret bound or sample
complexity depends on |S| and |A| polynomially. Moreover,
the exploration parameter β and the number of extended
value iteration rounds U depend on T logarithmically. For
the case where T is unknown, we can use the “doubling
trick” (Besson & Kaufmann, 2018) to learn T adaptively,
and it will only increase the regret (5.2) by a constant factor.

Remark 5.3. For the tabular MDPs, UCLK uses the feature
mapping in Example 3.2 with a |S|2|A|-dimension feature
mapping. In that case, UCLK has a |S|2|A|

√
T/(1 − γ)2

regret according to Theorem 5.1, which is worse than that
of Liu & Su (2020) considering the dependence of |S| and
|A|. There is no contradiction here, as in this paper, we aim
to deliver a generic RL algorithm for linear kernel MDPs,
which is a strictly larger class of MDPs than tabular MDPs.
In fact, the regret bound in Theorem 5.1 can be improved
by providing a tighter confidence set Ck specialized to the
tabular MDP case. This is beyond the focus of this paper,
and we leave it in the future work.

In addition to the upper bound result, we also prove the
lower bound result. The following theorem shows a lower
bound for any algorithm to learn a linear kernel MDP.

Theorem 5.4. Suppose γ ≥ 2/3, d ≥ 2 and T ≥
max{d2/225, 5γ}/(1 − γ). Then for any policy π, there
exists a linear kernel MDP Mθ̃ such that

E
[
Regret(π,Mθ̃, T )

]
≥ γd

√
T

1600c(1− γ)1.5
− γ

(1− γ)2
.

(5.3)

Remark 5.5. Theorem 5.4 suggests that when T is
large enough, the lower bound of regret (5.3) is
Ω(d
√
T/(1−γ)1.5). Compared with the upper regret bound

Õ(d
√
T/(1− γ)2), we can conclude that UCLK has an op-

timal dependence on the feature mapping dimension d and
the time horizon T , and the dependence on the discount
factor is only worse than the lower bound by a (1− γ)−0.5

factor.

6. Proof Sketch of the Main Theory
In this section, we provide the proof sketches of the upper
and lower bounds on the regret. The complete proofs are
deferred to the appendix.

6.1. Proof Sketch of Theorem 5.1

In this section we prove Theorem 5.1. Let K(T ) − 1 be
the number of epochs when Algorithm 1 executes t = T
rounds, and tK(T ) = T+1. We have the following technical
lemmas.

Lemma 6.1. Let β be defined in (5.1). Then with proba-
bility at least 1 − δ, for all 0 ≤ k ≤ K(T ) − 1, we have
Ck ∩ B is non-empty and θ∗ ∈ Ck ∩ B.

Lemma 6.1 suggests that in every epoch of Algorithm 1, θ∗

is contained in the confidence sets {Ck ∩ B}K(T )−1
k=0 with a

high probability.

Lemma 6.2. Let the event in Lemma 6.1 hold. Then for
all 0 ≤ k ≤ K(T ) − 1, we have 1/(1 − γ) ≥ Qk(s, a) ≥
Q∗(s, a) for any (s, a) ∈ S ×A.

Lemma 6.2 suggests that in every epoch of Algorithm 1,
Qk(s, a) found by EVI is an upper bound for the optimal
action-value function Q∗(s, a).

Recall that the goal of EVI is to find the action-value func-
tion Qk corresponding to the optimal MDP inMk, which
should satisfy the following optimality condition

Qk(st, at) = r(st, at) + γ max
θ∈Ck∩B

〈
θ,φVk(st, at)

〉
.
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However, it is impossible to find the exactly optimal value
function since EVI only performs finite number of iterations.
The following lemma characterizes the error of EVI after U
iterations.

Lemma 6.3. Let the event in Lemma 6.1 hold. Then for
any 0 ≤ k ≤ K(T ) − 1 and tk ≤ t ≤ tk+1 − 1, there
exists a θt ∈ Ck ∩ B such that Qk(st, at) ≤ r(st, at) +
γ
〈
θt,φVk(st, at)

〉
+ 2γU .

Lemma 6.3 suggests that for any ε > 0, EVI in Algorithm
2 only needs to perform log(1/ε) iterations to achieve an
ε-suboptimal action-value function.

Lemma 6.4. We have K(T ) ≤ 2d log[(λ + dT )/(λ(1 −
γ)2)].

Lemma 6.4 suggests that Algorithm 1 only needs to update
its policy for K(T ) = Õ(d) times, which is almost indepen-
dent of the time horizon T . In sharp contrast, RL algorithms
with feature mapping in the finite-horizon setting need to
update their policy every H steps (Jin et al., 2019; Modi
et al., 2019), which leads to O(T/H) number of updates.

Proof sketch of Theorem 5.1. The regret can be decom-
posed as follows:

Regret(T ) =

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
V ∗(st)− V πt (st)

]
≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Vk(st)− V πt (st)

]
︸ ︷︷ ︸

Ek

, (6.1)

where the inequality holds due to Lemma 6.2. Ek can
be further bounded as follows by Bellman equation and
Lemma 6.3.

Ek ≤ 2/(1− γ)2 + 2γU (tk+1 − tk)/(1− γ)

+

tk+1−1∑
t=tk

〈θt − θ∗,φVk(st, at)〉/(1− γ) + Ξt,

(6.2)

where Ξt =
[[
P(Vk − V πt+1)

]
(st, at) −

(
Vk(st+1) −

V πt+1(st+1)
)]
/(1 − γ). Taking summation of (6.2) from

k = 0 to K(T ) − 1 and rearranging it, we obtain that∑K(T )−1
k=0 Ek is upper bounded as follows

K(T )−1∑
k=0

Ek ≤
2K(T

(1− γ)2
+

2γUT

1− γ
+

K(T )−1∑
k=0

tk+1−1∑
t=tk

Ξt

+

K(T )−1∑
k=0

tk+1−1∑
t=tk

〈θt − θ∗,φVk(st, at)〉
1− γ

,

where the first term on the R.H.S. can be further bounded
by Õ(d/(1− γ)2) by Lemma 6.4, the second term can be
bounded by 1 with the choice of U , the third term can be
bounded by Õ(d

√
T/(1 − γ)2) by Lemma 6.1, and the

last term can be bounded by Õ(
√
T/(1− γ)2) by Azuma-

Hoeffding inequality.

6.2. Proof Sketch of Theorem 5.4

At the core of the proof of Theorem 5.4 is to construct a class
of hard-to-learn MDP instances. We show the construction
of these instances here and defer the detailed proof to Ap-
pendix C. Let M(S,A, γ, r,Pθ) denote these hard MDPs.
The state space S consists of two states x0, x1. The action
space A consists of 2d−1 vectors a ∈ {−1, 1}d−1. The re-
ward function r satisfies that r(x0,a) = 0 and r(x1,a) = 1
for any a ∈ A. The probability transition function Pθ is
parameterized by a (d − 1)-dimensional vector θ ∈ Θ,
Θ = {−∆/(d − 1),∆/(d − 1)}d−1, which is defined as
Pθ(x0|x0,a) = 1− δ − 〈a,θ〉, Pθ(x1|x0,a) = δ + 〈a,θ〉,
Pθ(x0|x1,a) = δ, Pθ(x1|x1,a) = 1 − δ, where δ and ∆
are positive parameters that need to be determined in later
proof. It can be verified that M is indeed a linear kernel
MDP with the vector θ̃ = (θ>, 1)> ∈ Rd while ∆ ≤ d− 1
and the feature mapping φ(s′|s, a) defined as follows:

φ(x0|x0,a) =

(
−a

1− δ

)
,φ(x1|x0,a) =

(
a
δ

)
,

φ(x0|x1,a) =

(
0
δ

)
,φ(x1|x1,a) =

(
0

1− δ

)
.

