
Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation

Aurick Zhou 1 Sergey Levine 1

Abstract
While deep neural networks provide good per-
formance for a range of challenging tasks, cal-
ibration and uncertainty estimation remain ma-
jor challenges, especially under distribution shift.
In this paper, we propose the amortized condi-
tional normalized maximum likelihood (ACNML)
method as a scalable general-purpose approach
for uncertainty estimation, calibration, and out-of-
distribution robustness with deep networks. Our
algorithm builds on the conditional normalized
maximum likelihood (CNML) coding scheme,
which has minimax optimal properties accord-
ing to the minimum description length principle,
but is computationally intractable to evaluate ex-
actly for all but the simplest of model classes. We
propose to use approximate Bayesian inference
technqiues to produce a tractable approximation
to the CNML distribution. Our approach can be
combined with any approximate inference algo-
rithm that provides tractable posterior densities
over model parameters. We demonstrate that AC-
NML compares favorably to a number of prior
techniques for uncertainty estimation in terms of
calibration when faced with distribution shift.

1. Introduction
Current machine learning methods provide unprecedented
accuracy across a range of domains, from computer vision to
natural language processing. However, in many high-stakes
applications, such as medical diagnosis or autonomous driv-
ing, rare mistakes can be extremely costly. Thus, effective
deployment of learned models requires not only high accu-
racy, but also a way to measure the certainty in a model’s
predictions in order to assess risk and allow the model to
abstain from making decisions when there is low confidence
in the prediction. While deep networks offer excellent pre-

1EECS, University of California, Berkeley, USA. Correspon-
dence to: Aurick Zhou <aurick@berkeley.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

diction accuracy, they generally do not provide the means
to accurately quantify their uncertainty. This is especially
true on out-of-distribution inputs, where deep networks tend
to make overconfident incorrect predictions (Ovadia et al.,
2019). In this paper, we tackle the problem of obtaining
reliable uncertainty estimates under distribution shift, with
the aim of producing models that can reliably report their
uncertainty even when presented with unexpected inputs.

Most prior work approaches the problem of uncertainty es-
timation from the standpoint of Bayesian inference. By
treating parameters as random variables with some prior
distribution, Bayesian inference can compute posterior dis-
tributions that capture a notion of epistemic uncertainty and
allow us to quantitatively reason about uncertainty in model
predictions. However, computing accurate posterior distri-
butions becomes intractable as we use very complex models
like deep neural nets, and current approaches require highly
approximate inference methods that fall short of the promise
of full Bayesian modeling in practice.

Bayesian methods also have a deep connection with the
minimum description length (MDL) principle, a formal-
ization of Occam’s razor that casts learning as performing
efficient data compression and has been widely used as a
motivation for model selection techniques. Codes corre-
sponding to maximum-a-posteriori estimators and Bayes
marginalization have been commonly used within the MDL
framework. However, other coding schemes have been pro-
posed in MDL centered around achieving different notions
of minimax optimality. Interpreting coding schemes as
predictive distributions, such methods can directly inspire
prediction strategies that give conservative predictions and
do not suffer from excessive overconfidence due to their
minimax formulation.

One such predictive distribution is the conditional normal-
ized maximum likelihood (CNML) (Grünwald, 2007; Rissa-
nen and Roos, 2007; Roos et al., 2008) model, also known
as sequential NML or predictive NML (Fogel and Feder,
2018b). To make a prediction on a new input, CNML con-
siders every possible label and finds the model that best
explains that label for the query point together with the
training set. It then uses that corresponding model to as-
sign probabilities for each input and normalizes to obtain a

Amortized Conditional Normalized Maximum Likelihood

valid probability distribution. We will argue that the CNML
prediction strategy can be useful for providing reliable un-
certainty estimates on out-of-distribution inputs. Intuitively,
instead of relying on a learned model to extrapolate from the
training set to the new (potentially out-of-distribution) input,
CNML can obtain more reasonable predictive distributions
by explicitly updating a model for each potential label of
the particular test input and then asking “given the training
data, which labels would make sense for this input?”

While CNML provides compelling minimax regret guaran-
tees, practical instantiations have been exceptionally diffi-
cult, because computing predictions for a test point requires
retraining the model on the test point concatenated with the
entire training set. With large models like deep neural net-
works, this can require hours of training for every prediction,
rendering naive CNML schemes infeasible for practical use.

In this paper, we argue that prediction strategies inspired
by CNML, which output conservative predictions that de-
pend on models explicitly trained on the test input, can
provide reasonable uncertainty estimates even when faced
with out-of-distribution data. To instantiate such a strat-
egy tractably, we propose amortized CNML (ACNML), a
practical algorithm for approximating CNML utilizing ap-
proximate Bayesian inference. ACNML avoids the need
to optimize over large datasets during inference by using
an approximate posterior in place of the training set. We
show that our proposed approach is compares favorably to
number of prior techniques for uncertainty estimation on
out-of-distribution inputs, and is substantially more feasible
and computationally efficient than prior techniques for using
CNML predictions with deep neural networks.

2. Conditional Normalized Maximum
Likelihood

ACNML is motivated from the minimum description length
(MDL) principle, which states that any regularities in a
dataset can be exploited to compress it, and so learning is
reformulated as encoding the data as efficiently as possible.
(Rissanen, 1989; Grünwald, 2007). While MDL is typically
described in terms of code lengths, we can associate codes
with probability distributions, with the code length of an ob-
ject corresponding to the negative log-likelihood under that
probability distribution. MDL was originally formulated in
a generative setting where the goal is to code arbitrary data,
we focus here on a supervised learning setting, where we
assume the inputs are already known and our goal is to only
encode/predict the labels.

Normalized Maximum Likelihood. Suppose we have a
model class Θ, where each θ ∈ Θ corresponds to a con-
ditional distribution pθ(y|x). Let θ̂(y1:n|x1:n) denote the
maximum likelihood estimator for a sequence of labels y1:n

corresponding to inputs x1:n over all θ ∈ Θ. Given a se-
quence of inputs x1:n and labels y1:n, we can define a regret
for a distribution over labels q as

R(q, y1:n, x1:n,Θ)
def
= log pθ̂(y1:n|x1:n)(y1:n|x1:n)

− log q(y1:n). (1)

In relation to the MDL principle, this regret corresponds to
the excess number of bits q uses to encode the labels y1:n

compared to the best distribution in the model class Θ. For
any fixed input sequence, we can then define the normalized
maximum likelihood distribution (NML) as

pNML(y1:n|x1:n) =
pθ̂(y1:n|x1:n)(y1:n|x1:n)∑

ỹ1:n∈Yn pθ̂(ỹ1:n|x1:n)(ỹ1:n|x1:n)
.

(2)
The NML distribution can be shown to achieve minimax
regret (Shtarkov, 1987; Rissanen, 1996) as it achieves the
same regret for all label sequences.

pNML = argmin
q

max
y1:n∈Yn

R(q, y1:n, x1:n,Θ). (3)

This corresponds, in a sense, to an optimal coding scheme
for sequences of labels of known fixed length n.

Conditional NML. Instead of making predictions across
entire sequences of labels at once, NML can be adapted to
the setting where we make predictions about only the next
label based on the previously seen data, resulting in condi-
tional NML (CNML) (Rissanen and Roos, 2007; Grünwald,
2007; Fogel and Feder, 2018a). While several variations on
CNML exist, we consider the following:

pCNML(yn|xn;x1:n−1, y1:n−1) ∝ pθ̂(y1:n|x1:n)(yn|xn),
(4)

which solves the minimax problem

pCNML = argmin
q

max
yn

log pθ̂(y1:n|x1:n)(yn|xn)− log q(yn).

(5)
We note that the inner maximization is only over the next
label yn that we are predicting, rather than the full sequence
as before. This prediction strategy is now amenable to our
typical supervised learning setting, where (x1:n−1, y1:n−1)
is our training set, and we want to output a predictive distri-
bution over labels yn for a new test input xn.

CNML provides conservative predictions. Here we mo-
tivate why CNML can provide reasonable uncertainty esti-
mates for out-of-distribution inputs. For each query point,
CNML considers each potential label and finds the model
that would be most consistent with that label and with the
training set. If that model assigns high probability to the la-
bel, then minimizing the worst-case regret forces CNML to
assign relatively high probability to it. Compared to simply
letting a model trained only on the training set extrapolate

Amortized Conditional Normalized Maximum Likelihood

Figure 2. Given the labeled training set (blue and orange dots), we
want to predict the label at the query input (shown in pink in the left
image), which the training set MLE θ̂train confidently classifies as
the blue class. However, CNML assigns a near-uniform prediction
on the query point, as it computes new MLEs θ̂0 and θ̂1 (center
and right images) by assigning different labels to the query point,
and finds both labels are consistent with the training data.

to OOD inputs, we expect CNML to give more conserva-
tive predictions on OOD inputs, since it explicitly considers
what would have happened if the new data point had been
labeled with each possible label.

