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Abstract

Given xj = ✓ + "j , j = 1, ..., n where ✓ 2 R
d

is an unknown parameter and "j are i.i.d. Gaus-
sian noise vectors, we study the estimation of
f(✓) for a given smooth function f : Rd ! R

equipped with an additive structure. We inherit
the idea from a recent work which introduced an
effective bias reduction technique through itera-
tive bootstrap and derive a bias-reducing estimator.
By establishing its normal approximation results,
we show that the proposed estimator can achieve
asymptotic normality with a looser constraint on
smoothness compared with general smooth func-
tion due to the additive structure. Such results fur-
ther imply that the proposed estimator is asymp-
totically efficient. Both upper and lower bounds
on mean squared error are proved which shows
the proposed estimator is minimax optimal for the
smooth class considered. Numerical simulation
results are presented to validate our analysis and
show its superior performance of the proposed
estimator over the plug-in approach in terms of
bias reduction and building confidence intervals.

1. Introduction
We consider the model

xj = ✓ + "j , (1.1)

with "j , j = 1, ..., n being noisy observations of an un-
known parameter ✓ 2 R

d, and "j 2 R
d being i.i.d. copies

of a Gaussian random vectors " ⇠ N (0,�2Id). The goal
of this paper is to study the estimation of the function value
f(✓) when f : Rd ! R is a given smooth function that has
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an additive structure:

f(✓) :=
dX

j=1

fj(✓j) (1.2)

Especially, we are interested in the high dimensional set-
ting where the dimension can grow with the sample size,
namely, d = n

↵ with ↵ 2 (0, 1). Model (1.1) is ubiquitous
in real world applications since it models data observations
with measurement error. We refer to Carroll et al. (2006)
for a thorough study on this particular topic. Meanwhile,
estimation of smooth functionals of parameters in high and
even infinite dimension space has a long history in the statis-
tics community, Important references include but not lim-
ited to Levit (1976; 1978); Ibragimov and KHas’Minskii
(2013); Ibragimov et al. (1986); Bickel and Ritov (1988);
Nemirovski (1991; 2000); Birgé and Massart (1995); Lau-
rent (1996); Lepski et al. (1999). Among them, two types of
functionals with an additive structure are intensively studied.
One is the linear functional, see Donoho and Liu (1987;
1991); Cai and Low (2005a); Klemelä and Tsybakov (2001)
and the references therein. The other is the quadratic func-
tional, see Donoho and Nussbaum (1990); Cai and Low
(2005b); Klemelä (2006); Laurent and Massart (2000) and
the references therein.

A natural way to approach the problem is to take the sample
mean x̄ of the noisy observations and use the plug-in esti-
mator f(x̄). Since x̄ is the maximum likelihood estimator
(MLE) of ✓, then one may think that f(x̄) should be good
to serve the purpose. Indeed, when d is fixed, it works.
However, in high dimensional regime when d is large such
estimators can introduce large bias due to the factor d in
the convergence rate. Such a concern acts as a major driven
force of several recent works which developed new methods
to effectively reduce the bias. One way to address this issue
is based on an iterative bootstrap technique, see Jiao and
Han (2020); Koltchinskii (2020); Koltchinskii and Zhilova
(2021). The others turn to use approximation methods to
replace f by its approximation to achieve de-biasing. For
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instance, Han et al. (2020) used polynomial approximations
of f and studied Lr-norm estimation of a specific functional
under Gaussian white noise model, and Zhou and Li (2019)
used the ideas in Fourier analysis and Littlewood-Paley the-
ory to build estimators of f(✓) under model (1.1). In other
interesting related works such as Acharya et al. (2017); Hao
and Orlitsky (2019), the authors studied similar problems
using profile maximum likelihood estimator of ✓ under dis-
crete distribution setting. The smooth functions studied
in Koltchinskii and Zhilova (2021); Zhou and Li (2019)
are usually in general forms without any specific structure.
Given that functionals with an additive structure are perhaps
the most important ones used in machine learning such as
boosting methods (Friedman, 2001) or generalized addi-
tive models (Hastie and Tibshirani, 1986), we think it is
worthwhile to investigate how to use those methods to study
estimation of smooth additive models with large d and what
are the implications of such specific structure.

As we have already mentioned, specific additive models
such as linear and quadratic functionals have been exten-
sively studied during the past few decades. Recently we see
a resurgence of interests in studying minimax theory of those
topics under sparsity class and Gaussian shift model (1.1),
see Collier et al. (2017; 2018). Both linear and quadratic
functionals are specific smooth additive models contained
in the function class we consider in this article. The re-
sults in this paper can reproduce some of their results for
quadratic functionals in the so called dense regime since we
don’t assume any sparsity constraint. Recently Collier and
Comminges (2019) studied minimax estimation of a type of
general additive functionals based on Hermite polynomials
and approximation theory. One common ground between
their estimator and ours is that both estimators can be unbi-
ased when f is a polynomial up to certain degree. Another
line of exciting results focus on minimax estimation of nons-
mooth additive models, see Cai and Low (2011); Carpentier
and Verzelen (2019); Jiao et al. (2015); Wu and Yang (2016;
2019); Collier et al. (2020).