Remark 6.5. The class of hard-to-learn linear kernel MDPs
can be regarded as an extension of the hard instance in linear
bandits literature (Dani et al., 2008; Lattimore & Szepesvári,
2018) to MDPs. Our constructed MDPs are similar to those
in Jaksch et al. (2010); Osband & Van Roy (2016) for the
average-reward MDPs and Lattimore & Hutter (2012) for
the discounted MDPs. By Example 3.2, we know that tab-
ular MDPs can be regarded as specialized linear kernel
MDPs with a |S|2|A|-dimensional feature mapping. How-
ever, simply applying the MDPs in Jaksch et al. (2010);
Osband & Van Roy (2016); Lattimore & Hutter (2012) to
our setting would yield a Ω(

√
|S||A|T/(1 − γ)1.5) lower

bound for regret, which is looser than our result because√
|S||A| ≤ |S|2|A| = d.

From now on, we set δ = 1− γ, ∆ = d
√

1− γ/(90
√

2T )
and only consider the case where π is a deterministic policy,
since the regret result of the case where π is stochastic is
lower bounded by that of the deterministic one. Let N0

denote the total visit number to state x0. Similiarily, let
N1 denote the total visit number to state x1, Na

0 denote the
total visit number to state x0 followed by action a and N Ã0
denote the total visit number to state x0 followed by actions
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x1...x0 ......

1− δ − 〈a1,θ〉 δ + 〈a1,θ〉

1− δ − 〈ai,θ〉 δ + 〈ai,θ〉

x1x0 1− δ
δ

Figure 1. Class of hard-to-learn linear kernel MDPs considered in Section 6.2. The left figure demonstrates the state transition probability
starting from x0 with different action ai. The right figure demonstrates the state transition probability starting from x1 with any action.

in subset Ã ⊆ A. Let Pθ(·) denote the distribution over
ST , where s1 = x0, st+1 ∼ Pθ(·|st, at), at is decided by
πt. Let Eθ denote the expectation w.r.t. distribution Pθ.
Suppose we have an MDP M(S,A, γ, r,Pθ). During this
proof the starting state s1 is set to be x0. For simplicity, let
Regret(θ) denote Regret(π,M(S,A, γ, r,Pθ), T ) without
confusion. We need the following lemmas. The first lemma
shows that to bound Regret(θ), we only need to bound the
summation of rewards over st, at.

Lemma 6.6. The regret Regret(θ) satisfies that

EθRegret(θ)

≥ Eθ

[ T∑
t=1

[
V ∗(st)−

1

1− γ
r(st, at)

]
− γ

(1− γ)2

]
.

Next lemma gives the relation between EθN1, EθN
a
0 and

EθN0, which is useful to our proof.

Lemma 6.7. Suppose 2∆ < δ and (1− δ)/δ < T/5, then
for EθN1 and EθN0, we have

EθN1 ≤
T

2
+

1

2δ

∑
a

〈a,θ〉EθN
a
0 , and EθN0 ≤ 4T/5.

Next lemma gives the bound for KL divergence.

Lemma 6.8. Suppose that θ and θ′ only differs from j-th
coordinate, 2∆ < δ ≤ 1/3. Then we have the following
bound for the KL divergence between Pθ and Pθ′ :

KL(Pθ′‖Pθ) ≤ 16∆2

(d− 1)2δ
EθN0.

Proof Sketch of Theorem 5.4. By Lemma 6.6, we only need
to lower bound the difference between V ∗ and r(st, at). We
can calculate V ∗ through the definition of our MDP as

V ∗(x0) =
γ(∆ + δ)

(1− γ)(γ(2δ + ∆− 1) + 1)
,

V ∗(x1) =
γ(∆ + δ) + 1− γ

(1− γ)(γ(2δ + ∆− 1) + 1)
.

Since r(x0,a) = 0 and r(x1,a) = 1, then the lower bound
can be fully characterized by EθN1. Furthermore, we can
derive that

1

|Θ|
∑
θ

EθN1 ≤
T

2
+

1

4δ

∆

(d− 1)|Θ|

d−1∑
j=1

∑
θ[

Eθ′N0 +
cT

8

√
KL(Pθ′‖Pθ)

]
, (6.3)

where θ′ only differs from θ at j-th coordinate. By Lemma
6.7 and 6.8 we can obtain an upper bound of (6.3) in terms
of δ and ∆. Selecting δ = 1− γ, ∆ = d

√
1− γ/(90

√
2T )

gives the final result.

7. Conclusion
We proposed a novel algorithm for solving linear kernel
MDPs called UCLK. We prove that the regret of UCLK
can be upper bounded by Õ(d

√
T/(1− γ)2), which is the

first result of its kind for learning discounted MDPs without
accessing the generative model or making strong assump-
tions like uniform ergodicity. We also proved a lower bound
Ω(d
√
T/(1− γ)1.5) which holds for any algorithm. There

still exists a gap of (1−γ)−0.5 between the upper and lower
bounds, and we leave it as an open problem for future work.
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A. Conversion from Sample Complexity to Regret

Suppose that an algorithm has Õ(Cε−a) sample complexity of exploration, where C is a constant that may depend on the
problem-dependent parameters such as |S|, |A|, γ, d. Then with probability at least 1− δ, it has at most Õ(Cε−a) number
of rounds t such that V ∗(st)− V πt (st) ≥ ε. We denote the collection of these rounds by set D. Then for the first T rounds,
with probability at least 1− δ, its regret can be bounded as

Regret(T ) =

T∑
t=1

[
V ∗(st)− V πt (st)

]
=

∑
t∈[T ]∩D

[
V ∗(st)− V πt (st)

]
+

∑
t∈[T ]\D

[
V ∗(st)− V πt (st)

]
≤ |D| · 1/(1− γ) + T · ε

= Õ(Cε−a/(1− γ) + εT ),

where the first inequality uses the fact that 0 ≤ V ∗(st), V πt (st) ≤ 1/(1−γ), and the last line holds due to the definition ofD.
Select ε = T−1/(a+1)(1−γ)1/(a+1)C−1/(a+1) to minimize the above regret bound, we have Regret(T ) = Õ(C1/(a+1)(1−
γ)−1/(a+1)T a/(a+1)). For example, if the sample complexity of exploration is Õ(Cε−2), then it implies an Õ(C1/3(1−
γ)−1/3T 2/3) regret bound.