Figure 1. CNML probabili-
ties with a logistic regression
model. CNML expresses high
uncertainty and provides uni-
form predictions (indicated by
the white color) on most of
the input space away from the
training set (shown in blue
and orange dots).

We use a 2D logistic regres-
sion example to illustrate
CNML’s conservative pre-
dictions, showing a heatmap
of CNML probabilities in
Figure 1. CNML provides
uniform predictions on most
of the input space away from
the training samples. In
Figure 2, we illustrate how
CNML arrives at these pre-
dictions, showing the predic-
tions for the parameters θ̂0

and θ̂1, corresponding to la-
beling the test point (shown
in pink in Figure 2, left) with
either label 0 or 1.

However, CNML may be
too conservative when the model class Θ is very expres-
sive. Naı̈vely applying CNML with large model classes
can result in the per-label models fitting their labels for the
query point arbitrarily well, such that CNML gives unhelp-
ful uniform predictions even on inputs we would hope to
reasonably extrapolate on. We see this in the 2D logistic
regression example in Figure 1. Thus, the model class Θ
would need to be restricted in some form, for example by
only considering parameters within a certain distance from
the training set solution as a hard constraint.

Another approach for controlling the expressivity of the
model class is to generalize CNML to use regularized esti-
mators instead of maximum likelihood, resulting in normal-
ized maximum a posteriori (NMAP) (Kakade et al., 2006)
codes. Instead of using maximum likelihood parameters,
NMAP selects θ̂s to be the parameter that maximizes both
data likelihood and a regularization term, or prior, over

parameters, and we can define slightly altered notions of
regret using these MAP estimators in all the previous equa-
tions to get a conditional normalized maximum a posteriori
distribution instead. See Appendix D for completeness.

Going back to the logistic regression example, we plot
heatmaps of CNMAP predictions in Figure 3, adding differ-
ent amounts of L2 regularization to the logistic regression
weights. As we add more regularization, the model class
becomes effectively less expressive, and the CNMAP pre-
dictions become less conservative.

(a) λ = 0.1 (b) λ = 1 (c) λ = 10

Figure 3. CNMAP probabilities with different levels of L2 regular-
ization λ ‖w‖22. Predictions are less conservative as λ increases.

Computational costs of CNML. While we have argued
that CNML can provide an appealing approach for uncer-
tainty estimation for out-of-distribution inputs, it can be
exceptionally impractical to instantiate, particularly with
large models like neural networks, due to the prohibitive
computational costs of computing the maximum likelihood
estimators for each new input and label. To evaluate the
distribution on a new test point, one must solve a noncon-
vex optimization problem for each possible label, with each
problem involving the entire training dataset along with the
new test point. This direct evaluation of CNML therefore
becomes computationally infeasible with large datasets and
high-capacity models, and further requires that the model
carry around the entire training set even when it is deployed.
In settings where critical decisions must be made in real
time, even running a single epoch of additional training
would be infeasible. For this reason, NML-based methods
have not gained much traction as a practical tool for improv-
ing the predictive performance of high-capacity models.

3. Amortized CNML
In this section, we derive our method, amortized condi-
tional normalized maximum likelihood (ACNML), which
provides a tractable approximation for CNML and CNMAP
via approximate Bayesian inference. Instead of directly
computing maximum likelihood parameters over the query
point and training set, our method uses an approximate pos-
terior distribution over parameters to capture the necessary
information about the training set, reducing the maximiza-
tion to only the single new point. The computational cost at
test-time therefore does not increase with training set size.

Amortized Conditional Normalized Maximum Likelihood

Algorithm 1 Amortized CNML (ACNML)

Input: Model class Θ, Training Data (x1:n−1, y1:n−1),
Test Point: xn, Classes (1, . . . , k)
Output: Predictive distribution p(y|xn)
Training: Run approximate inference algorithm on train-
ing data (x1:n−1, y1:n−1) to get posterior density q(θ)
for all possible labels i ∈ (1, . . . , k) do

Compute θ̂i = argmaxθ log pθ(i|xn) + log q(θ)
end for
Return p(y|xn) =

pθ̂y (y|xn)∑k
i=1 pθ̂i

(i|xn)

3.1. Algorithm Derivation

Incorporating an exact posterior into CNML. Given a
prior distribution p(θ), the Bayesian posterior likelihood
conditioned on the training data is given by

p(θ|x1:n−1, y1:n−1) ∝ p(θ)pθ(y1:n−1|x1:n−1). (6)

We can write the MAP estimators in the CNMAP distribu-
tion for a fixed query input xn as

θ̂y = argmax
θ∈Θ

log pθ(y1:n−1|x1:n−1) + log p(θ)︸ ︷︷ ︸
log p(θ|x1:n−1,y1:n−1)

+ log pθ(y|xn) (7)

We can thus replace the training data log-likelihood
pθ(y1:n−1|x1:n−1) with the Bayesian posterior density
log p(θ|x1:n−1, y1:n−1) when computing θ̂y. We can also
recover CNML as a special case of CNMAP by using a uni-
form prior, but as discussed previously, CNML with highly
expressive model classes can lead to overly conservative
predictions, so we will opt to use non-uniform priors that
help control model complexity instead. For example, we
may use a zero-mean Gaussian prior p(θ) over our weights,
corresponding to L2 regularization.

ACNML with an approximate posterior. Of course, the
exact Bayesian likelihood is no easier to compute than the
original training log likelihood. However, we can derive
a tractable approximation by replacing the exact posterior
p(θ|x1:n−1, y1:n−1) with an approximate posterior q(θ) in-
stead. We can obtain an approximate posteriors via standard
approximate Bayesian techniques such as variational infer-
ence or Laplace approximations. We focus on Gaussian
posterior approximations for computational efficiency, and
discuss in Section 3.2 why this class of distributions pro-
vides a reasonable approximation for large datasets.

For practical purposes, we expect the approximate posterior
log-likelihood to ensure the optimal θ̂y selected for each la-
bel retains good performance on the training set. By replac-
ing the likelihood over the training data with the probability
under an approximate posterior, it becomes unnecessary to

retain the training data at test time, only the parameters of
the approximate distribution. Optimization also becomes
much simpler, as it no longer requires stochastic gradients,
and the Gaussian posterior log density log q(θ) serves as a
strongly convex regularizer.

ACNML algorithm summary A summary of the ACNML
algorithm is presented in Algorithm 1. The training pro-
cess for obtaining q(θ) only needs to be performed once
on the training set, whereas the inference step is performed
for each test point. However, this inference step only re-
quires optimizing the model on a single data point with a
regularizer provided by log q(θ).

3.2. Analysis of ACNML with Gaussian Posteriors

In this section, we argue that using a Gaussian approximate
posterior in ACNML, which correspond to second-order
approximations to the training set log-likelihood, suffices
for accurately computing the CNML distributions when the
training set is large. The intuition is that for large training
sets, the combined likelihoods of all the training points
dominate over the single new test point, so the perturbed
MLEs θ̂y remains close to the original training set MLE θ̂,
letting us rely on local approximations to the training loss.