In their original work (Koltchinskii and Zhilova, 2021), the
authors studied the problem over a quite general smooth
function class without exploiting any specific structure of
the function itself. In this article, we exploit the additive
structure and apply the bias-reduction technique of iterative
bootstrap introduced by Koltchinskii and Zhilova (2021)
to each component function and construct an estimator for
smooth additive functions with each component residing in
Hölder class ⌃(�, L) which is a fundamental function class
in nonparametric estimation. Our major contribution is on
the theory front. We developed new concentration bounds to
study the estimation of general smooth additive functions in
high dimensional regime, which makes this work the first to
study this problem. It turns out that such results can be used
to reproduce some classical results in linear and quadratic

functional estimation. Those normal approximation results
are also new which lay the foundation for building effective
confidence intervals of the true parameter.

Contributions and paper organization. The paper is or-
ganized as follows: in Section 3, we exploit the additive
structure and propose an explicit formula of the estimator
accordingly. Then we derive an upper bound on the bias for
this estimator. As a byproduct, we show that the proposed
estimator is unbiased if each component is a polynomial up
to degree ` = b�c. In Section 4, by using some truncation
technique and tools in Gaussian concentration, we establish
a concentration inequality which is a major tool to estab-
lish asymptotic normality. In Section 5, we prove normal
approximation bounds for the estimator. Such results imply
that the estimator scaled by the Fisher information for esti-
mation of f(✓) is normally distributed around the ground
truth f(✓) for large n. This kind of results can be use-
ful to build confidence intervals in real world applications.
Additionally, we provide bounds on mean squared error
(MSE). Those results also show that the proposed estimator
has optimal asymptotic variance implied by Cramér-Rao
bound and it is asymptotically efficient. As we shall see,
the convergence rates on bias and normal approximation
we obtained are quite different from the existing results of
general smooth class. One can benefit from such a specific
additive structure of the function itself in terms of achieving
bias reduction and normal approximation with much looser
smoothness constraint. In Section 6, we prove a minimax
lower bound which shows that when non-trivial bias reduc-
tion is introduced, i.e., � � 2, the proposed estimator is
minimax optimal. In Section 7, numerical simulations are
presented to validate our analysis. Especially, we propose
solutions to the adaptation issues on the computational as-
pects. Our simulations show lucrative improvements of the
estimator in bias reduction and MSE reduction when d is
large. The confidence intervals built upon the proposed esti-
mator is noticeably more accurate than those based on the
plug-in approach.

2. Preliminaries
2.1. Notations

We use boldface uppercase letter X to denote a matrix and
boldface lowercase letter x to denote a vector. We use k·k to
denote the `2-norm of a vector, and k · kLp to denote the Lp-
norm of a function. We use the conventional notation ) to
denote weakly convergence or convergence in distribution.
Throughout the paper, given nonnegative a and b, a .
b means that a  Cb with a numerical constant C and
a .L b means that a  C(L)b with C(L) being a constant
involving L; a ⇣ b means that a . b and b . a. a ^ b =
min{a, b} and a _ b = max{a, b}.
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2.2. Hölder Class and Additive Structure

We first introduce Hölder class (see Tsybakov (2009)) which
is a fundamental function class in nonparametric estimation.

Definition 1. Let � and L be two positive real numbers.
The Hölder class ⌃(�, L) on T ⇢ R is defined as the set
of ` = b�c times differentiable functions f : T ! R with
derivative f

(`) satisfying
��f (`)(x)� f

(`)(x0)
��  L|x� x

0|��`, 8x, x0 2 T. (2.1)

The parameters � and ` characterize the smoothness of
Hölder class ⌃(�, L).

Next, we introduce the function class F�
d of our interest.

It contains functions with an additive structure where each
component belongs to the Hölder space ⌃(�, L) and the
derivatives up to the order ` = b�c are uniformly bounded
by some constant L0 in the domain T .

F�
d :=

n
f(✓) =

dX

j=1

fj(✓j) : fj 2 ⌃(�, L),

and
��f (k)

��
L1  L

0
, for k = 0, 1, 2, ..., `, 8 ✓ 2 T

o
.

Note that for a given f 2 F�
d with L, L0 and � being

fixed constants, the value of f can be as large as the order
O(d). This makes the function class F�

d larger than those
considered in Koltchinskii and Zhilova (2021) in nature
where both the norm of the function and the norm of its
gradient vector are bounded by some constants and are
independent of the dimension factor d. Clearly, here for our
model, both can depend on d.