B. Details of Implementation
In this section, we discuss how to efficiently implement Algorithm 1 and Algorithm 2 by using Monte Carlo integration. We
consider a special case similar to that of Yang & Wang (2019b), where

[φ(s′|s, a)]j = [ψ(s′)]j · [µ(s, a)]j , |[µ(s, a)]j | ≤ 1,
∣∣∣∑
s′

[ψ(s′)]j

∣∣∣ ≤ D, (B.1)

where D > 0 is a constant. (B.1) suggests the feature mapping φ(s′|s, a) is the element-wise product of two feature
mappings ψ(s) and µ(s, a). We consider the case where |A| is finite. There are two main implementation issues in
Algorithm 1 and Algorithm 2. First, we need to compute the integration φV (s, a) efficiently. Note that under (B.1), the
j-th coordinate of the integration [φV (s, a)]j can be decomposed into the production of

∑
s′ V (s′)[ψ(s′)]j and [µ(s, a)]j .

Therefore, we can use Monte Carlo integration to evaluate
∑
s′ V (s′)[ψ(s′)]j and obtain a uniform accurate estimation for

all (s, a) simultaneously. We have the following proposition which can be proved by using Azuma-Hoeffding inequality:

Proposition B.1. Let V be some 1/(1−γ)-bounded function. Suppose for any j ∈ [d], we have the access to the integration
constant Ij =

∑
s′∈S [ψ(s′)]j . Then we generate si,j and denote φ̂V (s, a) ∈ Rd as follows:

si,j ∼ [ψ(·)]j
Ij

, i = 1, . . . , R, [φ̂V (s, a)]j = Ij · [µ(s, a)]j ·
1

R

R∑
i=1

V (si,j),

then for any j, with probability at least 1− δ, for all (s, a) ∈ S ×A, we have∣∣[φV (s, a)]j − [φ̂V (s, a)]j
∣∣ ≤ D log(1/δ)√

R(1− γ)
.

Thus, we can approximate φV (s, a) up to ε-accuracy by φ̂V (s, a) using Õ(1/ε2) points. Second, we consider the efficiency
of EVI. At the first glance we may need to store all values of Q over all (s, a) ∈ S × A, which leads to a |S||A| space
complexity. Actually the complexity can be greatly reduced by approximately using Monte Carlo integration as follows. We
first randomly sample URd data points su,i,j , u ∈ [U ], i ∈ [R], j ∈ [d] by s·,·,j ∼ [ψ(·)]j/Ij . At each iteration u ≤ U − 1,
we calculate the values V (u)(su,i,j) based on V (u−1)(su−1,i

′,j′) through the following induction rule:

V (u)(su,i,j) = max
a∈A

{
r(su,i,j , a) + γ max

θ∈C∩B

〈
θ, φ̂V (u−1)(su,i,j , a)

〉}
, (B.2)

[φ̂V (u−1)(su,i,j , a)]j′ = Ij′ · [µ(su,i,j , a)]j′ ·
1

R

R∑
i′=1

V (u−1)(su−1,i
′,j′).
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The maximization problem (B.2) is reduced to a constrained maximization problem over the convex set C ∩ B, which can
be solved by projected gradient methods (Boyd et al., 2004) efficiently in practice. Then at U -th iteration, we calculate
Q(U)(s, a) as

Q(U)(s, a) = r(s, a) + γ max
θ∈C∩B

〈
θ, φ̂V (U−1)(s, a)

〉
,

[φ̂V (u−1)(s, a)]j = Ij · [µ(s, a)]j ·
1

R

R∑
i=1

V (U−1)(sU−1,i,j).

We can see that to calculate Q(U)(s, a), only dR function values V (U−1)(sU−1,i,j), i ∈ [R], j ∈ [d] need to be stored.
Through the same argument of Proposition B.1, Q(U)(s, a) achieves ε-accuracy using R ∼ Õ(1/ε2) samples. Finally, we
analyze the computational complexity of EVI. Suppose we need B time complexity to solve the maximization problem
maxθ∈C∩B〈θ,a〉 for any a ∈ Rd. Since we need to solve dR|A| number of maximization problem at each iteration of EVI,
then we need UdRB|A| time complexity to obtain V (U−1)(sU−1,i,j), i ∈ [R], j ∈ [d]. After obtaining V (U−1)(sU−1,i,j),
we need dB|A| time complexity to calculate Q(U)(s, a) for any (s, a) ∈ S ×A.

C. Proof of Main Theory
In this section we provide the proof of main theory.

C.1. Proof of Theorem 5.1

In this subsection, we prove Theorem 5.1. Besides Lemmas 6.1-6.4 in Section 6.1, we also need the following three
additional lemmas.

Lemma C.1 (Azuma–Hoeffding inequality). Let {Xk}∞k=0 be a discrete-parameter real-valued martingale sequence such
that for every k ∈ N, the condition |Xk −Xk−1| ≤ µ holds for some non-negative constant µ. Then with probability at
least 1− δ, we have

|Xn −X0| ≤ 2µ
√
n log 1/δ.

Lemma C.2 (Lemma 11 in Abbasi-Yadkori et al. (2011)). For any {xt}Tt=1 ⊂ Rd satisfying that ‖xt‖2 ≤ L, let A0 = λI

and At = A0 +
∑t−1
i=1 xix

>
i , then we have

T∑
t=1

min{1, ‖xt‖A−1
t−1
}2 ≤ 2d log

dλ+ TL2

dλ
.

Lemma C.3 (Lemma 12 in Abbasi-Yadkori et al. (2011)). Suppose A,B ∈ Rd×d are two positive definite matrices
satisfying that A � B, then for any x ∈ Rd, ‖x‖A ≤ ‖x‖B ·

√
det(A)/ det(B).

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. LetK(T )−1 be the number of epochs when Algorithm 1 executes t = T rounds, and tK(T ) = T+1.
Suppose the event in Lemma 6.1 holds. We have

Regret(T ) =

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
V ∗(st)− V πt (st)

]
≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Vk(st)− V πt (st)

]
︸ ︷︷ ︸

Regret′(T )

, (C.1)

where the last inequality holds because of Lemma 6.2. For Regret′(T ), we have

Regret′(T ) =

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
Qk(st, at)− V πt (st)

]
, (C.2)
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where the equality holds because of the policy in Line 8 in Algorithm 1. By Lemma 6.3, with the selection of U , for
tk ≤ t ≤ tk+1 − 1, the Qk(st, at) in Algorithm 1 satisfies

Qk(st, at) ≤ r(st, at) + γ
〈
θt,φVk(st, at)

〉
+ (1− γ)/T, (C.3)

By the Bellman equation and the fact that at = π(st, t), we have

V πt (st) = r(st, at) + γ[PV πt+1](st, at)

= r(st, at) + γ
∑
s′∈S

〈
θ∗,φ(s′|st, at)

〉
V πt+1(s′)

= r(st, at) + γ
〈
θ∗,φV πt+1

(st, at)
〉
, (C.4)

where the second and the third equalities hold because of Definition 3.1. Substituting (C.3) and (C.4) into (C.2), we have

Regret′(T )− (1− γ)

≤ γ
K(T )−1∑
k=0

tk+1−1∑
t=tk

(〈
θt,φVk(st, at)

〉
−
〈
θ∗,φV πt+1

(st, at)
〉)

= γ

K(T )−1∑
k=0

tk+1−1∑
t=tk

(〈
θt,φVk(st, at)

〉
−
〈
θ∗,φVk(st, at)

〉)
︸ ︷︷ ︸

I1

+ γ

K(T )−1∑
k=0

tk+1−1∑
t=tk

〈
θ∗,φVk(st, at)− φV πt+1

(st, at)
〉

= I1 + I2 + I3, (C.5)

where

I2 = γ

K(T )−1∑
k=0

tk+1−1∑
t=tk

{[
P(Vk − V πt+1)

]
(st, at)−

(
Vk(st+1)− V πt+1(st+1)

)}
,

I3 = γ

K(T )−1∑
k=0

tk+1−1∑
t=tk

(
Vk(st+1)− V πt+1(st+1)

)
.

