
Amortized Conditional Normalized Maximum Likelihood

A. Experimental Details
For obtaining approximate posteriors with SWAG and
KFAC-Laplace, we follow the exact training procedures
given in Maddox et al. (2019). We then implement ACNML
on top of the diagonal SWAG posterior and the KFAC-
Laplace posterior.

The variance of the SWAG posterior depends in a com-
plex way on the learning rate and gradient covariances. To
account for this, we introduce an additional temperature
hyperparameter α and solve for the ACNML approximation
using

θ∗ = argmax
θ∈Θ

log pθ(yn|xn) +
1

α
log q(θ). (16)

To calibrate α, we can calculate the CNML distribution us-
ing a validation set, by training on the entire training set
and the validation point, and then selecting α such that our
ACNML procedure produces similar likelihoods. We can
also treat α as a tunable hyperparameter and select it us-
ing a validation set, similarly to how temperature scaling
(Guo et al., 2017) is used to achieve better calibration for
prediction, or how the relative weighting of priors and like-
lihoods are used in generalized Bayesian inference (Vovk,
1990) or safe Bayesian inference (Grünwald et al., 2017) as
a way to deal with model misspecification. For our exper-
iments using the SWAGD posterior, we heuristically tune
α to be as large as possible without degrading the accuracy
compared to the MAP solution. Note, however, that this
procedure is specific to the particular way in which SWAG
estimates the parameter distribution, and any posterior in-
ference procedure that explicitly approximates the posterior
likelihood (e.g., Blundell et al. (2015)) would not require
this step. To select α for each model class, we swept over
values [0.25, 0.5, 1, 1.5, 2] and selected the highest value
such that accuracy and NLL on the validation set did not
degrade significantly compared to SWA. For VGG16, we
use α = 0.5 and for WideResNet28x10, we used α = 1.5.

ACNML Optimization Details: With our approximate pos-
terior q(θ) being a Gaussian with covariance Σ, we approxi-
mately compute the MAP solution for each label y as per
Algorithm 1 by initializing θ0 to be the posterior mean and
iterating

θt+1 = θt + εtΣ(α∇ log pθt(y|xn) +∇ log q(θt)), (17)

using the covariance as a preconditioner. Similarly to the
influence function calculation for the post update parameters
discussed in section 3.2, this corresponds to taking approx-
imate Newton steps at each iteration, using the Hessian
approximation of the training set given by our approximate
posterior. For our experiments, we used a constant step size
ε = 0.5 for the SWAG-D and BBP posteriors, and ε = 0.25
with KFAC-Laplace. We empirically found that 5 steps was

often enough to find an approximate stationary point with
the SWAG-D posterior, and 10 steps for the KFAC-Laplace
posterior.

For the reliability diagrams in Figure 5, we again follow the
procedure used by Maddox et al. (2019). We first divide
the points into twenty bins uniformly based on confidence
(each bin has the same number of points), then plot the mean
accuracy vs mean confidence within each bin. This differs
from the reliability diagrams used by Guo et al. (2017),
where they divide the range of confidence values into bins
uniformly, resulting in unevenly filled bins.

For our expected calibration error (ECE) numbers, we use
the same bins as computed for our reliability diagrams, and
compute

ECE =

K∑
i=1

P (i) · |oi − ei| , (18)

where P (i) is the empirical probability a randomly chosen
point lies in bin i, oi is the accuracy within bin i, and ei is
the average confidence in bin i.

We adapted the SWAG authors’ implementation at
https://github.com/wjmaddox/swa gaussian to include the
ACNML procedure for test time evaluation. Experiments
were conducted using a mix of local GPU servers and
Google Cloud Program compute resources.

MNIST Experimental Details: For the MNIST experi-
ments, we used a feedforward network with 2 hidden layers
of size 1200, with no data augmentation. The posterior is
factored as independent Gaussians for each parameter, with
the prior for each parameter being a zero-mean Gaussian
with standard deviation 0.1.

We include an expanded results with additional metrics in
Figure 13.