3. Bias Reduction
As we have already mentioned, a natural estimator of f(✓)
under model (1.1) is the plug-in estimator f(x̄). However,
such an estimator can be very inaccurate when the dimen-
sion d is large due to the introduction of large bias, see Col-
lier et al. (2017); Zhou and Li (2019); Koltchinskii and
Zhilova (2021). Thus, non-trivial bias reduction technique
is needed. The idea of construction of the bias-reducing esti-
mator in this article is that we exploit f ’s additive structure
and apply the bias reduction technique of iterative bootstrap
introduced by Koltchinskii and Zhilova (2021) to each com-
ponent function. Intuitively, if the bias of each component
fj can be small enough, then the summation of the bias
should also be small, so is the bias of the estimator. As long
as we can control its variance well, then this bias reduction
should be effective. Indeed, as we shall see in Section 5, the
proposed estimator not only have small bias, but also has an
optimal variance in asymptotic sense. We briefly summarize
the beautiful idea of iterative bootstrap as follows: denote

by T the following linear operator

T g(✓) := E✓g(✓) = Eg(✓ + "̄),

where "̄ = n
�1

Pn
j=1 "j , and denote by I as the identity

operator and further denote by B := T � I . To create an es-
timator g(x̄) of f(✓) with small bias, one wants to solve the
integral equation T g(✓) = (I + B)g(✓) = f(✓) as accu-
rate as possible. However, solving such an integral equation
itself is challenging. Instead, a finite approximation of the
Neumann series (I +B)�1 = (I �B+B2 �B3 + . . . ) to
create the following estimator

fk(x̄) :=
kX

j=0

(�1)jBj
f(x̄). (3.1)

In Lemma 1, we derive an explicit formula of Bj
f(x̄) for

our model and then use it to construct an estimator. We
assume that "̄ ⇠ N (0,�2

⇠Id) with �2
⇠ = �

2
/n.

Lemma 1. Suppose that f 2 F�
d with ` = b�c. Then for

k = 1, ..., `

Bk
f(✓) = E⌧,⇠

h dX

j=1

f
(k)
j (✓j +

kX

i=1

⌧i⇠ij)
kY

i=1

⇠ij

i
, (3.2)

where ⌧i, i = 1, ..., k are i.i.d. random variables uni-
formly distributed on [0, 1], and ⇠i = (⇠i1, ..., ⇠id)T ,
i = 1, ..., k are i.i.d. copies of a Gaussian random vector
⇠ ⇠ N (0,�2

⇠Id). All ⌧i’s are independent of ⇠i’s.

The proof of Lemma 1 is deferred to Appendix A.1. Once
we have Lemma 1, we introduce the estimator as follows:
under model (1.1), given an f 2 F�

d , we define

f`�1(x̄) := f(x̄) +
`�1X

k=1

(�1)kBk
f(x̄). (3.3)

Here Bk
f is the same defined as in (3.2) with �2

⇠ := �
2
/n.

Note that here ⇠ has the same distribution as "̄.
Remark 1. Two practical concerns raise when one im-
plements the estimator (3.3): 1) Since ⇠ has the same
distribution as "̄, one needs to know the distribution of
the noise in advance. However, such distribution is un-
known in practice since we don’t know the variance �2

of ⇠. This can be addressed by using the sample variance
computed from the data as a surrogate. 2) There is an
expectation E⌧,⇠

⇥Pd
j=1 f

(k)
j

⇣
x̄j +

Pk
i=1 ⌧i⇠ij

⌘Qk
i=1 ⇠ij

⇤

appearing in (3.3). Oftentimes, it may be difficult to de-
rive an explicit expression of this term. Our solution is
to use the empirical mean of sampling N i.i.d. copies of
Pd

j=1 f
(k)
j

⇣
x̄j +

Pk
i=1 ⌧i⇠ij

⌘Qk
i=1 ⇠ij . We will have a

more detailed discussion on these in Section 7.
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Remark 2. When � 2 (1, 2), ` � 1 = 0, in this case the
estimator (3.3) is simply the trivial plug-in estimator f(x̄).
Only when � � 2, the iterative bootstrap procedure comes
into the picture and non-trivial bias reduction is introduced.

In Theorem 3.1, we derive an upper bound on the bias of
the proposed estimator (3.3) under model (1.1).

Theorem 3.1. Under model (1.1), suppose that f 2 F�
d

with � > 1 and � /2 N
⇤. Consider the estimator f`�1(x̄)

with ` = b�c defined as in (3.3). Then the following bound
on the bias holds:

��Ef`�1(x̄)� f(✓)
��  C(L,�)��n��/2

d. (3.4)

where the constant C(L,�) := L�(��`+3/2)(
p
2)�

(
p
⇡)`(��`+1)

and �(·)
is the gamma function.

The proof of Theorem 3.1 is deferred to Appendix A.2. As
we shall see in Section 7.2, the numerical simulation results
show this estimator leads substantial improvements in bias
reduction compared with f(x̄).

Remark 3. To understand bound (3.4), the rate on the bias
is of the order O(n��/2

d) given that �, L and � are fixed
constants. It differs from the typical bound on the bias
O((d/n)�/2) for general functional estimation in Gaussian
shift model, see Koltchinskii and Zhilova (2021). The d fac-
tor in bound (3.4) is due to its additive structure. Basically,
if the components fj’s are very similar to each other, then
the summation of bias for estimation of each fj(✓j) should
be linear in d.