Next we bound I1, I2 and I3 separately. For term I1, we have

I1 ≤ γ
K(T )−1∑
k=0

tk+1−1∑
t=tk

∣∣〈θt − θ∗,φVk(st, at)
〉∣∣

≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

(∥∥θt − θ̂k∥∥Σt
+
∥∥θ̂k − θ∗∥∥Σt

)
‖φVk(st, at)‖Σ−1

t

≤ 2

K(T )−1∑
k=0

tk+1−1∑
t=tk

(∥∥θt − θ̂k∥∥Σtk

+
∥∥θ̂k − θ∗∥∥Σtk

)
‖φVk(st, at)‖Σ−1

t

≤ 4β

K(T )−1∑
k=0

tk+1−1∑
t=tk

‖φVk(st, at)‖Σ−1
t
, (C.6)

where the second inequality holds due to the Cauchy-Schwarz inequality and triangle inequality, the third inequality holds
due to Lemma C.3 with the fact that det(Σt) ≤ 2 det(Σtk), and the fourth inequality holds due to the fact that θt ∈ Ck
from Lemma 6.1. Meanwhile, we have〈

θt,φVk(st, at)
〉
− 〈θ∗,φVk(st, at)

〉
≤ 1

1− γ
, (C.7)
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where we use the fact that 0 ≤ V ∗ ≤ 1/(1−γ) and the fact 〈θt,φ(·|·, ·)〉 is a probability distribution and 0 ≤ Vk ≤ 1/(1−γ).
Combining (C.6) and (C.7), I1 can be further bounded as

I1 ≤
K(T )−1∑
k=0

tk+1−1∑
t=tk

min

{
1

1− γ
, 4β‖φVk(st, at)‖Σ−1

t

}

≤ 4β

K(T )−1∑
k=0

tk+1−1∑
t=tk

min

{
1, ‖φVk(st, at)‖Σ−1

t

}

≤ 4β

√√√√T

K(T )−1∑
k=0

tk+1−1∑
t=tk

min

{
1, ‖φVk(st, at)‖2Σ−1

t

}
, (C.8)

where the second inequality holds because 1/(1− γ) ≤ β, the last inequality holds due to Cauchy-Schwarz inequality. By
Lemma C.2, we have

K(T )−1∑
k=0

tk+1−1∑
t=tk

min

{
1, ‖φVk(st, at)‖2Σ−1

t

}
≤ 2d log

λ+ T/(1− γ)2

λ
, (C.9)

where we use the fact ‖φVk(st, at)‖2 ≤
√
d/(1− γ) deduced by Definition 3.1 and |Vk| ≤ 1/(1− γ) implied by Lemma

6.2. Substituting (C.9) into (C.8), we have

I1 ≤ 6β

√
dT log

λ+ T/(1− γ)2

λ
. (C.10)

For the term I2, it is easy to verify that
[
P(Vk − V πt+1)

]
(st, at)−

(
Vk(st+1)− V πt+1(st+1)

)
forms a martingale difference

sequence. Meanwhile, we have 0 ≤ Vk(s)− V πt+1(s) ≤ 1/(1− γ) implied by Lemma 6.2, which implies that∣∣∣∣[P(Vk − V πt+1)
]
(st, at)−

(
Vk(st+1)− V πt+1(st+1)

)∣∣∣∣ ≤ 1

1− γ
.

Thus by Azuma–Hoeffding inequality in Lemma C.1, we have

I2 = γ

K(T )−1∑
k=0

tk+1−1∑
t=tk

[
P(Vk − V πt+1)

]
(st, at)−

(
Vk(st+1)− V πt+1(st+1)

)
≤ 2γ

1− γ

√
T ln

1

δ
. (C.11)

For the term I3, we have

I3 = γ

K(T )−1∑
k=0

tk+1−1∑
t=tk

(
Vk(st+1)− V πt+1(st+1)

)
= γ

K(T )−1∑
k=0

[ tk+1−1∑
t=tk

(
Vk(st)− V πt (st)

)
−
(
Vk(stk)− V πtk(stk)

)
+
(
Vk(stk+1

)− V πtk+1
(stk+1

)
)]

≤ γ
K(T )−1∑
k=0

[ tk+1−1∑
t=tk

(
Vk(st)− V πt (st)

)
+

2

1− γ

]
= γRegret′(T ) +

2K(T )γ

1− γ
, (C.12)

where the first inequality holds due to 0 ≤ Vk(s)− V πt (s) ≤ 1/(1− γ) implied by Lemma 6.2. Finally, substituting (C.10),
(C.11) and (C.12) into (C.5), we have

Regret′(T )− (1− γ)

≤ 6β

√
dT log

λ+ T/(1− γ)2

λ
+

2γ

1− γ

√
T ln

1

δ
+ γRegret′(T ) +

2K(T )γ

1− γ
. (C.13)
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Thus, we have

Regret′(T ) ≤ 6β

1− γ

√
dT log

λ+ T/(1− γ)2

λ
+

2γ

(1− γ)2

√
T ln

1

δ
+

2K(T )γ

(1− γ)2
+ 1. (C.14)

Substituting β and (C.14) into (C.1) and rearranging it, we have

Regret(T ) ≤ 6

1− γ

√
dT log

λ+ T/(1− γ)2

λ

(
1

1− γ

√
d log

λ(1− γ)2 + Td

δλ(1− γ)2
+
√
λd

)
+

2γ

(1− γ)2

√
T ln

1

δ
+ 1 +

2K(T )γ

(1− γ)2

≤ 6

1− γ

√
dT log

λ+ T/(1− γ)2

λ

(
1

1− γ

√
d log

λ(1− γ)2 + Td

δλ(1− γ)2
+
√
λd

)
+

3
√
T log 1/δ

(1− γ)2
+ 1 +

4d

(1− γ)2
log

λ+ Td

λ(1− γ)2
,

where the last inequality holds due to Lemma 6.4 and the fact that U = d(log(T/(1− γ))/(1− γ)e. Taking an union bound
of Lemma 6.1 and Lemma C.1, we conclude the proof.