Under simplifying assumptions of convexity and smooth-
ness of the training losses, we can formalize this using the
concept of influence functions, which measure how the MLE
(and more general M -estimators) for a dataset changes as
the dataset were perturbed by reweighting inputs an infinites-
imal amount. Recall that the maximum likelihood estimator
for a dataset with n datapoints (x1:n, y1:n) is given by

θ̂ = argmax
θ

1

n

n∑
i=1

log pθ(yi|xi). (8)

Influence functions analyze how θ̂ relates to the MLE of a
perturbed dataset

θ̂x,y,ε = argmax
θ

(
ε log pθ(y|x) +

1

n

n∑
i=1

log pθ(yi|xi)

)
,

(9)

where θ̂x,y,ε is the new MLE if we perturb the training set
by adding a datapoint (x, y) with a weight ε. A classical
result (Cook and Weisberg, 1982) shows that θ̂x,y,ε is dif-
ferentiable (under appropriate regularity conditions) with
respect to ε with derivative given by the influence function

dθ̂x,y,ε
dε
|ε=0= −H−1

θ̂
∇θ log pθ̂(y|x), (10)

where θ̂ is the MLE for the original dataset and Hθ̂ the
Hessian of the mean training set log-likelihood evaluated at
θ̂. CNML computes the MLE after adding datapoint (x, y)

Amortized Conditional Normalized Maximum Likelihood

with equal weight as points in the training set, which is
precisely θ̂x,y,ε evaluated at ε = 1/n. Thus, for sufficiently
large n, a first order Taylor expansion around θ̂ should be
accurate and the new parameter can be estimated by

θ̃x,y = θ̂ − 1

n
H−1

θ̂
∇θ log pθ̂(y|x), (11)

which is equivalent to solving

θ̃x,y = argmax
θ

1

n
(θ − θ̂)T∇θ log pθ̂(y|x)

+
1

2
(θ − θ̂)THθ̂(θ − θ̂). (12)

This suggests that, with large training datasets, the perturbed
MLE parameters θ̂y in Equation 7 can be approximated ac-
curately using a quadratic approximation to the training log-
likelihood, corresponding to a Gaussian posterior obtained
via a Laplace approximation. We can explicitly quantify the
accuracy of this approximation in the theorem below, which
is based on Theorem 1 from Giordano et al. (2019), with
full details and proof in Appendix E.

Theorem 3.1. (Adapted from Giordano et al. (2019)) Con-
sider a training set with n datapoints and an additional dat-
apoint (x, y). Assume assumptions 1-5 hold with constants
Cop, CIJ,∆δ as defined in Appendix E. Let θ̂x,y denote the
exact MLE if we had appended (x, y) to the training set,
and θ̃x,y the parameter obtained via the approximation in
Equation 11. Let

δ =
supθ∈Θ max

{
‖∇θ log pθ(y|x)‖1 ,

ww∇2
θ log pθ(y|x)

ww
1

}
n+ 2

.

(13)

If δ ≤ ∆δ , then

‖θ̂x,y − θ̃x,y‖2 ≤ 2C2
opCIJδ

2. (14)

Given such a bound on how accurately we estimate new
parameters, we can explicitly quantify the accuracy of the
CNML approximation, with proof in Appendix E.

Proposition 3.2. Let θ̂x,y and θ̃x,y be the exact and ap-
proximate MLEs respectively, after appending the datapoint
(x, y) to the training set, and assume ‖θ̂x,y − θ̃x,y‖ ≤ δ for
all y. Further suppose log pθ(y|x) is L-Lipschitz in θ.

Let pCNML(y) ∝ pθ̂x,y (y|x) and pACNML(y) ∝ pθ̃x,y (y|x) de-
note the exact CNML and approximate CNML distributions
respectively. We then have

sup
y
|log pCNML(y)− log pACNML(y)| ≤ 2Lδ. (15)

Theorem 3.1 and Proposition 3.2 suggest the approximation
given by ACNML will be increasingly close to the exact

CNML distribution as the training set size n grows. How-
ever, this formal theoretical result only holds for sufficiently
large datasets and requires assumptions including smooth-
ness and convexity of the training loss (for example, the
constant Cop int he bound depends on how strongly convex
the loss is at θ̂), so does not necessarily hold in practical
settings with deep neural networks due to nonconvexity.

To interpret how different training points influence the pre-
dictions of neural networks, Koh and Liang showed that
influence function approximations were able to provide use-
ful predictions for estimating leave-one-out retraining with
deep convolutional neural networks. This closely resembles
the conditions we encounter when computing parameters
for each label of the query point with ACNML, with the key
difference being that ACNML adds a datapoint while leave-
one-out retraining removes one. Their empirical results
suggest these second-order approximations to the training
loss, corresponding to Gaussian approximations in ACNML,
may suffice to yield useful predictions about how parame-
ters change when the query point is added, despite lacking
formal guarantees with deep neural networks.

4. Related Work
Minimum description length has been used to motivate
neural network methods dating back to Hinton and van
Camp (1993), who treat description length as a regularizer
to mitigate overfitting. The idea of preferring flat minima
(Hochreiter and Schmidhuber, 1997) also has its origins in
the MDL framework, as it allows a coarser discretization of
the weights (and thus fewer bits needed).

Bayesian methods average the predictions of different mod-
els sampled from the posterior distribution and typically
serve as the starting point for uncertainty estimation in deep
networks. A common approach is to use simple tractable
distributions to approximate the true posterior (Hoffman
et al., 2013; Blundell et al., 2015; Ritter et al., 2018). Re-
cent work (Maddox et al., 2019; Dusenberry et al., 2020) has
shown simple Gaussian posterior approximations are able
to achieve well-calibrated predictions with marginalization.
ACNML utilizes these approximate posterior methods, but
in contrast to the Bayesian methods, where the posterior is
used to efficiently sample models for Bayesian model aver-
aging, ACNML uses the posterior density to enable efficient
optimization without needing to retain the training data.

Ovadia et al. (2019) evaluate various proposed methods
for uncertainty estimates in deep learning under different
types of distribution shift, finding that good calibration on
in-distribution points did not necessarily indicate good cal-
ibration under distribution shift, and that methods relying
on marginalizing predictions over multiple models (Lak-
shminarayanan et al., 2016; Srivastava et al., 2014) gave

Amortized Conditional Normalized Maximum Likelihood

better uncertainty estimates under distribution shift than
other techniques. In our experiments, we show that our
method ACNML maintains much better calibration under
distribution shift than prior methods.

Similarly to ACNML, Test Time Training (TTT) (Sun et al.,
2020) updates the model on test inputs to improve out-of-
distribution performance. One key differences is that TTT
relies on an auxiliary self-supervised task to solve on the
new test point, and so requires domain knowledge to specify
a nontrivial task that is useful for predictions. Additionally,
the goal of TTT was to enable more accurate prediction
under distribution shift, whereas our goal with ACNML was
to provide more reliable uncertainty estimates.

Perhaps most closely related to our work, Fogel and Feder
(2018b) advocate for the use of the CNML distribution in
the context of supervised learning (under the name predic-
tive NML), citing its minimax properties. Bibas et al. (2019)
estimate the CNML distribution with deep networks by fine-
tuning the last layers of the network on every test input and
label combination appended to the training set. Since this
finetuning procedure trains for several epochs, it is very com-
putationally intensive at test-time and requires continued
access to the entire training set when evaluating. In con-
trast, our method amortizes this procedure by condensing
the information in the training data into a distribution over
parameters, allowing for much faster test-time inference
without needing the training data.

In the analysis for our approximation, we draw connec-
tions to influence functions (Cook and Weisberg, 1982),
which have been studied as asymptotic approximations to
how M -estimators change when perturbing a dataset. In
deep learning, Koh and Liang advocated for using influence
functions to interpret neural nets, generate adversarial ex-
amples, and diagnose errors in datasets. We use a theorem
from Giordano et al. (2019), which broadened the necessary
assumptions for these infinitisemal approximations to be ac-
curate and provides explicit guarantees for specific datasets
rather than simply asymptotic results.

For out-of-distribution detection, Xiao et al. (2020) propose
an approach that updates a generative model to maximize
the likelihood of the test input and uses the amount of im-
provement in log likelihood as a statistic for OOD detection.
Our work differs in that we tackle model calibration for
shifted input distributions and only use discriminative mod-
els, while their goal is OOD detection and utilize generative
models of the data. Nonetheless, we believe this work com-
plements ours and lends additional support to the idea that
optimizing models on test points can be valuable for esti-
mating uncertainty under distribution shift.

5. Experiments
Our experiments aim to evaluate how trustworthy the uncer-
tainty estimates provided by ACNML are under different
levels of distribution shift. Following Ovadia et al. (2019),
we compare uncertainty estimation across different meth-
ods using Brier score and expected calibration error (ECE)
(Naeini et al., 2015). Brier score is a proper scoring rule,
which captures both how accurate and how calibrated the
predictions are, while ECE assesses calibration by directly
measuring how closely the predicted confidence corresponds
to empirical accuracy. We show that our method is able to to
significantly outperform prior works in terms of calibration
when distribution shifts became more extreme. While severe
distribution shifts mean all methods test perform poorly in
terms of accuracy, ACNML is at least able to more reliably
indicate when the predictions may be incorrect.

In principle, any method for computing a tractable poste-
rior over parameters can be used with ACNML, and we
demonstrate this flexibility by implementing ACNML on
top of several different approximate posteriors. By using
the exact same posteriors, we can directly compare how
uncertainty estimates given by ACNML relate to those of
the corresponding Bayesian method.