B. Further Experimental Results and
Comparisons on CIFAR10

In addition to the comparisons in the main paper, we addi-
tionally compare to SWA-Gaussian (SWAG), which uses a
more expressive posterior than SWAG-D, SWA with Monte
Carlo Dropout (Gal and Ghahramani, 2015) (SWA-Drop),
and SWA-Ensemble, which averages the predictions of in-
dependent runs of SWA as with regular deep ensembles
(Lakshminarayanan et al., 2016). For reference, we show
in-distribution performance of all methods in Table 2. Over-
all, performance differences between all methods are quite
small, and ACNML’s conservative predictions do not im-
prove on NLL or ECE over some baselines on in-distribution
performance, which is to be expected, since the main aim
of our method is produce more calibrated predictions on
out-of-distribution tasks.

Amortized Conditional Normalized Maximum Likelihood

For all Bayesian marginalization methods, we marginalize
over 30 model samples, with the exception of SWA En-
sembles, for which we average over 10 models, as each
model sample requires training an model independently
from scratch.

For completeness, we show expanded results on CIFAR10-
Corrupted in Figures 7, 8, and 9, which include additional
baselines and metrics. ACNML consistently achieves sig-
nificantly better ECE than prior methods on the more se-
vere corruptions, and generally comparable or slightly better
NLL and Brier scores to the best performing baselines. With
the same architecture, all methods generally have very simi-
lar accuracy, with the exception of SWA-Ensemble slightly
outperforming better than other methods in accuracy.

While evaluating MC-Dropout, we found that adding
dropout before each layer in VGG16 (labelled VGG16Drop
in 8) significantly improved performance on CIFAR10-
C. For fair comparisons, we reran all methods with the
VGG16Drop architecture as well. We again find that AC-
NML performs the best in terms of calibration on the more
severe corruptions.

C. Comparisons between ACNML and naive
CNML on MNIST

In this section, we include expanded comparisons between
ACNML and a naive implementation of CNML from Bibas
et al. (2019) that computes the MLE/MAP θ̂y for each label
by appending the query point and label to the dataset and
finetuning for N epochs. Both ACNML and naive CNML
are initialized from the same MAP solution, with ACNML
taking 5 gradient steps on the query point and posterior and
naive CNML finetuning with the query point and training
set for 5 epochs. For the OOD dataset, instead of comput-
ing results for every level of corruption, we instead simply
average out over all corruption levels by randomly rotating
the test inputs.

This naive implementation of CNML differs slightly from
Bibas et al. (2019) in that we finetune the entire network,
while Bibas et al. (2019) proposed only tuning the last few
layers. During the finetuning, we also append the query
point and label to every batch in optimization, and down-
weighting that portion of the loss accordingly to get unbi-
ased gradient estimates. We found this led to more efficient
optimization than randomly sampling

We first examine how closely ACNML and naive CNML’s
predictions match on the same datapoint. To assess this,
we compare the CNML normalization terms

∑
y pθ̂y (y|x),

NLLs, and the confidences of the two methods. The CNML
normalization term captures how much each procedure was
able to adapt to different labels for that input. A higher
normalization term for an input means that we were flexible
enough to fit multiple different labels well together with
the training set (or approximate posterior in the case of
ACNML), and typically means a less confident prediction
on that input.

In Figures 10 and 11, We show scatter plots over 1000 ran-
domly selected test points (from the in-distribution test set
and the randomly rotated OOD images respectively) com-
paring the CNML normalizers, NLLs, and confidences of
ACNML and naive CNML. In each scatter plot, we include
a diagonal red line to illustrate where points would lie if
predictions of ACNML and naive CNML matched exactly.

We additionally plot reliability diagrams for MNIST exper-
iments in Figure 12, showing that ACNML provides very
conservative predictions.