Remark 4. On the other hand, as one can see unlike the
bound for general smooth function, the specific additive
structure decouples the smoothness index � from the dimen-
sion parameter d. This makes bias reduction more obvious
for functions with large smoothness index � when d is large.
Indeed, as we shall see in Section 7, when ↵ is close to 1,
larger � can contribute to obvious reduction on MSE due to
better bias correction. In other words, when f is sufficiently
smooth, large value of d will not cause as much trouble as
those in general functional estimation in high dimensions.
This can be seen as a benefit of the additive structure.

The following corollary as a byproduct of Theorem 3.1
shows that if f is a multivariate polynomial of degree at
most `, then the estimator defined in (3.3) is an unbiased
estimator of f(✓).

Corollary 3.1. Suppose that f has a structure as in (1.2)
and each component fj is a polynomial of order at most `
for each j. Then f`�1(x̄) defined as in (3.3) is an unbiased
estimator of f(✓).

Remark 5. Two classical examples of additive function-
als which are extensively studied, namely linear func-
tional, i.e., f(✓) :=

Pd
j=1 ✓j and quadratic functional, i.e.,

f(✓) :=
Pd

j=1 ✓
2
j , fall into this category. This indicates

that the proposed estimator is in a general form. In fact, if
each component fj(✓j) is a higher order polynomial, this
estimator suggests that one only need to do a few more
steps of bootstrap in order to achieve unbiasedness. As we
shall see in later sections, the results we established for this
estimator can reproduce those minimax rates on MSE for
both linear and quadratic functionals estimation.

4. Concentration Inequalities
As we have mentioned, when we turn to iterative bootstrap
to achieve bias reduction for each component function fj ,
we still need to show that the variance of the proposed esti-
mator can be well controlled so that we are not sacrificing
variance for smaller bias. In this section we resolve this is-
sue by proving a concentration inequality which essentially
implies that the estimator is well concentrated around its
mean so its variance is still well controlled.

For a given function g : Rd ! R, we consider the first order
Taylor expansion of g(x̄) around ✓, and get

g(x̄) = g(✓ + "̄) = g(✓) +
⌦
rg(✓), "̄

↵
+ Sg(✓; "̄) (4.1)

where Sg(✓; "̄) denotes the remainder of g(x̄). g(✓) +⌦
rg(✓), "̄

↵
is the linear approximation of g(x̄) around

✓, which is clearly a Gaussian random variable. In The-
orem 4.1, we derive concentration inequalities of the re-
mainder Sg(✓; "̄) around its mean ESg(✓; "̄). These results
are part of the major contributions of this work and new
analysis is developed to adapt to the additive structure. Such
concentration bounds are crucial for us to derive normal
approximation bounds and establish asymptotic normality
of our estimator.
Theorem 4.1. Under model (1.1), assume that f 2 F�

d
with � > 1. Consider the estimator f`�1(x̄) with ` = b�c
defined as in (3.3). Then there exists a numerical constant
C

⇤
1 such that for all t � 1, with probability at least 1� e

�t,
for any � � 2,

���Sf`�1(✓; "̄)� ESf`�1(✓; "̄)
��� 

C
⇤
1 (L _ L

0)�2
⇣r

d

n

_r
t

n

⌘r
t

n
,

(4.2)

and with the same probability and some numerical constant
C

⇤
2 , for any 1 < � < 2,
���Sf`�1(✓; "̄)� ESf`�1(✓; "̄)

��� 

C
⇤
2 (L/�)�

�
⇣r

d

n��1

_
r

d(2��)t(��1)

n��1

⌘r
t

n
.

(4.3)

The proof of Theorem 4.1 is deferred to Appendix A.5. As a
major result, the main idea of the proof is based on a trunca-
tion technique developed in Koltchinskii and Lounici (2016)
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and tools in Gaussian isoperimetric inequality, see Giné
and Nickl (2016). The key challenge in applying Gaussian
concentration inequality is that Sf`�1(✓; "̄) may not be a
Lipschitz function of the random vector "̄. As a result, we es-
tablish a key lemma with delicate analysis which is a major
contribution of this proof that shows a modified version of
Sf`�1(✓; "̄) with truncation is Lipschitz continuous. Then
standard tools in Gaussian concentration can be applied.

Remark 6. When � � 2, the concentration bound (4.2) is
of the order oP (n�1/2) with d = n

↵ for all ↵ 2 (0, 1). It
shows that the remainder is well concentrated around its
mean and has negligible effects in asymptotic sense as long
as d = o(n).

Remark 7. When � 2 (1, 2), the concentration bound
(4.3) indicates that rate o(n�1/2) doesn’t always hold. Es-
pecially, when d = n

↵ and take t ⇣ log n, bound (4.3)
is of the order OP (d1/2/n�/2). To make it of the order
o(n�1/2), we need � > 1 + ↵. On the other hand, in the
case krf(✓)k ⇣

p
d, when both sides of bound (4.3) are

scaled by �krf(✓)k/
p
n, the right hand side of (4.3) still

goes to zero as n ! 1 with � 2 (1, 2). As we shall see in
Section 5, the proposed estimator has an asymptotic stan-
dard deviation �krf(✓)k/

p
n. As long as krf(✓)k ⇣

p
d,

it is not worrisome.