For each model, we report results across 3 seeds. as well
as showing reliability diagrams (Guo et al., 2017) to further
qualitatively assess calibration. For reliability diagrams, we
sort data points by confidence and divide them into twenty
equal sized buckets, plotting the mean accuracy against
the mean confidence for each bucket. This allows to see
qualitatively see how well the confidence of the prediction
relates to the actual accuracy, as well as showing how the
confidences are distributed for each method.

Rotated MNIST. We first consider the rotated MNIST task,
where out-of-distribution inputs are generated by rotating
images from the MNIST test set, with higher levels rotation
corresponding to more distribution shift. Here, ACNML is
implemented on top of Bayes-by-backprop (Blundell et al.,
2015), and we compare to the MAP estimate and Bayes
model averaging with the same posterior.

We see in Figure 4 that for higher levels of rotation, corre-
sponding to more out-of-distribution inputs, that ACNML
exhibits substantial improvements in calibration as mea-
sured by the ECE metric, as well as improved Brier scores.
However, on the in-distribution test set and the lowest lev-
els of rotation where the models still predict accurately,
ACNML’s predictions are overly conservative, leading to
underconfident predictions and worse calibration than other
methods. In general, this agrees with what we expect
from ACNML: the predictions are more conservative across
the board, which does not necessarily improve results in-
distribution, particularly for easy domains like MNIST, but

Amortized Conditional Normalized Maximum Likelihood

(a) Rotated MNIST ECEs (lower is better) (b) Rotated MNIST Brier Scores (lower is better)

Figure 4. ACNML compared against its Bayesian counterpart, the deterministic MAP baseline, and naive CNML on rotated MNIST. We
plot means and standard deviations across 3 seeds. We see that ACNML (blue, solid lines) achieves lower ECE as the distribution shift
becomes more severe and accuracy decreases, as well as better Brier scores than other methods.

(a) CIFAR10 Test (b) CIFAR10-C Corruption Level 3 (c) CIFAR10-C Corruption Level 5

Figure 5. Reliability diagrams plotting confidence vs. accuracy for CIFAR10 in-distribution and OOD data, with a dotted reference line
indicating perfect calibration. ACNML provides more conservative predictions than other methods, resulting in better calibration on OOD
inputs. For OOD tasks, we show results for the Gaussian blur corruption at levels 3 and 5, with level 5 corresponding to a higher amount
of corruption. Each point shows the mean confidence and accuracy within a bucket, so the spread of points along the x-axis shows that
ACNML makes more low confidence predictions than other methods.

offer considerable improvements in calibration for out-of-
distribution inputs where errors are prevalent.

We additionally compare to a much more computationally
expensive instantiation of CNML used by Bibas et al. (2019)
(denoted naive CNML in Figure 4), which directly finetunes
for several epochs using the training set to obtain the opti-
mal parameters for each query point and label, rather than
using the approximate posterior like ACNML does. This
direct instantiation of CNML improves over the MAP so-
lution in terms of Brier score and calibration on the OOD
inputs. However, it is computationally prohibitive, to the
point where we were unable to evaluate it on the more
complex datasets. On MNIST, each prediction with naive
CNML was hundreds of times slower than with ACNML,
as shown in Table 1. We also find ACNML is overall more
conservative when using this particular posterior approxi-
mation, resulting in better calibration on more OOD inputs
(see Appendix C for more detailed comparisons between
ACNML and naı̈ve CNML).

CIFAR Corruptions. We use CIFAR10 (Krizhevsky,
2012) for training and in-distribution testing, and eval-
uate uncertainty estimates under distribution shift using
the CIFAR10-Corrupted (Hendrycks and Dietterich, 2019)
datasets, which apply different severities of 15 common
corruptions to the test set images. We can thus assess cali-
bration over a wide variety of distribution shifts, as well as
how calibration degrades as distribution shift increases.

We show results here using the VGG16 (Simonyan and
Zisserman, 2014) architecture. To compute approximate
posteriors, we use Stochastic Weight Averaging - Gaussian
(SWAG) (Maddox et al., 2019), and KFAC-Laplace (Rit-
ter et al., 2018). SWAG computes a posterior by fitting a
Gaussian distribution to the trajectory of SGD iterates. For
simplicity and computational efficiency, we instantiate AC-
NML with the SWAG-D variant, which uses a Gaussian with
diagonal covariance. KFAC-Laplace uses a Gaussian poste-
rior approximation with the MAP solution as the mean and
the inverse Hessian of the loss as covariance, approximating
the Hessian using KFAC (Martens and Grosse, 2015).

Amortized Conditional Normalized Maximum Likelihood

(a) CIFAR10C VGG16 ECEs (lower is better) (b) CIFAR10C VGG16 Brier Scores (lower is better)
Figure 6. ACNML compared against corresponding Bayesian methods, the deterministic MAP baseline (SWA), and deep ensembles
(SWA Ensemble) on out-of-distribution CIFAR10-Corrupted datsets. We plot medians and 95% confidence intervals across all corruptions.
We see that ACNML methods (solid lines) achieve much lower ECE at higher corruption values, as well as better Brier scores than other
methods.

Focusing on the most direct comparisons, we compare
against the MAP solution for the given posterior, which is
equivalent to Stochastic Weight Averaging (SWA) (Izmailov
et al., 2018), and Bayes model averaging with SWAGD and
KFAC-Laplace, which provide apples-to-apples compar-
isons to the two versions of our method that directly utilize
the same posteriors from these prior approaches. We ad-
ditionally compare to deep ensembles (Lakshminarayanan
et al., 2016), which Ovadia et al. (2019) found to provide
strong performance in uncertainty estimation under distribu-
tion shift, but also takes significantly longer to train due to
the need to train independent models.

Examining the reliability diagrams in Figure 5, we can qual-
itatively see that ACNML provides more conservative (less
confident) predictions than other methods across different
levels of corruption. On out-of-distribution inputs, where
accuracy degrades, we see that ACNML’s conservative pre-
dictions lead to many better calibrated low-confidence pre-
dictions, while other methods drastically overestimate confi-
dence. Thus, ACNML’s confidence estimates are still able
reliably indicate when predictions are likely to be incorrect
even on OOD inputs. ACNML is however slightly under-
confident on the in-distribution CIFAR10 test set, while
other methods err on the side of being overconfident.

In Figure 6, we can quantitatively compare the calibration of
different methods for different levels of corruption. ACNML
variants provide much better calibration on the more se-
vere corruptions than other methods while also performing
slightly better in terms of Brier score. All methods perform
similarly in terms of accuracy in all domains, and we find
that ACNML’s more conservative estimates also perform
competitively with Bayesian methods in Brier score, and

ECE on the in-distribution test set as well (see Table 2 in
Appendix B). We include additional comparisons across
other methods and architectures in Appendix B.

MNIST MLP VGG16 WRN28x10
ACNML (ours) 0.08s 0.37s 1.1s

naı̈ve CNML (per epoch) 13.83s 102.0s 359.1s
feedforward inference 0.0001s 0.0013s 0.004s

Table 1. Inference time per input (in seconds).

Timing Comparison vs. standard CNML. In Table 1,
we examine the computational costs of our method. We
compare against a naı̈ve implementation of CNML that
fine-tunes for N epochs on each test point and label, as in
Bibas et al. (2019). In total, predicting a single input with
k possible labels involves running kN epochs of training.
While ACNML is over two orders of magnitude faster than
naı̈ve CNML even with just a single epoch of training (our
experiments with naive CNML on MNIST used 5 epochs),
it is still slower than standard inference. The computational
requirements of our method also scale linearly with the
number of classes, but are constant with respect to dataset
size. Timing experiments are run using a single NVIDIA
1080Ti, using MNIST for the MNIST MLP timing results
and using CIFAR10 for VGG16 and WideResNet28x10,
with no parallelization over data points.

6. Discussion
In this paper, we present amortized CNML (ACNML) as an
alternative to Bayesian marginalization for obtaining reli-
able uncertainty estimates and calibrated predictions under
distribution shift. The CNML distribution is a theoretically
well-motivated strategy derived from the MDL principle
with strong minimax optimality properties, but actually eval-

Amortized Conditional Normalized Maximum Likelihood

uating this distribution is computationally daunting. AC-
NML utilizes approximate Bayesian posteriors to tractably
approximate it, can be instantiated on top of a wide range of
approximate Bayesian methods, and provides much better
calibrated predictions than other methods as the inputs be-
come more out-of-distribution. We view ACNML as a step
towards practical uncertainty aware predictions that would
be essential for real-world decision making. Future work
could further expand on our proposed method, for example
by combining ACNML with more complex and expressive
posterior approximations. In particular, training losses are
highly non-convex and have many local minima, so incorpo-
rating local approximations around multiple diverse minima
could allow for even more reliable uncertainty estimation.
More broadly, tractable algorithms inspired by ACNML
could in the future provide for substantial improvement in
our ability to produce accurate and reliable confidence esti-
mates on out-of-distribution inputs, improving the reliability
and safety of learning systems.