C.2. Proof of Theorem 5.4

In this subsection, we will prove Theorem 5.4. Besides Lemmas 6.6-6.8 in Section 6.2, we need the following additional
technical lemma, which is a version of Pinsker’s inequality adapted from Jaksch et al. (2010) that upper bounds the total
variation distance between two signed measure in terms of the Kullback–Leibler (KL) divergence.

Lemma C.4 (Pinsker’s inequality). Denote s = {s1, . . . , sT } ∈ ST as the observed states from step 1 to T . Then for any
two distributions P1 and P2 over ST and any bounded function f : ST → [0, B], we have

E1f(s)− E2f(s) ≤
√

log 2/2B
√

KL(P2‖P1),

where E1 and E2 denote expectations with respect to P1 and P2.

Now we begin our proof. The proof roadmap is similar to that in Jaksch et al. (2010) which aims to prove lower bound for
tabular MDPs.

Proof of Theorem 5.4. First, we can verify that all assumptions in Lemmas 6.7 and 6.8 are satisfied with the assumptions
on γ and T and the choice of δ and ∆. For a given θ, the optimal policy for M(S,A, γ, r,Pθ) is to choose action
aθ = [sgn(θi)]

d−1
i=1 at x0 and x1. Therefore by the optimality Bellman equation, we know that V ∗(x0) and V ∗(x1) satisfy

the following equations

V ∗(x0) = r(x0,aθ) + γEs∼Pθ(·|x0,aθ)V
∗(s), V ∗(x1) = r(x1,aθ) + γEs∼Pθ(·|x1,aθ)V

∗(s). (C.15)

By the definition of our MDP, we have r(x0,aθ) = 0, r(x1,aθ) = 1, and

Pθ(x0|x0,aθ) = 1− δ − 〈aθ,θ〉 = 1− δ −∆,

Pθ(x1|x0,aθ) = δ + 〈aθ,θ〉 = δ + ∆,

Pθ(x0|x1,a) = δ,

Pθ(x1|x1,a) = 1− δ.

Therefore, substituting the above definitions of r and Pθ into (C.15), we have the following equations.

V ∗(x0) = 0 + γ · (1− δ −∆)V ∗(x0) + γ · (δ + ∆)V ∗(x1),

V ∗(x1) = 1 + γ · δV ∗(x0) + γ · (1− δ)V ∗(x1).
(C.16)



Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping

From (C.16), we can calculate V ∗(x0) and V ∗(x1) as follows

V ∗(x0) =
γ(∆ + δ)

(1− γ)(γ(2δ + ∆− 1) + 1)
, V ∗(x1) =

γ(∆ + δ) + 1− γ
(1− γ)(γ(2δ + ∆− 1) + 1)

. (C.17)

Then by Lemma 6.6 we have

EθRegret(θ) ≥ Eθ

[ T∑
t=1

V ∗(st)−
1

1− γ

T∑
t′=1

r(st′ , at′)−
γ

(1− γ)2

]
.

Now we do the summation over 2d−1 possible θ, then the expectation of regret can be written as follows:

1

|Θ|
∑
θ

[
EθRegret(θ) +

γ

(1− γ)2

]

≥ 1

|Θ|
∑
θ

Eθ

[
N0V

∗(x0) +N1V
∗(x1)− 1

1− γ

T∑
t=1

r(st, at)

]
=

1

1− γ
1

|Θ|
∑
θ

Eθ

[
N0

γ(∆ + δ)

γ(2δ + ∆− 1) + 1
+N1

(
γ(∆ + δ) + 1− γ
γ(2δ + ∆− 1) + 1

− 1

)]
=

1

1− γ
1

|Θ|
∑
θ

Eθ

[
N0

γ(∆ + δ)

γ(2δ + ∆− 1) + 1
+N1

−γδ
γ(2δ + ∆− 1) + 1

]
=

1

1− γ
1

|Θ|
∑
θ

Eθ

[
T

γ(∆ + δ)

γ(2δ + ∆− 1) + 1
−N1

γ(∆ + 2δ)

γ(2δ + ∆− 1) + 1

]
=

1

1− γ
T

γ(∆ + δ)

γ(2δ + ∆− 1) + 1
− 1

1− γ
γ(∆ + 2δ)

γ(2δ + ∆− 1) + 1

1

|Θ|
∑
θ

EθN1, (C.18)

where the first equality holds due to the value of V ∗(x0), V ∗(x1) in (C.17) and the fact that r(st, at) = 1 for st = x1 and
r(st, at) = 0 for st = x0. Next we are going to bound |Θ|−1

∑
θ EθN1. By Lemma 6.7, we have

1

|Θ|
∑
θ

EθN1 ≤ T/2 +
1

2δ|Θ|
∑
θ

∑
a

〈a,θ〉EθN
a
0

=
T

2
+

1

2δ

∆

(d− 1)|Θ|

d−1∑
j=1

∑
a

∑
θ

Eθ(21{sgn(θj) = sgn(aj)} − 1)Na
0

≤ T

2
+

1

2δ

∆

(d− 1)|Θ|

d−1∑
j=1

∑
a

∑
θ

Eθ 1{sgn(θj) = sgn(aj)}Na
0 , (C.19)

where the second inequality holds since (21{sgn(θj) = sgn(aj)} − 1) ≤ 1{sgn(θj) = sgn(aj)}. From now on we focus
on some specific j ∈ [d− 1]. Taking θ′ to be the vector which has the same entries as θ, only except for j-th coordinate
such as θ′j = −θj . Then

Eθ 1{sgn(θj) = sgn(aj)}Na
0 + Eθ′ 1{sgn(θ′j) = sgn(aj)}Na

0

= Eθ′N
a
0 + Eθ 1{sgn(θj) = sgn(aj)}Na

0 − Eθ′ 1{sgn(θj) = sgn(aj)}Na
0 . (C.20)
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Thus taking summation of (C.20) for all a ∈ A and θ ∈ Θ, we have

2
∑
a

∑
θ

Eθ 1{sgn(θj) = sgn(aj)}Na
0

=
∑
θ

∑
a

[
Eθ′N

a
0 + Eθ 1{sgn(θj) = sgn(aj)}Na

0 − Eθ′ 1{sgn(θj) = sgn(aj)}Na
0

]
=
∑
θ

[
Eθ′N0 + EθN

Aθ
j

0 − Eθ′N
Aθ
j

0

]
≤
∑
θ

[
Eθ′N0 +

cT

8

√
KL(Pθ′‖Pθ)

]
≤
∑
θ

[
Eθ′N0 +

cT∆

d
√
δ

√
EθN0

]
, (C.21)

where Aθ
j is the set of a which satisfies that sgn(θj) = sgn(aj), c = 4

√
log 2. The first inequality holds due to Lemma

C.4 with the fact that N
Aθ
j

0 is a function of s1, . . . , sT and N
Aθ
j

0 ≤ T , the second inequality holds due to Lemma 6.8.
Substituting (C.21) into (C.19), we have