5. Normal Approximation
In this section, we prove the normal approximation results.
It is shown that the estimator (3.3) is normally distributed
around the true parameter f(✓) when n is large enough.
This kind of result is of vital importance in both theory and
applications since it provides theoretical guarantee to build
effective confidence intervals of the true parameter using the
estimator. As we shall see in Section 7.3, our simulations
show that confidence intervals built based on estimator (3.3)
are very accurate at all dimension levels and noticeably
better than those built based on the plug-in estimates.

For a given differentiable function  : Rd 7! R and ran-
dom vector ⇠ ⇠ N (0,�2

⇠Id), we denote by �
2
 ,⇠(✓) :=

�
2
⇠kr (✓)k2. Note that based on one data point x = ✓+ ⇠,

the Fisher information is I✓ = Id/�2
⇠ for the estimation of

✓ and I (✓) = 1/�2
 ,⇠(✓) for the estimation of  (✓).

In Theorem 5.1 below, we use the results proved in previous
sections to establish a normal approximation bound of the
estimator (3.3) when � � 2. Such results characterize the
convergence rate to a standard normal distribution of our
estimator after proper centering and rescaling. The proof of
Theorem 5.1 is deferred to Appendix A.7.

Theorem 5.1. Under model (1.1), assume that f 2 F�
d with

� � 2. Consider the estimator f`�1(x̄) with ` = b�c de-
fined as in (3.3). Then the following normal approximation

bound holds:

sup
x2R

���P✓

np
n
�
f`�1(x̄)� f(✓)

�

�
��rf(✓)

��  x

o
� P{Z  x}

��� 

C
⇤
3 (�, L)

��rf(✓)
���1

⇣
�
��1

d

n(��1)/2

_
�

r
d log(n/�2)

n

⌘

(5.1)
where C

⇤
3 (�, L) :=

⇣
L _ L

0 _ L�(��`+3/2)(
p
2)�

(
p
⇡)`(��`+1)

⌘
and

Z is a standard normal random variable Z ⇠ N (0, 1).
Especially,

p
n · E1/2

✓

�
f`�1(x̄)� f(✓)

�2

�
��rf(✓)

�� .�,L,L0

1 +
��rf(✓)

���1
⇣
�

r
d

n

_ �
��1

d

n(��1)/2

⌘
.

(5.2)

Remark 8. Bound (5.1) in Theorem 5.1 indicates that when
the dimension d = n

↵ with all 0 < ↵ < 1, and krf(✓)k =qPd
j=1 f

02
j (✓j) ⇣

p
d, then for � � 2,

p
n
�
f`�1(x̄)� f(✓)

�

�
��rf(✓)

�� ) N (0, 1) as n ! 1,

which means that the estimator f`�1(x̄) is always nor-
mally distributed around the true parameter f(✓) for any
↵ 2 (0, 1) in an asymptotic sense. Note that such normal
approximation results are not necessarily true for general
smooth functionals where the smoothness needs to be above
some threshold related to the dimension constraint, see Zhou
and Li (2019); Koltchinskii and Zhilova (2021). In short,
for smooth functionals with an additive structure, the con-
straint to achieve asymptotic normality is much looser. We
recognize this as a benefit of the additive structure.

Remark 9. Given that n/�2
��rf(✓)

��2 is the Fisher infor-
mation for the estimation of f(✓), bound (5.2) indicates that
the proposed estimator has an optimal asymptotic variance
according to Cramér-Rao bound. This not only indicates
that its bias reduction doesn’t blow off its variance, but also
shows that the proposed estimator is actually asymptoti-
cally efficient.
Remark 10. Recall that for any f 2 F�

d , by definition
krf(✓)k .L0

p
d. Then bound in (5.2) shows an upper

bound on the MSE for � � 2.

E✓

�
f`�1(x̄)� f(✓)

�2 .�,L,L0 �
2
d/n

In Section 6, we show that this bound is actually minimax
optimal for � � 2. As we shall see in Section 7.2, the
simulation results show this estimate is very accurate and
validates our analysis.

Note that the first term �
��1

d/n
(��1)/2 on the right hand

side in bound (5.1) comes from the bias. Recall from Corol-
lary 3.1, if f(✓) is a polynomial of degree up to `, f`�1(x̄)
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is an unbiased estimator of f(✓). As a result, this term will
disappear. Then for polynomials of degree up to order ` � 2
bound (5.2) turns into

E✓

�
f`�1(x̄)�f(✓)

�2 .�,L,L0 (�2krf(✓)k2/n_�4
d/n

2).