For the in-distribution test set, we see from the CNML
normalizer plot that the ACNML adaptation procedure using
the approximate posterior is much less constraining than
using the training set, resulting in the normalizers being
higher for ACNML than naive CNML for almost all inputs.
This leads to excess conservatism, with ACNML almost
always having lower confidence its predictions. As a result,

Amortized Conditional Normalized Maximum Likelihood

(a) CIFAR10C VGG16 ECEs (lower is better)

(b) CIFAR10C VGG16 Accuracies (higher is better)

(c) CIFAR10C VGG16 Brier scores (lower is better)

(d) CIFAR10C VGG16 NLLs (lower is better)

Figure 7. CIFAR10-C performance with the VGG16 architecture. Instantations of our methods are shown in stripes. Boxplots show
quartiles of each statistic over all different corruption types of the given intensity, with the mean indicated by a circle. Both ACNML
variants attain significantly better ECE (a) on the more severe corruptions, as the images move further out of distribution.

Amortized Conditional Normalized Maximum Likelihood

(a) CIFAR10C VGG16Drop ECEs (lower is better)

(b) CIFAR10C VGG16Drop Accuracies (higher is better)

(c) CIFAR10C VGG16Drop Brier scores (lower is better)

(d) CIFAR10C VGG16Drop NLLs (lower is better)

Figure 8. CIFAR10-C performance with the VGG16Drop architecture. Instantations of our methods are shown in stripes. Boxplots show
quartiles of each statistic over all different corruption types of the given intensity, with the mean indicated by a circle. Again, both
ACNML variants attain significantly better ECE (a) on the more severe corruptions, as the images move further out of distribution.

Amortized Conditional Normalized Maximum Likelihood

(a) CIFAR10C WRN28x10 ECEs (lower is better)

(b) CIFAR10C WRN28x10 Accuracies (higher is better)

(c) CIFAR10C WRN28x10 Brier scores (lower is better)

(d) CIFAR10C WRN28x10 NLLs (lower is better)

Figure 9. CIFAR10-C performance with the WideResNet28x10 architecture. Instantations of our methods are shown in stripes. Boxplots
show quartiles of each statistic over all different corruption types of the given intensity, with the mean indicated by a circle. Again, we see
that ACNML attains better ECE values than comparable methods on the heavier corruptions (b).

Amortized Conditional Normalized Maximum Likelihood

CIFAR10 Results VGG16 WideResNet28x10
NLL Accuracy ECE NLL Accuracy ECE

ACNML-SWAGD (ours) 0.2167± 0.0041 93.23± 0.09 0.0115± 0.0010 0.1130± 0.0012 96.38± 0.03 0.0122± 0.0006
ACNML-KFAC (ours) 0.2329± 0.0028 93.14± 0.08 0.0361± 0.0016 - - -

MAP (SWA) 0.2694± 0.0056 93.23± 0.13 0.0430± 0.0010 0.1128± 0.0014 96.41± 0.01 0.0099± 0.0004
SWAGD 0.2257± 0.0047 93.31± 0.04 0.0284± 0.0002 0.1125± 0.0012 96.28± 0.04 0.0042± 0.0003
SWAG 0.2016± 0.0031 93.60± 0.10 0.0158± 0.0030 0.1122± 0.0009 96.32± 0.08 0.0088± 0.0006

KFAC-Laplace 0.2236± 0.0013 92.76± 0.11 0.0097± 0.0005 0.1197± 0.0031 96.23± 0.02 0.0111± 0.0006
SWA-Dropout 0.2562± 0.0025 92.85± 0.14 0.0380± 0.0007 0.1111± 0.0024 96.36± 0.09 0.0107± 0.0008

SWA-Temp 0.2481± 0.0245 93.61± 0.11 0.0366± 0.0063 0.1064± 0.0004 96.46± 0.04 0.0080± 0.0007
SGD 0.3285± 0.0139 93.17± 0.14 0.0483± 0.0022 0.1294± 0.0022 96.41± 0.10 0.0166± 0.0007

SWA-Ensemble 0.17867 94.36 0.0148 0.1036 96.53 0.0068

Table 2. In-distribution comparative results We see that for in-distribution performance, ACNML variants perform comparably to other
methods, without large separations between most methods. Results for SWA-Temp and SGD are taken from Maddox et al. (2019).