Acknowledgements
We thank Aviral Kumar for helpful conversations, as well
as anonymous reviewers for valuable feedback on earlier
versions of this paper. This research was supported by the
DARPA Assured Autonomy program and DARPA LwLL,
with compute support from Google Cloud.

References
K. Bibas, Y. Fogel, and M. Feder. Deep pnml: Predictive nor-

malized maximum likelihood for deep neural networks.
arXiv preprint arXiv:1904.12286, 2019.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra.
Weight Uncertainty in Neural Networks. 32nd Interna-
tional Conference on Machine Learning, ICML 2015, 2:
1613–1622, 5 2015.

R. D. Cook and S. Weisberg. Residuals and influence in
regression. New York: Chapman and Hall, 1982.

M. W. Dusenberry, G. Jerfel, Y. Wen, Y.-a. Ma, J. Snoek,
K. Heller, B. Lakshminarayanan, and D. Tran. Efficient
and Scalable Bayesian Neural Nets with Rank-1 Factors.
arXiv preprint arXiv:2005.07186, 2020.

Y. Fogel and M. Feder. Universal Supervised Learning
for Individual Data. 12 2018a. URL http://arxiv.
org/abs/1812.09520.

Y. Fogel and M. Feder. Universal batch learning with log-
loss. In 2018 IEEE International Symposium on Informa-
tion Theory (ISIT), pages 21–25, 2018b.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian Ap-
proximation: Representing Model Uncertainty in Deep

Learning. 33rd International Conference on Machine
Learning, ICML 2016, 3:1651–1660, 6 2015.

R. Giordano, W. Stephenson, R. Liu, M. Jordan, and T. Brod-
erick. A swiss army infinitesimal jackknife. In The 22nd
International Conference on Artificial Intelligence and
Statistics, pages 1139–1147, 2019.

P. Grunwald. A tutorial introduction to the minimum
description length principle. 6 2004. URL http:
//arxiv.org/abs/math/0406077.

P. Grünwald, T. Van Ommen, and others. Inconsistency of
Bayesian inference for misspecified linear models, and
a proposal for repairing it. Bayesian Analysis, 12(4):
1069–1103, 2017.

P. D. Grünwald. The Minimum Description Length Principle
(Adaptive Computation and Machine Learning). The MIT
Press, 2007. ISBN 0262072815.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On cal-
ibration of modern neural networks. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pages 1321–1330, 2017.

D. Hendrycks and T. Dietterich. Benchmarking neural net-
work robustness to common corruptions and perturba-
tions. arXiv preprint arXiv:1903.12261, 2019.

G. E. Hinton and D. van Camp. Keeping neural net-
works simple by minimizing the description length of
the weights. In Proceedings of the Sixth Annual Con-
ference on Computational Learning Theory, pages 5–13,
1993.

S. Hochreiter and J. Schmidhuber. Flat minima. Neural
Computation, 9(1):1–42, 1997.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley.
Stochastic variational inference. The Journal of Machine
Learning Research, 14(1):1303–1347, 2013.

P. Izmailov, D. Podoprikhin, T. Garipov, D. P. Vetrov, and
A. G. Wilson. Averaging Weights Leads to Wider Optima
and Better Generalization. In UAI, 2018.

S. M. Kakade, M. W. Seeger, and D. P. Foster. Worst-case
bounds for Gaussian process models. In Advances in
neural information processing systems, pages 619–626,
2006.

P. W. Koh and P. Liang. Understanding black-box predic-
tions via influence functions.

A. Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. University of Toronto, 6 2012.

http://arxiv.org/abs/1812.09520
http://arxiv.org/abs/1812.09520
http://arxiv.org/abs/math/0406077
http://arxiv.org/abs/math/0406077

Amortized Conditional Normalized Maximum Likelihood

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Sim-
ple and Scalable Predictive Uncertainty Estimation using
Deep Ensembles. Advances in Neural Information Pro-
cessing Systems, 2016.

W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and
A. G. Wilson. A simple baseline for bayesian uncertainty
in deep learning. In Advances in Neural Information
Processing Systems, 2019.

J. Martens and R. Grosse. Optimizing neural networks with
kronecker-factored approximate curvature. In Interna-
tional conference on machine learning, pages 2408–2417,
2015.

M. P. Naeini, G. Cooper, and M. Hauskrecht. Obtaining
well calibrated probabilities using bayesian binning. In
Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley,
S. Nowozin, J. V. Dillon, B. Lakshminarayanan, and
J. Snoek. Can you trust your model’s uncertainty? evalu-
ating predictive uncertainty under dataset shift, 2019.

J. Rissanen. Stochastic Complexity in Statistical Inquiry
Theory. World Scientific Publishing Co., Inc., USA, 1989.
ISBN 9971508591.

J. Rissanen and T. Roos. Conditional NML universal models.
In 2007 Information Theory and Applications Workshop,
pages 337–341, 2007.

J. J. Rissanen. Fisher information and stochastic complexity.
IEEE Transactions on Information Theory, 42(1):40–47,
1996. ISSN 00189448. doi: 10.1109/18.481776.

H. Ritter, A. Botev, and D. Barber. A scalable laplace
approximation for neural networks. In 6th International
Conference on Learning Representations, ICLR 2018-
Conference Track Proceedings, volume 6. International
Conference on Representation Learning, 2018.

T. Roos, T. Silander, P. Kontkanen, and P. Myllymaki.
Bayesian network structure learning using factorized
NML universal models. In 2008 Information Theory
and Applications Workshop, pages 272–276, 2008.

Y. Shtarkov. Universal sequential coding of single messages.
Problems of Information Transmission, 23(3):186, 1987.

K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. Journal of Machine
Learning Research, 2014.

Y. Sun, X. Wang, L. Zhuang, J. Miller, M. Hardt, and A. A.
Efros. Test-time training with self-supervision for gener-
alization under distribution shifts. In ICML, 2020.

V. G. Vovk. Aggregating Strategies. In Proceedings of
the Third Annual Workshop on Computational Learning
Theory, 1990.

Z. Xiao, Q. Yan, and Y. Amit. Likelihood Regret: An
Out-of-Distribution Detection Score For Variational Auto-
encoder. Technical report, 2020.

Amortized Conditional Normalized Maximum Likelihood

A. Experimental Details
For obtaining approximate posteriors with SWAG and
KFAC-Laplace, we follow the exact training procedures
given in Maddox et al. (2019). We then implement ACNML
on top of the diagonal SWAG posterior and the KFAC-
Laplace posterior.

The variance of the SWAG posterior depends in a com-
plex way on the learning rate and gradient covariances. To
account for this, we introduce an additional temperature
hyperparameter α and solve for the ACNML approximation
using

θ∗ = argmax
θ∈Θ

log pθ(yn|xn) +
1

α
log q(θ). (16)

To calibrate α, we can calculate the CNML distribution us-
ing a validation set, by training on the entire training set
and the validation point, and then selecting α such that our
ACNML procedure produces similar likelihoods. We can
also treat α as a tunable hyperparameter and select it us-
ing a validation set, similarly to how temperature scaling
(Guo et al., 2017) is used to achieve better calibration for
prediction, or how the relative weighting of priors and like-
lihoods are used in generalized Bayesian inference (Vovk,
1990) or safe Bayesian inference (Grünwald et al., 2017) as
a way to deal with model misspecification. For our exper-
iments using the SWAGD posterior, we heuristically tune
α to be as large as possible without degrading the accuracy
compared to the MAP solution. Note, however, that this
procedure is specific to the particular way in which SWAG
estimates the parameter distribution, and any posterior in-
ference procedure that explicitly approximates the posterior
likelihood (e.g., Blundell et al. (2015)) would not require
this step. To select α for each model class, we swept over
values [0.25, 0.5, 1, 1.5, 2] and selected the highest value
such that accuracy and NLL on the validation set did not
degrade significantly compared to SWA. For VGG16, we
use α = 0.5 and for WideResNet28x10, we used α = 1.5.