Especially, when � = 2, this bound reproduces the minimax
optimal rate on MSE for quadratic functional estimation.
Corollary 5.1. Under model (1.1), assume that f(✓) is the
quadratic functional, and ✓ 2 ⇥ := {✓|k✓k  ⌧}. Then
there exists some absolute constant C > 0 such that

E✓

�
f`�1(x̄)� f(✓)

�2  C
�
�
2
⌧
2
/n _ �4

d/n
2
�

(5.3)

Similar result can be found in Collier et al. (2017) and it is
showed in that paper this rate is indeed minimax optimal, so
we omit the tedious proofs here.

Now we switch to the case � 2 (1, 2). Note that in this case
f`�1(x̄) becomes the trivial plug-in estimator f(x̄). The
proof of Theorem 5.2 is deferred to Appendix A.8.
Theorem 5.2. Under model (1.1), assume that f 2 F�

d
with � 2 (1, 2). Consider the plug-in estimator f(x̄). Then
the following normal approximation bound holds:

sup
x2R

���P✓

np
n
�
f(x̄)� f(✓)

�

�
��rf(✓)

��  x

o
� P{Z  x}

���

 C
⇤
4 (�, L)

��rf(✓)
���1 �

��1
d

n(��1)/2

(5.4)

where C
⇤
4 (�, L) :=

⇣
L _ L

0 _ L�(��`+3/2)(
p
2)�

(
p
⇡)`(��`+1)

⌘
and Z

is a standard normal random variable Z ⇠ N (0, 1) and
C

⇤
4 is a numerical constant. Especially,

p
n · E1/2

✓

�
f(x̄)� f(✓)

�2

�
��rf(✓)

��

.�,L,L0 1 +
��rf(✓)

���1 �
��1

d

n(��1)/2
.

(5.5)

Remark 11. Bound (5.4) in Theorem 5.2 indicates that
when d = n

↵ and krf(✓)k ⇣
p
d the smoothness index

� > 1 + ↵ can guarantee asymptotic normality of f(x̄).
Currently, we don’t know whether this threshold 1 + ↵ on
smoothness is sharp or not. However, we are inclined to
believe it is necessary at least for f(x̄) since such threshold
comes from the bias. In the situation each component fj’s
are almost the same, it seems that the d factor in the bias is
necessary.
Remark 12. Bound (5.5) provides an upper bound on the
MSE. As we can see, because krf(✓)k .L0

p
d,

E✓

�
f(x̄)� f(✓)

�2 .�,L,L0
�
�
2
d/n _ �2�

d
2
/n

�
�
.

Especially, when d = n
↵ and � > 1 + ↵, it implies that

E✓

�
f(x̄)� f(✓)

�2 .�,L,L0 �
2
d/n.

As a byproduct of Theorem 5.2, it can reproduce the mini-
max rate on MSE for linear functional estimation. Because
the term �

2�
d
2
/n

� is introduced by the bias, and Corol-
lary 3.1 indicates that when f(✓) is a linear functional, i.e.,
� = ` = 1, it can be dropped. So we summarize it in the
following corollary without repeating the tedious proof.

Corollary 5.2. Under model (1.1), assume that f(✓) is a
linear functional. Then there exists some absolute constant
C

0
> 0 such that

E✓

�
f(x̄)� f(✓)

�2  C
0
�
2
d/n. (5.6)

We refer to Collier et al. (2017) for a thorough study on this
particular topic in case the reader is interested.

6. Minimax Lower Bound
We establish a minimax lower bound on MSE which shows
that the proposed estimator f`�1(x̄) is minimax optimal
when non-trivial bias reduction is introduced, namely � � 2.
Without loss of generality, we assume that the domain of
F�

d is ⇥. Note that ⇥ can be bounded or unbounded.

Theorem 6.1. Under model (1.1), assume that � � 1. Then
there exists an absolute constant c1 > 0 such that for any
integer d � 1, the following minimax lower bound holds:

sup
f2F�

d

inf
bT

sup
✓2⇥

E✓

� bT � f(✓)
�2 � c1�

2
d/n. (6.1)

where the infimum is taken among all estimators of f(✓).

The proof is deferred to Appendix A.9 and is based on the
standard Le Cam’s two point method, see LeCam (1973).

Remark 13. Note that in Theorem 5.1 we showed that
under model (1.2), for a given f 2 F�

d with � � 2, the
following bound holds on MSE

E✓

�
f`�1(x̄)� f(✓)

�2  C
0(�, L, L0)�2

d/n.

which matches the bound in (6.1). This shows that the
proposed estimator is actually minimax optimal under our
model for all � � 2.

7. Numerical Simulation
We present numerical simulation results of estimator (3.3)
and compare its performance with that of plug-in estimator
under model (1.1). The unknown parameters ✓ 2 R

d are
randomly generated that yield a uniform distribution over
[0.2, 0.4]d for different dimension parameter d. We set � =
1 and n = 104. For the dimension factor, we set d = n

↵

and ↵ ranges from 0.5 to 0.95 with an incremental size
0.05. The distribution of " we use is " ⇠ N (0,�2Id).
The additive function we use has a homogeneous Hölder
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structure: f(✓) :=
Pd

j=1 ✓
�
j . Note that h(✓) = ✓

� with
✓ 2 [0, 1] belongs to the Hölder class ⌃(�, L). We denote
the estimator in (3.3) by IB-Estimator (iterative bootstrap).