1

|Θ|
∑
θ

EθN1 ≤ T/2 +
∆

4δ(d− 1)|Θ|

d−1∑
j=1

∑
θ

[
Eθ′N0 + cT

∆

d
√
δ

√
EθN0

]
= T/2 +

∆

4δ|Θ|
∑
θ

[
Eθ′N0 + cT

∆

d
√
δ

√
EθN0

]
≤ T

2
+

∆T

5δ
+
cT 3/2∆2

4dδ3/2
, (C.22)

where the last inequality holds due to EθN0,Eθ′N0 ≤ 4T/5 from Lemma 6.7. Substituting (C.22) into (C.18), we have

1

|Θ|
∑
θ

[
EθRegret(θ) +

γ

(1− γ)2

]

≥ 1

1− γ
T

γ(∆ + δ)

γ(2δ + ∆− 1) + 1
− 1

1− γ
γ(∆ + 2δ)

γ(2δ + ∆− 1) + 1
·
(
T

2
+

∆T

5δ
+
cT 3/2∆2

4dδ3/2

)
=

1

(1− γ)(γ(2δ + ∆− 1) + 1)

[
γ∆T

2
− γ(∆ + 2δ)

∆T

5δ
− γ(∆ + 2δ)

cT 3/2∆2

4dδ3/2

]
≥ 1

4(1− γ)2

[
γ∆T

2
− γ(∆ + 2δ)

∆T

5δ
− γ(∆ + 2δ)

cT 3/2∆2

4dδ3/2

]
≥ 1

4(1− γ)2

[
γ∆T

2
− γ 9δ

4

∆T

5δ
− γ 9δ

4

cT 3/2∆2

4dδ3/2

]
=

1

4(1− γ)2

[
1

20
γ∆T − γ 9cT 3/2∆2

16d
√
δ

]
=

γd
√
T

1600c(1− γ)1.5
,

where the second inequality holds since δ = 1− γ and γ(2δ+ ∆− 1) + 1 ≤ 1− γ+ 3δγ = 1− γ+ 3(1− γ)γ ≤ 4(1− γ),
the third inequality holds due to the fact that 4∆ < δ ≤ 1/3, the last inequality holds due to the choice of ∆ and δ. Therefore,
there exists θ ∈ Θ such that

EθRegret(θ) ≥ γd
√
T

1600c(1− γ)1.5
− γ

(1− γ)2
.

Setting θ̃ = (θ>, 1)> ∈ Rd completes our proof.
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D. Proof of lemmas in Section 6.1
D.1. Proof of Lemma 6.1

Proof of Lemma 6.1. Recall the definition of θ̂k in Algorithm 1, we have

θ̂k =

(
λI +

k−1∑
j=0

tj+1−1∑
i=tj

φVj (si, ai)φVj (si, ai)
>
)−1( k−1∑

j=0

tj+1−1∑
i=tj

φVj (si, ai)Vj(si+1)

)
.

It is worth noting that for any 0 ≤ j ≤ k − 1 and tj ≤ i ≤ tj+1 − 1,

[PVj ](si, ai) =
∑
s′

P(s′|si, ai)Vj(si, ai)

=
∑
s′

〈φ(s′|si, ai),θ∗〉Vj(s′)

=
〈∑

s′

φ(s′|si, ai)Vj(s′),θ∗
〉

= 〈φVj (si, ai),θ∗〉, (D.1)

thus {Vj(si+1)− 〈φVj (si, ai),θ∗〉} forms a martingale difference sequence. Besides, since 0 ≤ Vj(s) ≤ 1/(1− γ) for any
s, then Vj(si+1)−〈φVj (si, ai),θ∗〉 is a sequence of 1/(1− γ)-subgaussian random variables with zero means. Meanwhile,
we have ‖φVj (si, ai)‖2 ≤

√
d/(1− γ) and ‖θ∗‖2 ≤ S by Definition 3.1. By Theorem 2 in Abbasi-Yadkori et al. (2011),

we have that with probability at least 1− δ, θ∗ belongs to the following set for all 1 ≤ k ≤ K:{
θ :
∥∥∥Σ1/2

tk
(θ − θ̂k)

∥∥∥
2
≤ 1

1− γ

√
d log

λ(1− γ)2 + tkd

δλ(1− γ)2
+
√
λS

}
. (D.2)

Finally, by the definition of βk and the fact that 〈θ∗,φ(s′|s, a)〉 = P(s′|s, a) for all (s, a), we draw the conclusion that
θ∗ ∈ B ∩ Ck for 1 ≤ k ≤ K.

D.2. Proof of Lemma 6.2

Proof of Lemma 6.2. We use induction to prove this lemma. We only need to prove that for all 0 ≤ u ≤ U , Q(u) ≥ Q∗. We
have

1

1− γ
= Q(0)(s, a) ≥ Q∗(s, a),

where the inequality holds due to the fact that Q∗(s, a) ≤ 1/(1− γ) caused by 0 ≤ r(s, a) ≤ 1. Assume that the statement
holds for u, then Q(u)(s, a) ≥ Q∗(s, a), which leads to V (u)(s) ≥ V ∗(s). Furthermore, we have

Q(u+1)(s, a)− r(s, a) = γ max
θ∈B∩C

〈
θ,φV (u)(s, a)

〉
≥ γ

〈
θ∗,φV (u)(s, a)

〉
= γPV (u)(s, a), (D.3)

where the inequality holds since θ∗ ∈ C ∩ B for any (s, a) ∈ S ×A due to Lemma 6.1. We further have

Q(u+1)(s, a) = r(s, a) + γP̃V (u)(s, a) ≤ 1 +
γ

1− γ
=

1

1− γ
,

where P̃ is some distribution, the equality holds since θ ∈ B, the inequality holds due to the fact that V (u)(s) ≤ 1/(1− γ).
We also have

Q(u+1)(s, a) ≥ r(s, a) + γ[PV (u)](s, a) ≥ r(s, a) + γ[PV ∗](s, a) = Q∗(s, a),

where the first inequality holds due to (D.3), and the second inequality holds because the induction assumption. Thus the
statement holds for u+ 1. Therefore, our conclusion holds.
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D.3. Proof of Lemma 6.3

Proof of Lemma 6.3. We first prove the following inequality:

Q(U)(s, a)−Q(U−1)(s, a) ≤ 2γU−1. (D.4)

By the update rule in Algorithm 2, for any u ≥ 2, we have

Q(u)(s, a) = r(s, a) + γ max
θ∈C∩B

〈
θ,φV (u−1)(s, a)

〉
,

Q(u−1)(s, a) = r(s, a) + γ max
θ∈C∩B

〈
θ,φV (u−2)(s, a)

〉
.