(a) CNML Normaliz-
ers

∑
y pθ̂y (y|x)

(b) NLLs (c) Confidences

Figure 10. In Distribution Comparisons between ACNML and
naive CNML. We plot scatter plots of the values of each statistic
for naive CNML (x-axis) vs ACNML (y-axis), with the red line
indicating Looking at the CNML normalizers, we see that the
ACNML adaptation procedure using the approximate posterior
is much less constraining than using the training set, resulting in
the normalizers being higher for ACNML than naive CNML for
almost all inputs. This leads to excess conservatism, with ACNML
almost always having lower confidence its predictions, and many
inputs with close to 0 NLL with naive CNML having higher NLL
with ACNML.

we see that on many points where naive CNML outputted
confident correct answers and achieved close to 0 NLL
loss, ACNML still incurs some higher losses due to its less
confident predictions.

On the OOD rotated images, we again see that ACNML typ-
ically adapts more than CNML as measured by the CNML
normalizers, though the difference is much less extreme
compared to the in-distribution dataset. In the confidence
scatter plot, we again see that ACNML tends to make lower
confidence predictions than naive CNML (especially when
naive CNML’s predictions are confident), and as seen in Fig-
ure 13, result in ACNML having better Brier scores, NLL
and calibration on the OOD inputs.

Handling multiple MLEs in CNML: Strictly speaking,
the CNML distribution is not well defined when there exist
multiple potential MLEs θ̂y that can output different pre-
dictions (prior references to CNML typically assume such
MLEs are unique). However, the non-convexity of the ob-
jective for deep neural networks means multiple MLEs can
exist, and to properly define CNML in this case, we would
need to select a particular MLE to use when assigning prob-

(a) CNML Normaliz-
ers

∑
y pθ̂y (y|x)

(b) NLLs (c) Confidences

Figure 11. OOD Comparisons between ACNML and naive
CNML. We plot scatter plots of the values of each statistic for
naive CNML (x-axis) vs ACNML (y-axis). Looking at the CNML
normalizers, we again see that the ACNML adaptation procedure
using the approximate posterior is less constraining than using
the training set, with the normalizers being higher for ACNML
than naive CNML for most inputs (though to lesser extent than the
in-distribution data). ACNML again outputs more conservative
predictions with lower confidence on many inputs, which leads to
better NLL and calibration on the OOD dataset, unlike with the
in-distribution test set.

abilities in CNML. In line with the min-max formulation of
CNML, we propose to select the MLE θ̂y that maximizes
the likelihood pθ̂y (y|x) of the query point and proposed
label, as this is the choice that maximizes the regret for that
particular label over all MLEs.

With our naive CNML instantiation, we observe that dur-
ing the finetuning for each query point x and label y, the
predicted probability of that label pθ(y|x) does not mono-
tonically increase over iterations as we might hope (since
we initialize θ to be the MLE of the training set, then up-
date it to maximize likelihood of the training set with the
query point and label), but can potentially oscillate substan-
tially throughout the finetuning process. We suspect this is
due to the stochasticity in the optimization procedure from
sampling minibatches of the training data, which causes
the trajectory of parameters can potentially visit several
different (approximate) local optima that output different
predictions on the query point. While our instantiation of
naive CNML simply used the parameter found at the end of
5 epochs, we additionally compare against a variant that ex-
plicitly tries to select the MLE that maximizes the likelihood

Amortized Conditional Normalized Maximum Likelihood

(a) MNIST Test Set (b) Randomly Rotated MNIST (OOD data)

Figure 12. Reliability diagrams plotting confidence vs. accuracy for Bayes-by-Backprop experiments on the MNIST test set and a
randomly rotated MNIST test set (OOD). ACNML’s conservative predictions provided better calibrated predictions on the OOD test set.

of the proposed label. This variant heuristically uses the bset
value of pθ(y|x) over all θ encountered in the last epoch of
finetuning. We see in Figure 13 that this variant, denoted
naive CNML (max), gives more conservative predictions
than naive CNML and improves in NLL and calibration on
the more OOD rotated datasets. However, it is still not as
conservative as ACNML using the Bayes-by-Backprop pos-
terior, and so does not perform as well on the more severe
rotations.