7.1. Adaptation

As we briefly mentioned in Section 3, there are two practical
issues when it comes to implementation. Firstly, there is
an adaptive estimation issue. Namely, to adopt iterative
bootstrap, one has to know the variance of the noise to
generate new samples of ⇠. However, in reality we usually
don’t know �

2 in advance. This issue can be solved by using
the sample variance computed from the observations since
all coordinates x

(i)
j ’s of xj still have the variance �2. To

be more specific, one can compute the diagonal of sample
covariance matrix using the observations xj , j = 1, . . . , n
as estimates of �2. Namely,

b⌃ = Diag
n 1

n(n� 1)

nX

j=1

�
xj � x̄

�
·
�
xj � x̄

�To
.

where Diag{·} takes the diagonal part of a matrix. Denote
by b�2

i as the sample variance computed from the i-th coor-
dinate, each would serve as an estimate of �2. In fact, if all
coordinates’ variance are the same, one can further improve
the estimate by taking the average of b�2

i , i = 1, . . . , d, i.e.

b�2 := d
�1

dX

i=1

b�2
i . (7.1)

Since under our model, all coordinates are still indepen-
dent, this implies that b�2

i , i = 1, . . . , d are independent
estimators of �2. Together with d = n

↵, it implies the ap-
proximation error of �2 by b�2 would be of a much smaller
order than O(n�1/2). In other words, replacing �2 by b�2

results in an accurate estimate and should not be worrisome
in asymptotic sense. As we shall see from the simulation
results, performance of the proposed estimator using the
sample variance is very similar to that when the variance �2

is given, both of which are better than the plug-in approach.
To draw a conclusion, this issue can be addressed by using
the sample variance computed from data. We didn’t ob-
serve obvious performance degradation of this data-driven
solution.

Secondly, we may not have an explicit formula of the expec-
tation in (3.3), i.e., the term

E⌧,⇠

h dX

j=1

f
(k)
j

⇣
x̄j +

kX

i=1

⌧i⇠ij

⌘ kY

i=1

⇠ij

i
(7.2)

is often difficult to compute. Again, we propose a simple so-
lution to this. Recall that in (3.3), to compute (7.2) we need
to sample ⌧(k) := {⌧i : i = 1, . . . , k} and ⇠(k) := {⇠i :
i = 1, . . . , k}. Then our idea is to sample N i.i.d. copies
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Figure 1. Comparison between IB and Plug-in estimator on bias,
variance, and MSE.

of (⌧(k), ⇠(k)) and use them to get N i.i.d. copies of
fIB :=

Pd
j=1 f

(k)
j

⇣
x̄j +

Pk
i=1 ⌧i⇠ij

⌘Qk
i=1 ⇠ij . Then we

simply replace (7.2) by the sample average of fIB . Put
simply, we are taking the advantage of law of large num-
bers to replace the expectation by the sample mean. The
next question is how large N should be used to give good
approximations. Unlike our data driven solution to the previ-
ous issue where almost no performance degradation can be
observed, this solution’s performance varies with different
choice of N . Intuitively, the larger the N is, the better the
performance. Recall that Baum and Katz (1965) showed
the convergence rate of law of large numbers of N square-
integrable i.i.d. random variables is roughly O(1/N1/2).
Then we should expect the bias of our estimator using the
sample mean is bounded by O(N�1/2 _ dn

��/2). Thus in
general, this means when we take N = n, it should be good
enough to give accurate approximations. We will illustrate
this through simulation results in Section 7.4.

7.2. Bias, variance, and MSE comparison

In this section, we compare the performance of estimator
(3.3) (IB) and adaptive estimator using sample variance
(Adaptive) with plug-in estimator f(x̄) (Plug-in). We set
sample size n = 104 and N = 102 to approximate (7.2).
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We choose two different base functions of f to test the
performance. One is �1 = 2.5 with `1 = 2 and the other
is �2 = 3.5 with `2 = 3. One should notice that h2(✓) =
✓
3.5 belongs to the Hölder class with smoothness � = 3.5

which has higher order smoothness than h1(✓) = ✓
2.5. The

difference reflects on the implementation of estimator (3.3)
where one extra step is added in the case �2 = 3.5. The
bias comparison are plotted in the first row of Figure 1. The
expectation of each estimator is simulated by averaging the
outcome of 104 independent runs. As we can see, for both
cases IB and Adaptive are very effective in bias reduction
compared with the Plug-in. The purple dash lines are plotted
as the upper bounds on the bias derived in Theorem 3.1. As
we can see, even we only used N = 100, the estimators still
work well. Especially, when for the case � = 2.5, the bias
already matches the bound. As for the case � = 3.5, one
needs to increase N to further increase bias reduction to an
intended level. Another observation is that when the true
variance �2 is replaced by the sample variance b�2, there is
almost no performance degradation by comparing IB and
Adaptive.