Thus for any (s, a) ∈ S ×A, we have∣∣∣Q(u)(s, a)−Q(u−1)(s, a)
∣∣∣ = γ

∣∣∣∣ max
θ∈C∩B

〈
θ,φV (u−1)(s, a)

〉
− max

θ∈C∩B

〈
θ,φV (u−2)(s, a)

〉∣∣∣∣
≤ γ max

θ∈C∩B

∣∣∣〈θ,φV (u−1)(s, a)− φV (u−2)(s, a)
〉∣∣∣ (D.5)

= γ
∣∣∣〈θ̃,φV (u−1)(s, a)− φV (u−2)(s, a)

〉∣∣∣
= γ

∣∣∣P̃[V (u−1) − V (u−2)](s, a)
∣∣∣, (D.6)

where θ̃ is the θ which attains the maximum of (D.5), and P̃(s′|s, a) = 〈θ̃,φ(s′|s, a)〉. The inequality holds due to the
contraction property of max function. Then (D.6) can be further bounded as follows:

γ
∣∣∣P̃[V (u−1) − V (u−2)](s, a)

∣∣∣ ≤ γmax
s′∈S

∣∣∣V (u−1)(s′)− V (u−2)(s′)
∣∣∣

= γmax
s′∈S

∣∣∣max
a′∈A

Q(u−1)(s′, a′)−max
a′∈A

Q(u−2)(s′, a′)
∣∣∣

≤ γ max
(s′,a′)∈S×A

∣∣∣Q(u−1)(s′, a′)−Q(u−2)(s′, a′)
∣∣∣, (D.7)

where the first inequality holds due to the fact that |P̃f(s, a)| ≤ maxs′∈S |f(s′)| for any (s, a, s′), the second inequality
holds due to the contraction property of max function. Substituting (D.7) into (D.6) and taking the maximum over (s, a), we
have

max
(s,a)∈S×A

∣∣∣Q(u)(s, a)−Q(u−1)(s, a)
∣∣∣ ≤ γ max

(s,a)∈S×A

∣∣∣Q(u−1)(s, a)−Q(u−2)(s, a)
∣∣∣.

Therefore, we have

max
(s,a)∈S×A

∣∣∣Q(U)(s, a)−Q(U−1)(s, a)
∣∣∣ ≤ γU−1 max

(s,a)∈S×A

∣∣∣Q(1)(s, a)−Q(0)(s, a)
∣∣∣

= γU−1 max
(s,a)∈S×A

∣∣∣∣r(s, a) +
γ

1− γ
− 1

1− γ

∣∣∣∣
≤ 2γU−1,

where the last inequality holds due to the fact that 0 ≤ r(s, a) ≤ 1 for any (s, a). Therefore we prove (D.4). To prove the
original statement, we have

Q(U)(st, at) = r(st, at) + γ max
θ∈Ck∩B

〈
θ,φV (U−1)(st, at)

〉
(D.8)

= r(st, at) + γ
〈
θ̌,φV (U−1)(st, at)

〉
= r(st, at) + γP̌V (U−1)(st, at)

= r(st, at) + γP̌V (U)(st, at) + γP̌[V (U−1) − V (U)](st, at)

≤ r(st, at) + γP̌V (U)(st, at) + γ max
(s,a)∈S×A

∣∣∣Q(U)(s, a)−Q(U−1)(s, a)
∣∣∣

≤ r(st, at) + γP̌V (U)(st, at) + 2γU

= r(st, at) + γ
〈
θ̌,φV (U)(st, at)

〉
+ (1− γ)/T, (D.9)
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where θ̌ is the θ which attains the maximum of (D.8), P̌(s′|st, at) = 〈θ̌,φ(s′|st, at)〉. The first inequality holds due to
the fact that |P̌f(st, at)| ≤ maxs′∈S |f(s′)| and maxs |V (U−1)(s)− V (U)(s)| ≤ maxs,a |Q(U−1)(s, a)−Q(U)(s, a)|, the
second inequality holds due to (D.4). Taking θt = θ̌, our conclusion holds.

D.4. Proof of Lemma 6.4

Proof of Lemma 6.4. For simplicity, we denote K = K(T ). Note that det(Σ1) = λd. We further have

‖ΣT+1‖2 =

∥∥∥∥λI +

K−1∑
k=0

tk+1−1∑
t=tk

φVk(st, at)φVk(st, at)
>
∥∥∥∥
2

≤ λ+

K−1∑
k=0

tk+1−1∑
t=tk

∥∥φVk(st, at)
∥∥2
2

≤ λ+
Td

(1− γ)2
, (D.10)

where the first inequality holds due to the triangle inequality, the second inequality holds due to the fact Vk ≤ 1/(1− γ)
from Lemma 6.2 and Definition 3.1. (D.10) suggests that det(ΣT+1) ≤ (λ+ Td/(1− γ)2)d. Therefore, we have(

λ+
Td

(1− γ)2

)d
≥ det(ΣT+1) ≥ det(ΣtK−1

) ≥ 2K−1 det(Σt0) = 2K−1λd, (D.11)

where the second inequality holds since ΣT � ΣtK−1
, the third inequality holds due to the fact that det(Σtk) ≥

2 det(Σtk−1
) by the update rule in Algorithm 1. (D.11) suggests

K ≤ 2d log
λ+ Td

λ(1− γ)2
.

E. Proof of lemmas in Section C.2
E.1. Proof of Lemma 6.6

Proof of Lemma 6.6. We have the following equations due to the expectation.

EθRegret(θ) = Eθ

[ T∑
t=1

V ∗(st)−
T∑
t=1

∞∑
t′=0

γt
′
r(st+t′ , at+t′)

]

= Eθ

[ T∑
t=1

V ∗(st)−
∞∑
t=1

t−1∑
t′=max{0,t−T}

γt
′
r(st, at)

]

= Eθ

[ T∑
t=1

V ∗(st)−
T∑
t=1

r(st, at)

t−1∑
t′=0

γt
′

︸ ︷︷ ︸
I1

−
∞∑

t=T+1

r(st, at)

t−1∑
t′=t−T

γt
′

︸ ︷︷ ︸
I2

]
. (E.1)

For I1, we have

I1 ≤
T∑
t=1

r(st, at)

∞∑
t′=0

γt
′

=

T∑
t=1

r(st, at)/(1− γ), (E.2)

where the first inequality holds since t− 1 ≤ ∞.

For I2, we have

I2 ≤
∞∑

t=T+1

1 ·
t−1∑

t′=t−T
γt
′
≤

∞∑
t=T+1

1 ·
∞∑

t′=t−T
γt
′

=

∞∑
t=T+1

1 · γ
t−T

1− γ
=

γ

(1− γ)2
, (E.3)
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where the first inequality holds since r(st, at) ≤ 1, the second inequality holds since t− 1 ≤ ∞. Substituting (E.2) and
(E.3) into (E.1), we have

EθRegret(θ) ≥ Eθ

[ T∑
t=1

V ∗(st)−
1

1− γ

T∑
t′=1

r(st′ , at′)−
γ

(1− γ)2

]
.