D. NMAP and ACNML
NML type methods can be extended with a prior-like regular-
ization term on the selected parameter, resulting in Normal-
ized Maximum a Posteriori (NMAP)(Kakade et al., 2006),
also referred to as Luckiness NML (Grunwald, 2004). For a
regularizer given by log p(θ), NMAP assigns probabilities
according to

pNMAP(xn) ∝ pθ̂(xn)(x
n)

θ̂(xn) = argmax
θ

log pθ(x
n) + log p(θ).

Similarly to CNML, there are several variations on NMAP
that predict slightly different distributions, but we adopt
the one of the same form as our CNML. Similarly to how
NML was extended to CNML, NMAP can be extended to
a conditional version, again with the θ̂’s being chosen via
MAP rather than MLE. As mentioned in Section 3.1, with a
non-uniform prior, ACNML actually approximates a version
of conditional NMAP, with the Bayesian prior term on the
parameters corresponding to the additional regularizer.

We also note that with the calculations in section 3.1, CNML

can be viewed as performing NMAP on a single new test
point, with a regularizer corresponding to the posterior like-
lihood from the training set. In this perspective, ACNML
approximates CNML by using an approximation to that
training set regularizer.

E. Details of Analysis in Section 3.2
E.1. Bounding Error in Parameter Estimation

Here we state the primary theorem of Giordano et al. (2019)
along with the necessary definitions and assumptions.

Here, we attempt to estimate an unknown parameter θ ∈
Ωθ ⊆ RD where Ωθ is compact. Suppose we have a dataset
N datapoints and a weight vector w1, . . . , wN . Let gi(θ)
denote the gradient of the loss at datapoint i evaluated at θ,
and hi(θ) the Hessian. We can then define

G(θ, w) =
1

N

N∑
i=1

wigi(θ) (19)

H(θ, w) =
1

N

N∑
i=1

wihi(θ). (20)

The MLE θ̂(w) for the dataset weighted by w is given by
solving for G(θ̂(w), w) = 0. Let 1w denote the vector of
weights consisting of all 1s. We define θ̂1 to be the MLE
for the whole unweighted dataset, which is equivalent to
evaluating θ̂(1w) and also define the corresponding Hessian
H1 = H(θ̂1, 1w). We now wish to estimate θ̂(w) using a
first order approximation around θ̂1 given by

θ̂IJ(w) = θ̂1 −H−1
1 G(θ̂1,∆w), (21)

Amortized Conditional Normalized Maximum Likelihood

(a) ECE lineplots (b) Brier score lineplots

(c) Accuracy lineplots (d) NLL lineplots

Figure 13. Expanded MNIST Results: We include the accuracy and negative-log-likelihood metrics as well as ECE and Brier score. We
see that all methods perform similarly in accuracy, and that, and ACNML also has better calibration (ECE), Brier scores, and NLLs on the
more OOD datasets compared to other methods. We also additionally compare to the Naive CNML (max) method we designed to handle
non-unique maximizers with naive CNML. We see that while the Naive CNML (max) variant outperforms Naive CNML on the more
OOD datasets, ACNML is still more conservative, resulting in better calibrated estimates on the more severe rotations.

Amortized Conditional Normalized Maximum Likelihood

where we define ∆w = w − 1w. The theorem will proceed
to bound

wwwθ̂(w)− θ̂IJ

www
2

for suitable weights w.

Now we further define g(θ) ∈ RN×D to be the concatena-
tion of all gi(θ)s and similarly for h(θ) ∈ RN×D×D.We let
‖g(θ)‖p and ‖h(θ)‖p to refer to the p-norms when treating
those as vector quantities.