ACNML Optimization Details: With our approximate pos-
terior q(θ) being a Gaussian with covariance Σ, we approxi-
mately compute the MAP solution for each label y as per
Algorithm 1 by initializing θ0 to be the posterior mean and
iterating

θt+1 = θt + εtΣ(α∇ log pθt(y|xn) +∇ log q(θt)), (17)

using the covariance as a preconditioner. Similarly to the
influence function calculation for the post update parameters
discussed in section 3.2, this corresponds to taking approx-
imate Newton steps at each iteration, using the Hessian
approximation of the training set given by our approximate
posterior. For our experiments, we used a constant step size
ε = 0.5 for the SWAG-D and BBP posteriors, and ε = 0.25
with KFAC-Laplace. We empirically found that 5 steps was

often enough to find an approximate stationary point with
the SWAG-D posterior, and 10 steps for the KFAC-Laplace
posterior.

For the reliability diagrams in Figure 5, we again follow the
procedure used by Maddox et al. (2019). We first divide
the points into twenty bins uniformly based on confidence
(each bin has the same number of points), then plot the mean
accuracy vs mean confidence within each bin. This differs
from the reliability diagrams used by Guo et al. (2017),
where they divide the range of confidence values into bins
uniformly, resulting in unevenly filled bins.

For our expected calibration error (ECE) numbers, we use
the same bins as computed for our reliability diagrams, and
compute

ECE =

K∑
i=1

P (i) · |oi − ei| , (18)

where P (i) is the empirical probability a randomly chosen
point lies in bin i, oi is the accuracy within bin i, and ei is
the average confidence in bin i.

We adapted the SWAG authors’ implementation at
https://github.com/wjmaddox/swa gaussian to include the
ACNML procedure for test time evaluation. Experiments
were conducted using a mix of local GPU servers and
Google Cloud Program compute resources.

MNIST Experimental Details: For the MNIST experi-
ments, we used a feedforward network with 2 hidden layers
of size 1200, with no data augmentation. The posterior is
factored as independent Gaussians for each parameter, with
the prior for each parameter being a zero-mean Gaussian
with standard deviation 0.1.

We include an expanded results with additional metrics in
Figure 13.

B. Further Experimental Results and
Comparisons on CIFAR10

In addition to the comparisons in the main paper, we addi-
tionally compare to SWA-Gaussian (SWAG), which uses a
more expressive posterior than SWAG-D, SWA with Monte
Carlo Dropout (Gal and Ghahramani, 2015) (SWA-Drop),
and SWA-Ensemble, which averages the predictions of in-
dependent runs of SWA as with regular deep ensembles
(Lakshminarayanan et al., 2016). For reference, we show
in-distribution performance of all methods in Table 2. Over-
all, performance differences between all methods are quite
small, and ACNML’s conservative predictions do not im-
prove on NLL or ECE over some baselines on in-distribution
performance, which is to be expected, since the main aim
of our method is produce more calibrated predictions on
out-of-distribution tasks.

Amortized Conditional Normalized Maximum Likelihood

For all Bayesian marginalization methods, we marginalize
over 30 model samples, with the exception of SWA En-
sembles, for which we average over 10 models, as each
model sample requires training an model independently
from scratch.

For completeness, we show expanded results on CIFAR10-
Corrupted in Figures 7, 8, and 9, which include additional
baselines and metrics. ACNML consistently achieves sig-
nificantly better ECE than prior methods on the more se-
vere corruptions, and generally comparable or slightly better
NLL and Brier scores to the best performing baselines. With
the same architecture, all methods generally have very simi-
lar accuracy, with the exception of SWA-Ensemble slightly
outperforming better than other methods in accuracy.

While evaluating MC-Dropout, we found that adding
dropout before each layer in VGG16 (labelled VGG16Drop
in 8) significantly improved performance on CIFAR10-
C. For fair comparisons, we reran all methods with the
VGG16Drop architecture as well. We again find that AC-
NML performs the best in terms of calibration on the more
severe corruptions.

C. Comparisons between ACNML and naive
CNML on MNIST

In this section, we include expanded comparisons between
ACNML and a naive implementation of CNML from Bibas
et al. (2019) that computes the MLE/MAP θ̂y for each label
by appending the query point and label to the dataset and
finetuning for N epochs. Both ACNML and naive CNML
are initialized from the same MAP solution, with ACNML
taking 5 gradient steps on the query point and posterior and
naive CNML finetuning with the query point and training
set for 5 epochs. For the OOD dataset, instead of comput-
ing results for every level of corruption, we instead simply
average out over all corruption levels by randomly rotating
the test inputs.

This naive implementation of CNML differs slightly from
Bibas et al. (2019) in that we finetune the entire network,
while Bibas et al. (2019) proposed only tuning the last few
layers. During the finetuning, we also append the query
point and label to every batch in optimization, and down-
weighting that portion of the loss accordingly to get unbi-
ased gradient estimates. We found this led to more efficient
optimization than randomly sampling

We first examine how closely ACNML and naive CNML’s
predictions match on the same datapoint. To assess this,
we compare the CNML normalization terms

∑
y pθ̂y (y|x),

NLLs, and the confidences of the two methods. The CNML
normalization term captures how much each procedure was
able to adapt to different labels for that input. A higher
normalization term for an input means that we were flexible
enough to fit multiple different labels well together with
the training set (or approximate posterior in the case of
ACNML), and typically means a less confident prediction
on that input.

In Figures 10 and 11, We show scatter plots over 1000 ran-
domly selected test points (from the in-distribution test set
and the randomly rotated OOD images respectively) com-
paring the CNML normalizers, NLLs, and confidences of
ACNML and naive CNML. In each scatter plot, we include
a diagonal red line to illustrate where points would lie if
predictions of ACNML and naive CNML matched exactly.

We additionally plot reliability diagrams for MNIST exper-
iments in Figure 12, showing that ACNML provides very
conservative predictions.

For the in-distribution test set, we see from the CNML
normalizer plot that the ACNML adaptation procedure using
the approximate posterior is much less constraining than
using the training set, resulting in the normalizers being
higher for ACNML than naive CNML for almost all inputs.
This leads to excess conservatism, with ACNML almost
always having lower confidence its predictions. As a result,

Amortized Conditional Normalized Maximum Likelihood

(a) CIFAR10C VGG16 ECEs (lower is better)

(b) CIFAR10C VGG16 Accuracies (higher is better)

(c) CIFAR10C VGG16 Brier scores (lower is better)

(d) CIFAR10C VGG16 NLLs (lower is better)

Figure 7. CIFAR10-C performance with the VGG16 architecture. Instantations of our methods are shown in stripes. Boxplots show
quartiles of each statistic over all different corruption types of the given intensity, with the mean indicated by a circle. Both ACNML
variants attain significantly better ECE (a) on the more severe corruptions, as the images move further out of distribution.

Amortized Conditional Normalized Maximum Likelihood

(a) CIFAR10C VGG16Drop ECEs (lower is better)

(b) CIFAR10C VGG16Drop Accuracies (higher is better)

(c) CIFAR10C VGG16Drop Brier scores (lower is better)

(d) CIFAR10C VGG16Drop NLLs (lower is better)

Figure 8. CIFAR10-C performance with the VGG16Drop architecture. Instantations of our methods are shown in stripes. Boxplots show
quartiles of each statistic over all different corruption types of the given intensity, with the mean indicated by a circle. Again, both
ACNML variants attain significantly better ECE (a) on the more severe corruptions, as the images move further out of distribution.

Amortized Conditional Normalized Maximum Likelihood

(a) CIFAR10C WRN28x10 ECEs (lower is better)

(b) CIFAR10C WRN28x10 Accuracies (higher is better)

(c) CIFAR10C WRN28x10 Brier scores (lower is better)

(d) CIFAR10C WRN28x10 NLLs (lower is better)

Figure 9. CIFAR10-C performance with the WideResNet28x10 architecture. Instantations of our methods are shown in stripes. Boxplots
show quartiles of each statistic over all different corruption types of the given intensity, with the mean indicated by a circle. Again, we see
that ACNML attains better ECE values than comparable methods on the heavier corruptions (b).