E.2. Proof of Lemma 6.7

Proof of Lemma 6.7. We have

EθN1 =

T∑
t=2

Pθ(st = x1)

=

T∑
t=2

Pθ(st = x1|st−1 = x1)Pθ(st−1 = x1)︸ ︷︷ ︸
I1

+

T∑
t=2

Pθ(st = x1, st−1 = x0)︸ ︷︷ ︸
I2

. (E.4)

For I1, since Pθ(st = x1|st−1 = x1) = 1− δ no matter which action is taken, thus we have

I1 = (1− δ)
T∑
t=2

Pθ(st−1 = x1) = (1− δ)EθN1 − (1− δ)Pθ(sT = x1). (E.5)

Next we bound I2. We can further decompose I2 as follows:

I2 =

T∑
t=2

∑
a

Pθ(st = x1|st−1 = x0, at−1 = a)Pθ(st−1 = x0, at−1 = a)

=

T∑
t=2

∑
a

(δ + 〈a,θ〉)Pθ(st−1 = x0, at−1 = a)

=
∑
a

(δ + 〈a,θ〉)
[
EθN

a
0 − Pθ(sT = x0, aT = a)

]
. (E.6)

Substituting (E.5) and (E.6) into (E.4) and rearranging it, we have

EθN1 =
∑
a

(1 + 〈a,θ〉/δ)EθN
a
0

−
[

1− δ
δ
Pθ(sT = x1) +

∑
a

(1 + 〈a,θ〉/δ)Pθ(sT = x0, aT = a)

]
︸ ︷︷ ︸

ψθ

= EθN0 + δ−1
∑
a

〈a,θ〉EθN
a
0 − ψθ, (E.7)

where Ψθ is non-negative because 〈a,θ〉 ≥ −∆ ≥ −δ. (E.7) immediately implies that

EθN1 ≤ T/2 + δ−1
∑
a

〈a,θ〉EθN
a
0 /2. (E.8)
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We now bound EθN0. By (E.7), we have

EθN1 = EθN0 + δ−1
∑
a

〈a,θ〉EθN
a
0 − ψθ

≥ EθN0 −
∆

δ
EθN0 −

1− δ
δ
Pθ(sT = x1)−

[
1 +

∆

δ

]
Pθ(sT = x0)

= (1−∆/δ)EθN0 − (1− δ)/δ +
1−∆

δ
Pθ(sT = x0)

≥ (1−∆/δ)EθN0 − (1− δ)/δ, (E.9)

where the first equality holds due to (E.7), the first inequality holds due to the fact that 〈a,θ〉 ≤ ∆, the last inequality holds
since Pθ(sT = x0) > 0. (E.9) suggests that

EθN0 ≤
T + (1− δ)/δ

2−∆/δ
≤ 4

5
T,

where the last inequality holds due to the fact that 2∆ ≤ δ and (1− δ)/δ < T/5.

E.3. Proof of Lemma 6.8

We need the following lemma:

Lemma E.1 (Lemma 20 in Jaksch et al. (2010)). Suppose 0 ≤ δ′ ≤ 1/2 and ε′ ≤ 1− 2δ′, then

δ′ log
δ′

δ′ + ε′
+ (1− δ′) log

(1− δ′)
1− δ′ − ε′

≤ 2(ε′)2

δ′
.

Proof of Lemma 6.8. Let st be {s1, . . . , st}. By the Markovian property of MDPs, we can first decompose the KL
divergence as follows:

KL(Pθ′‖Pθ) =

T−1∑
t=1

KL
[
Pθ′(st+1|st)

∥∥∥Pθ(st+1|st)
]
,

where the KL divergence between Pθ′(st+1|st),Pθ(st+1|st) is defined as follows:

KL
[
Pθ′(st+1|st)

∥∥∥Pθ(st+1|st)
]

=
∑

st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

.

Now we further bound the above terms as follows:∑
st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

=
∑

st∈St
Pθ′(st)

∑
x∈S
Pθ′(st+1 = x|st) log

Pθ′(st+1 = x|st)
Pθ(st+1 = x|st)

=
∑

st−1∈St−1

Pθ′(st−1)
∑

x′∈S,a∈A
Pθ′(st = x′, at = a|st−1)

·
∑
x∈S
Pθ′(st+1 = x|st−1, st = x′, at = a) log

Pθ′(st+1 = x|st−1, st = x′, at = a)

Pθ(st+1 = x|st−1, st = x′, at = a)︸ ︷︷ ︸
I1

,

where S = {x0, x1}. When x′ = x1, by the definition of the hard MDP constructed in Section 6.2, we have Pθ′(st+1 =
x|st−1, st = x′, at = a) = Pθ(st+1 = x|st−1, st = x′, at = a) for all θ′,θ since the transition probability at x1 is
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irrelevant to θ due to the MDP we choose. This implies when x′ = x1, I1 = 0. Therefore,∑
st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

=
∑

st−1∈St−1

Pθ′(st−1)
∑
a

Pθ′(st = x0, at = a|st−1)

·
∑
x∈S
Pθ′(st+1 = x|st−1, st = x0, at = a) log

Pθ′(st+1 = s|st−1, st = x0, at = a)

Pθ(st+1 = s|st−1, st = x0, at = a)

=
∑
a

Pθ′(st = x0, at = a)

·
∑
x∈S
Pθ′(st+1 = s|st = x0, at = a) log

Pθ′(st+1 = x|st = x0, at = a)

Pθ(st+1 = x|st = x0, at = a)︸ ︷︷ ︸
I2

. (E.10)

To bound I2, due to the structure of the MDP, we know that st+1 follows the Bernoulli distribution over x0 and x1 with
probability 1− δ − 〈a,θ′〉 and δ + 〈a,θ′〉, then we have

I2 = (1− 〈θ′,a〉 − δ) log
1− 〈θ′,a〉 − δ
1− 〈θ,a〉 − δ

+ (〈θ′,a〉+ δ) log
〈θ′,a〉+ δ

〈θ,a〉+ δ
≤ 2〈θ′ − θ,a〉2

〈θ′,a〉+ δ
, (E.11)

where the inequality holds due to Lemma E.1 with δ′ = 〈θ′,a〉+ δ and ε′ = 〈θ − θ′,a〉. Specifically, it can be verified that

δ′ = 〈θ′,a〉+ δ ≤ ∆ + δ ≤ 1/2, (E.12)

where the first inequality holds due to the definition of θ′, the second inequality holds since ∆ < δ/2 ≤ 1/6. It can also be
verified that

ε′ = 〈θ − θ′,a〉 ≤ 2∆ ≤ 1− 2(∆ + δ) ≤ 1− 2δ′, (E.13)

where the first inequality holds due to the definition of θ′,θ, the second inequality holds since ∆ < δ/4 ≤ 1/12, and the
last inequality holds since δ′ = 〈θ′,a〉+ δ ≤ ∆ + δ due to the definition of θ′. (E.12) together with (E.13) show that we
can indeed apply Lemma E.1 to the last step of (E.11). I2 can be further bounded as follows:

I2 ≤
4〈θ′ − θ,a〉2

δ
=

16∆2

(d− 1)2δ
, (E.14)

where the inequality holds due to (E.11) and the fact that δ+ 〈θ′,a〉 ≥ δ−∆ ≥ δ/2. Substituting (E.14) into (E.10), taking
summation from t = 1 to T − 1, we have

KL(Pθ′‖Pθ) =

T−1∑
t=1

∑
st+1∈St+1

Pθ′(st+1) log
Pθ′(st+1|st)
Pθ(st+1|st)

≤ 16∆2

(d− 1)2δ

T−1∑
t=1

∑
a

Pθ′(st = x0, at = a)

=
16∆2

(d− 1)2δ

T−1∑
t=1

Pθ′(st = x0)

≤ 16∆2

(d− 1)2δ
Eθ′N0,

where the last inequality holds due to the definition of N0.