Assumption 1 (Smoothness): For all θ ∈ Ωθ each gn(θ) is
continuously differentiable.

Assumption 2 (Non-degeneracy): For all θ ∈ Ωθ, H(θ, 1w)
is nonsingular and

sup
θ∈Ωθ

wwH(θ, 1w)−1
ww
op
≤ Cop ≤ ∞. (22)

Assumption 3 (Bounded averages): There exist finite con-
stants Cg and Ch such that supθ∈Ωθ

1√
N
‖g(θ)‖2 ≤ Cg and

supθ∈Ωθ
1√
N
‖h(θ)‖2 ≤ Ch.

Assumption 4 (Local Smoothness): There exists a ∆θ > 0

and a finite constant Lh such that
wwwθ − θ̂1

www
2
≤ ∆θ implies

‖h(θ)−h(θ̂1)‖
2√

N
≤ Lh

wwwθ − θ̂1

www
2
.

Assumption 5 (Bounded weight averages). 1√
N
‖w‖2 is

uniformly bounded for all w ∈W by a finite constant Cw.

We note that assumption 2 is equivalent toH1 being strongly
positive definite. Assumption 5 is not relevant for our use
cases, but is stated for completeness.

Condition 1 (Set Complexity): There exists a δ ≥ 0 and
corresponding set Wδ ⊆W such that

max
w∈Wδ

sup
θ∈Ωθ

wwwww 1

N

N∑
i=1

(wi − 1)gi(θ)

wwwww
1

≤ δ. (23)

max
w∈Wδ

sup
θ∈Ωθ

wwwww 1

N

N∑
i=1

(wi − 1)hi(θ)

wwwww
1

≤ δ. (24)

Condition 1 essentially describes the set of weight vectors
for which θ̂IJ will be an accurate approximation within order
δ.

Definition 1: Given assumptions 1-5, define

CIJ = 1 +DCwLhCop (25)

∆δ = min{∆θC
−1
op ,

1

n
C−1

IJ C−1
op }. (26)

We now state the main theorem of Giordano et al. (2019).

Theorem (Error Bound for the approximation). Under as-
sumptions 1-5 and condition 1,

δ ≤ ∆δ ⇒ max
w∈Wδ

wwwθ̂IJ(w)− θ̂(w)
www

2
≤ 2C2

opCIJδ
2. (27)

We can now apply the above theorem to provide error
bounds for a setting where we have a training set of n
datapoints and wish to consider the MLE after adding a
new datapoint z. The issue is that the theorem as stated
bounds the error of the approximation when the approxima-
tion is centered around the uniform weighting over all the
datapoints, which would be appropriate for considering the
impact of removing datapoints from the dataset.

To apply the theorem to bound the effects of adding a data-
point, we have to do some slight manipulation. We apply the
previous theorem with N = n+ 2, where gi(θ) correspond
to the gradients of training data point i for i in (1, . . . , n),
gn+1 = −∇ log pθ(z), and gn+2 = ∇ log pθ(z), and simi-
larly for the Hessians hi(θ). We have thus added the query
point to the dataset, as well as another fake point that serves
to cancel out the contribution of the query point under a
uniform weighting, so G(θ, 1w) and H(θ, 1w) are the mean
gradients and Hessians for just the training set. Now suppos-
ing assumptions 1-5 are met for this problem, then we need
to check condition 1 for the particular Wδ that contains the
vector w̄ of all 1s, except for a 2 in the last entry. We can
then find the smallest δ that satisfies

sup
θ∈Ωθ

wwww 1

N + 2
gn+2(θ)

wwww
1

≤ δ (28)

sup
θ∈Ωθ

wwww 1

N + 2
hn+2(θ)

wwww
1

≤ δ, (29)

and so long as δ ≤ ∆δ, applying the theorem boundswwwθ̂IJ(w̄)− θ̂(w̄)
www

2
.