Amortized Conditional Normalized Maximum Likelihood

CIFAR10 Results VGG16 WideResNet28x10
NLL Accuracy ECE NLL Accuracy ECE

ACNML-SWAGD (ours) 0.2167± 0.0041 93.23± 0.09 0.0115± 0.0010 0.1130± 0.0012 96.38± 0.03 0.0122± 0.0006
ACNML-KFAC (ours) 0.2329± 0.0028 93.14± 0.08 0.0361± 0.0016 - - -

MAP (SWA) 0.2694± 0.0056 93.23± 0.13 0.0430± 0.0010 0.1128± 0.0014 96.41± 0.01 0.0099± 0.0004
SWAGD 0.2257± 0.0047 93.31± 0.04 0.0284± 0.0002 0.1125± 0.0012 96.28± 0.04 0.0042± 0.0003
SWAG 0.2016± 0.0031 93.60± 0.10 0.0158± 0.0030 0.1122± 0.0009 96.32± 0.08 0.0088± 0.0006

KFAC-Laplace 0.2236± 0.0013 92.76± 0.11 0.0097± 0.0005 0.1197± 0.0031 96.23± 0.02 0.0111± 0.0006
SWA-Dropout 0.2562± 0.0025 92.85± 0.14 0.0380± 0.0007 0.1111± 0.0024 96.36± 0.09 0.0107± 0.0008

SWA-Temp 0.2481± 0.0245 93.61± 0.11 0.0366± 0.0063 0.1064± 0.0004 96.46± 0.04 0.0080± 0.0007
SGD 0.3285± 0.0139 93.17± 0.14 0.0483± 0.0022 0.1294± 0.0022 96.41± 0.10 0.0166± 0.0007

SWA-Ensemble 0.17867 94.36 0.0148 0.1036 96.53 0.0068

Table 2. In-distribution comparative results We see that for in-distribution performance, ACNML variants perform comparably to other
methods, without large separations between most methods. Results for SWA-Temp and SGD are taken from Maddox et al. (2019).

(a) CNML Normaliz-
ers

∑
y pθ̂y (y|x)

(b) NLLs (c) Confidences

Figure 10. In Distribution Comparisons between ACNML and
naive CNML. We plot scatter plots of the values of each statistic
for naive CNML (x-axis) vs ACNML (y-axis), with the red line
indicating Looking at the CNML normalizers, we see that the
ACNML adaptation procedure using the approximate posterior
is much less constraining than using the training set, resulting in
the normalizers being higher for ACNML than naive CNML for
almost all inputs. This leads to excess conservatism, with ACNML
almost always having lower confidence its predictions, and many
inputs with close to 0 NLL with naive CNML having higher NLL
with ACNML.

we see that on many points where naive CNML outputted
confident correct answers and achieved close to 0 NLL
loss, ACNML still incurs some higher losses due to its less
confident predictions.

On the OOD rotated images, we again see that ACNML typ-
ically adapts more than CNML as measured by the CNML
normalizers, though the difference is much less extreme
compared to the in-distribution dataset. In the confidence
scatter plot, we again see that ACNML tends to make lower
confidence predictions than naive CNML (especially when
naive CNML’s predictions are confident), and as seen in Fig-
ure 13, result in ACNML having better Brier scores, NLL
and calibration on the OOD inputs.

Handling multiple MLEs in CNML: Strictly speaking,
the CNML distribution is not well defined when there exist
multiple potential MLEs θ̂y that can output different pre-
dictions (prior references to CNML typically assume such
MLEs are unique). However, the non-convexity of the ob-
jective for deep neural networks means multiple MLEs can
exist, and to properly define CNML in this case, we would
need to select a particular MLE to use when assigning prob-

(a) CNML Normaliz-
ers

∑
y pθ̂y (y|x)

(b) NLLs (c) Confidences

Figure 11. OOD Comparisons between ACNML and naive
CNML. We plot scatter plots of the values of each statistic for
naive CNML (x-axis) vs ACNML (y-axis). Looking at the CNML
normalizers, we again see that the ACNML adaptation procedure
using the approximate posterior is less constraining than using
the training set, with the normalizers being higher for ACNML
than naive CNML for most inputs (though to lesser extent than the
in-distribution data). ACNML again outputs more conservative
predictions with lower confidence on many inputs, which leads to
better NLL and calibration on the OOD dataset, unlike with the
in-distribution test set.

abilities in CNML. In line with the min-max formulation of
CNML, we propose to select the MLE θ̂y that maximizes
the likelihood pθ̂y (y|x) of the query point and proposed
label, as this is the choice that maximizes the regret for that
particular label over all MLEs.

With our naive CNML instantiation, we observe that dur-
ing the finetuning for each query point x and label y, the
predicted probability of that label pθ(y|x) does not mono-
tonically increase over iterations as we might hope (since
we initialize θ to be the MLE of the training set, then up-
date it to maximize likelihood of the training set with the
query point and label), but can potentially oscillate substan-
tially throughout the finetuning process. We suspect this is
due to the stochasticity in the optimization procedure from
sampling minibatches of the training data, which causes
the trajectory of parameters can potentially visit several
different (approximate) local optima that output different
predictions on the query point. While our instantiation of
naive CNML simply used the parameter found at the end of
5 epochs, we additionally compare against a variant that ex-
plicitly tries to select the MLE that maximizes the likelihood

Amortized Conditional Normalized Maximum Likelihood

(a) MNIST Test Set (b) Randomly Rotated MNIST (OOD data)

Figure 12. Reliability diagrams plotting confidence vs. accuracy for Bayes-by-Backprop experiments on the MNIST test set and a
randomly rotated MNIST test set (OOD). ACNML’s conservative predictions provided better calibrated predictions on the OOD test set.

of the proposed label. This variant heuristically uses the bset
value of pθ(y|x) over all θ encountered in the last epoch of
finetuning. We see in Figure 13 that this variant, denoted
naive CNML (max), gives more conservative predictions
than naive CNML and improves in NLL and calibration on
the more OOD rotated datasets. However, it is still not as
conservative as ACNML using the Bayes-by-Backprop pos-
terior, and so does not perform as well on the more severe
rotations.

D. NMAP and ACNML
NML type methods can be extended with a prior-like regular-
ization term on the selected parameter, resulting in Normal-
ized Maximum a Posteriori (NMAP)(Kakade et al., 2006),
also referred to as Luckiness NML (Grunwald, 2004). For a
regularizer given by log p(θ), NMAP assigns probabilities
according to

pNMAP(xn) ∝ pθ̂(xn)(x
n)

θ̂(xn) = argmax
θ

log pθ(x
n) + log p(θ).

Similarly to CNML, there are several variations on NMAP
that predict slightly different distributions, but we adopt
the one of the same form as our CNML. Similarly to how
NML was extended to CNML, NMAP can be extended to
a conditional version, again with the θ̂’s being chosen via
MAP rather than MLE. As mentioned in Section 3.1, with a
non-uniform prior, ACNML actually approximates a version
of conditional NMAP, with the Bayesian prior term on the
parameters corresponding to the additional regularizer.

We also note that with the calculations in section 3.1, CNML

can be viewed as performing NMAP on a single new test
point, with a regularizer corresponding to the posterior like-
lihood from the training set. In this perspective, ACNML
approximates CNML by using an approximation to that
training set regularizer.

E. Details of Analysis in Section 3.2
E.1. Bounding Error in Parameter Estimation

Here we state the primary theorem of Giordano et al. (2019)
along with the necessary definitions and assumptions.

Here, we attempt to estimate an unknown parameter θ ∈
Ωθ ⊆ RD where Ωθ is compact. Suppose we have a dataset
N datapoints and a weight vector w1, . . . , wN . Let gi(θ)
denote the gradient of the loss at datapoint i evaluated at θ,
and hi(θ) the Hessian. We can then define

G(θ, w) =
1

N

N∑
i=1

wigi(θ) (19)

H(θ, w) =
1

N

N∑
i=1

wihi(θ). (20)

The MLE θ̂(w) for the dataset weighted by w is given by
solving for G(θ̂(w), w) = 0. Let 1w denote the vector of
weights consisting of all 1s. We define θ̂1 to be the MLE
for the whole unweighted dataset, which is equivalent to
evaluating θ̂(1w) and also define the corresponding Hessian
H1 = H(θ̂1, 1w). We now wish to estimate θ̂(w) using a
first order approximation around θ̂1 given by

θ̂IJ(w) = θ̂1 −H−1
1 G(θ̂1,∆w), (21)

Amortized Conditional Normalized Maximum Likelihood

(a) ECE lineplots (b) Brier score lineplots

(c) Accuracy lineplots (d) NLL lineplots

Figure 13. Expanded MNIST Results: We include the accuracy and negative-log-likelihood metrics as well as ECE and Brier score. We
see that all methods perform similarly in accuracy, and that, and ACNML also has better calibration (ECE), Brier scores, and NLLs on the
more OOD datasets compared to other methods. We also additionally compare to the Naive CNML (max) method we designed to handle
non-unique maximizers with naive CNML. We see that while the Naive CNML (max) variant outperforms Naive CNML on the more
OOD datasets, ACNML is still more conservative, resulting in better calibrated estimates on the more severe rotations.