Commentary: The above theorem gives explicit conditions
for the accuracy of the approximation that we can verify for
a particular training set and query point. Under assumptions
that we have some limiting procedure for growing the train-
ing set such that the constants defined hold uniformly, we
can extend this to an asymptotic statement to explicitly say
that the approximation error decays as O(n−2).

E.2. Bounding error in the resulting CNML
distribution

We now provide the proof for Proposition 3.2, which we
restate here. For notational simplicity, we ignore any depen-
dence on the input x, which we consider fixed.

Proposition E.1 (3.2). Suppose z ∈ Z with |Z| = k (for
example classification with k classes). Let θ̂z be the exact
MLE after appending z to the training set, and let θ̃z be an
approximate MLE with

wwwθ̂z − θ̃zwww ≤ δ for all z. Further

suppose log pθ(z) is L-Lipschitz in θ.

Denote the exact CNML distribution pCNML(z) ∝ pθ̂z (z)
and an approximate CNML distribution pACNML(z) ∝

Amortized Conditional Normalized Maximum Likelihood

pθ̃z (z). Then, we have the bound

sup
z
|log pCNML(z)− log pACNML(z)| ≤ 2Lδ. (30)

Proof. The assumed bound
wwwθ̂z − θ̃zwww

2
≤ δ combined

with L-Lipschitzness implies a bound on differences of
logits of each class

∣∣∣log pθ̂z (z)− log pθ̂z (z)
∣∣∣ ≤ Lδ. (31)

We note that the log probabilities of the exact CNML dis-
tribution pCNML (pACNML is given by a similar expression
using θ̃z instead of θ̂z) is given by

log pCNML(z) = log pθ̂z (z)− log
∑
z′∈Z

pθ̂z′
(z′). (32)

For any z ∈ Z , we can then expand, apply the triangle
inequality and then Equation 31 to obtain

|log pCNML(z)− log pACNML(z)|
= |log pθ̂z (z)− log pθ̃z (z)

− log
∑
z′∈Z

pθ̂z′
(z′) + log

∑
z′∈Z

pθ̃z′ (z
′)| (33)

≤
∣∣∣log pθ̂z (z)− log pθ̃z (z)

∣∣∣
+

∣∣∣∣∣log
∑
z′∈Z

pθ̂z′
(z′)− log

∑
z′∈Z

pθ̃z′ (z
′)

∣∣∣∣∣ (34)

≤ Lδ +

∣∣∣∣∣log
∑
z′∈Z

pθ̂z′
(z′)− log

∑
z′∈Z

pθ̃z′ (z
′)

∣∣∣∣∣ . (35)

We now bound the difference between the log-normalizers∣∣∣log
∑
z′ pθ̂z′

(z′)− log
∑
z′ pθ̃z′ (z

′)
∣∣∣.

We first let pmin(z) = min{pθ̂z (z), pθ̃z (z)} and pmax(z) =
max{pθ̂z (z), pθ̃z (z)}, and note that Equation 31 implies
log pmax(z) ≤ log pmin(z) + Lδ for all z. We then bound

the difference in log-normalizers∣∣∣∣∣log
∑
z′∈Z

pθ̂z′
(z′)− log

∑
z′∈Z

pθ̃z′ (z
′)

∣∣∣∣∣
≤ log

∑
z′∈Z

pmax(z′)− log
∑
z′∈Z

pmin(z′) (36)

= log

∑
z′∈Z pmax(z′)∑
z′∈Z pmin(z′)

(37)

= log

∑
z′∈Z exp(log pmax(z′))∑

z′∈Z pmin(z′)
(38)

≤ log

∑
z′∈Z exp(log pmin(z′) + Lδ)∑

z′∈Z pmin(z′)
(39)

= log
exp(Lδ)

∑
z′∈Z pmin(z′)∑

z′∈Z pmin(z′)
(40)

= Lδ. (41)

Plugging back into Equation 37, we have the following
bound for all z ∈ Z

|log pCNML(z)− log pACNML(z)| ≤ 2Lδ. (42)