Amortized Conditional Normalized Maximum Likelihood

where we define ∆w = w − 1w. The theorem will proceed
to bound

wwwθ̂(w)− θ̂IJ

www
2

for suitable weights w.

Now we further define g(θ) ∈ RN×D to be the concatena-
tion of all gi(θ)s and similarly for h(θ) ∈ RN×D×D.We let
‖g(θ)‖p and ‖h(θ)‖p to refer to the p-norms when treating
those as vector quantities.

Assumption 1 (Smoothness): For all θ ∈ Ωθ each gn(θ) is
continuously differentiable.

Assumption 2 (Non-degeneracy): For all θ ∈ Ωθ, H(θ, 1w)
is nonsingular and

sup
θ∈Ωθ

wwH(θ, 1w)−1
ww
op
≤ Cop ≤ ∞. (22)

Assumption 3 (Bounded averages): There exist finite con-
stants Cg and Ch such that supθ∈Ωθ

1√
N
‖g(θ)‖2 ≤ Cg and

supθ∈Ωθ
1√
N
‖h(θ)‖2 ≤ Ch.

Assumption 4 (Local Smoothness): There exists a ∆θ > 0

and a finite constant Lh such that
wwwθ − θ̂1

www
2
≤ ∆θ implies

‖h(θ)−h(θ̂1)‖
2√

N
≤ Lh

wwwθ − θ̂1

www
2
.

Assumption 5 (Bounded weight averages). 1√
N
‖w‖2 is

uniformly bounded for all w ∈W by a finite constant Cw.

We note that assumption 2 is equivalent toH1 being strongly
positive definite. Assumption 5 is not relevant for our use
cases, but is stated for completeness.

Condition 1 (Set Complexity): There exists a δ ≥ 0 and
corresponding set Wδ ⊆W such that

max
w∈Wδ

sup
θ∈Ωθ

wwwww 1

N

N∑
i=1

(wi − 1)gi(θ)

wwwww
1

≤ δ. (23)

max
w∈Wδ

sup
θ∈Ωθ

wwwww 1

N

N∑
i=1

(wi − 1)hi(θ)

wwwww
1

≤ δ. (24)

Condition 1 essentially describes the set of weight vectors
for which θ̂IJ will be an accurate approximation within order
δ.

Definition 1: Given assumptions 1-5, define

CIJ = 1 +DCwLhCop (25)

∆δ = min{∆θC
−1
op ,

1

n
C−1

IJ C−1
op }. (26)

We now state the main theorem of Giordano et al. (2019).

Theorem (Error Bound for the approximation). Under as-
sumptions 1-5 and condition 1,

δ ≤ ∆δ ⇒ max
w∈Wδ

wwwθ̂IJ(w)− θ̂(w)
www

2
≤ 2C2

opCIJδ
2. (27)

We can now apply the above theorem to provide error
bounds for a setting where we have a training set of n
datapoints and wish to consider the MLE after adding a
new datapoint z. The issue is that the theorem as stated
bounds the error of the approximation when the approxima-
tion is centered around the uniform weighting over all the
datapoints, which would be appropriate for considering the
impact of removing datapoints from the dataset.

To apply the theorem to bound the effects of adding a data-
point, we have to do some slight manipulation. We apply the
previous theorem with N = n+ 2, where gi(θ) correspond
to the gradients of training data point i for i in (1, . . . , n),
gn+1 = −∇ log pθ(z), and gn+2 = ∇ log pθ(z), and simi-
larly for the Hessians hi(θ). We have thus added the query
point to the dataset, as well as another fake point that serves
to cancel out the contribution of the query point under a
uniform weighting, so G(θ, 1w) and H(θ, 1w) are the mean
gradients and Hessians for just the training set. Now suppos-
ing assumptions 1-5 are met for this problem, then we need
to check condition 1 for the particular Wδ that contains the
vector w̄ of all 1s, except for a 2 in the last entry. We can
then find the smallest δ that satisfies

sup
θ∈Ωθ

wwww 1

N + 2
gn+2(θ)

wwww
1

≤ δ (28)

sup
θ∈Ωθ

wwww 1

N + 2
hn+2(θ)

wwww
1

≤ δ, (29)

and so long as δ ≤ ∆δ, applying the theorem boundswwwθ̂IJ(w̄)− θ̂(w̄)
www

2
.

Commentary: The above theorem gives explicit conditions
for the accuracy of the approximation that we can verify for
a particular training set and query point. Under assumptions
that we have some limiting procedure for growing the train-
ing set such that the constants defined hold uniformly, we
can extend this to an asymptotic statement to explicitly say
that the approximation error decays as O(n−2).

E.2. Bounding error in the resulting CNML
distribution

We now provide the proof for Proposition 3.2, which we
restate here. For notational simplicity, we ignore any depen-
dence on the input x, which we consider fixed.

Proposition E.1 (3.2). Suppose z ∈ Z with |Z| = k (for
example classification with k classes). Let θ̂z be the exact
MLE after appending z to the training set, and let θ̃z be an
approximate MLE with

wwwθ̂z − θ̃zwww ≤ δ for all z. Further

suppose log pθ(z) is L-Lipschitz in θ.

Denote the exact CNML distribution pCNML(z) ∝ pθ̂z (z)
and an approximate CNML distribution pACNML(z) ∝

Amortized Conditional Normalized Maximum Likelihood

pθ̃z (z). Then, we have the bound

sup
z
|log pCNML(z)− log pACNML(z)| ≤ 2Lδ. (30)

Proof. The assumed bound
wwwθ̂z − θ̃zwww

2
≤ δ combined

with L-Lipschitzness implies a bound on differences of
logits of each class

∣∣∣log pθ̂z (z)− log pθ̂z (z)
∣∣∣ ≤ Lδ. (31)

We note that the log probabilities of the exact CNML dis-
tribution pCNML (pACNML is given by a similar expression
using θ̃z instead of θ̂z) is given by

log pCNML(z) = log pθ̂z (z)− log
∑
z′∈Z

pθ̂z′
(z′). (32)

For any z ∈ Z , we can then expand, apply the triangle
inequality and then Equation 31 to obtain

|log pCNML(z)− log pACNML(z)|
= |log pθ̂z (z)− log pθ̃z (z)

− log
∑
z′∈Z

pθ̂z′
(z′) + log

∑
z′∈Z

pθ̃z′ (z
′)| (33)

≤
∣∣∣log pθ̂z (z)− log pθ̃z (z)

∣∣∣
+

∣∣∣∣∣log
∑
z′∈Z

pθ̂z′
(z′)− log

∑
z′∈Z

pθ̃z′ (z
′)

∣∣∣∣∣ (34)

≤ Lδ +

∣∣∣∣∣log
∑
z′∈Z

pθ̂z′
(z′)− log

∑
z′∈Z

pθ̃z′ (z
′)

∣∣∣∣∣ . (35)

We now bound the difference between the log-normalizers∣∣∣log
∑
z′ pθ̂z′

(z′)− log
∑
z′ pθ̃z′ (z

′)
∣∣∣.

We first let pmin(z) = min{pθ̂z (z), pθ̃z (z)} and pmax(z) =
max{pθ̂z (z), pθ̃z (z)}, and note that Equation 31 implies
log pmax(z) ≤ log pmin(z) + Lδ for all z. We then bound

the difference in log-normalizers∣∣∣∣∣log
∑
z′∈Z

pθ̂z′
(z′)− log

∑
z′∈Z

pθ̃z′ (z
′)

∣∣∣∣∣
≤ log

∑
z′∈Z

pmax(z′)− log
∑
z′∈Z

pmin(z′) (36)

= log

∑
z′∈Z pmax(z′)∑
z′∈Z pmin(z′)

(37)

= log

∑
z′∈Z exp(log pmax(z′))∑

z′∈Z pmin(z′)
(38)

≤ log

∑
z′∈Z exp(log pmin(z′) + Lδ)∑

z′∈Z pmin(z′)
(39)

= log
exp(Lδ)

∑
z′∈Z pmin(z′)∑

z′∈Z pmin(z′)
(40)

= Lδ. (41)

Plugging back into Equation 37, we have the following
bound for all z ∈ Z

|log pCNML(z)− log pACNML(z)| ≤ 2Lδ. (42)