Another aspect we are interested in is the performance of
variance and MSE of estimator (3.3). We simulated the
variance and MSE from 104 independent runs. The variance
comparisons are plotted in the middle row of Figure 1 for
both cases. As we have shown in Section 5, the proposed
estimator has optimal variance in asymptotic sense. As we
can see, both IB and Adaptive almost has the same variance
as Plug-in’s and aligns the optimal variance line . Given this
and its advantages of bias reduction over Plug-in, it shows
estimator (3.3) is superior. This is further reflected in the
bottom row of Figure 1 which show that when the dimension
d is large, estimator (3.3) has very obvious reduction in MSE
contributed by improvements in bias reduction. Meanwhile,
one should notice that the black dash lines are plotted as
�krf(✓)k2/n in both Figures in the right column which is
the optimal variance according to Cramér-Rao bound. As
we can see, for both cases the bound on MSE we computed
in Theorem 5.1 which is O(d/n) matches MSE of IB and
Adaptive. Recall from Section 6, this bound is also the
minimax lower bound. This result experimentally verified
that the proposed estimator is minimax optimal.

7.3. Normal approximation and confidence interval

To test normal approximation, we collect the estimates of
a fixed underlying parameter f(✓) from 104 independent
runs. We use the MATLAB built-in function histfit() to
draw the histograms and use fitdist() to fit the histograms
into a normal distribution. The corresponding data can be
found in supplementary material. Figure 2 displays the
histograms with a fitted normal curve for both �1 = 2.5 and
�2 = 3.5 with large value of ↵ which makes the dimension
d large. As we shall see for both �, even when ↵ is large
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Figure 2. Histogram fit of normal curve for f`�1(x̄) with large ↵

and close to 1, the normal approximations are still very
accurate. This aligns well with our theory in Theorem 5.1
which suggests that asymptotic normality always holds for
any ↵ 2 (0, 1) as long as � � 2 and

��rf(✓)
�� ⇣

p
d. Note

that these results don’t hold for general functions without an
additive structure. Typically, for a general f with the same
level of smoothness, normal approximation will fail when
↵ stays above certain threshold, see Zhou and Li (2019);
Koltchinskii and Zhilova (2021).

One important application of normal approximation in prac-
tice is to use the estimator to build confidence intervals of
the true parameter. Thus we show the 95% confidence inter-
vals for estimation of f(✓) from the fitted normal models in
Table 1 and Table 2 with � = 3.5 and � = 2.5, respectively.
As we can see, confidence intervals based on estimator (3.3)
are accurate and always better than the ones built based on
the plug-in approach at all levels of dimension. In fact, the
true parameters always fall outside the ones built based on
the plug-in estimators.

Table 1. 95% Confidence Interval with � = 3.5

↵ f(✓) f(x̄) f`�1(x̄)
0.40 11.715 [11.770, 11.784] [11.709, 11.723]
0.45 16.142 [16.217, 16.234] [16.134, 16.150]
0.50 23.663 [23.776, 23.796] [23.654, 23.673]
0.55 30.831 [30.986, 31.008] [30.819, 30.842]
0.60 46.363 [46.588, 46.616] [46.348, 46.376]
0.65 61.296 [61.592, 61.623] [61.262, 61.294]
0.70 89.001 [89.448, 89.486] [88.976, 89.013]
0.75 123.860 [124.513, 124.558] [123.85, 123.895]
0.80 177.093 [177.99, 178.044] [177.05, 177.103]
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Table 2. 95% Confidence Interval with � = 2.5

↵ f(✓) f(x̄) f`�1(x̄)
0.40 12.582 [12.604, 12.615] [12.576, 12.586]
0.45 16.655 [16.691, 16.703] [16.652, 16.664]
0.50 25.677 [25.725, 25.741] [25.668, 25.683]
0.55 34.418 [34.489, 34.507] [34.409, 34.427]
0.60 49.122 [49.223, 49.245] [49.111, 49.133]
0.65 67.261 [67.409, 67.434] [67.252, 67.277]
0.70 96.422 [96.627, 96.657] [96.403, 96.433]
0.75 140.515 [140.832, 140.868] [140.514, 140.550]
0.80 192.063 [192.488, 192.530] [192.043, 192.085]

7.4. The effect of different choices of N

As we have explained in Section 7.1, using different N to
get the sample mean to replace the expectation (7.2) will
affect of the performance of the estimator. In this section, we
illustrate this through numerical simulations. In Figure 3, we
plot bias and variance of Plug-in, IB and Adaptive against
different sample size n. We fix the dimension d = 256
while using three different N = 10, 102, 103. The bias and
variance are simulated using the result of 104 independent
trials. As one would expect, when N = 10 is too small, the
performance is the worst. Firstly, the variance of both IB
and Adaptive are already worse than Plug-in’s, which should
have been the same. Secondly, the bias is also not as good
as N = 102, 103. For N = 10, the bias is around 10�2.5

while for the other two is around 10�3. On the other hand,
for N = 102, 103, the variance is already ideal. However,
as for the bias, when n is large the discrepancy between the
actual bias and its bound (blue dash line) is also large. To
fill this gap, one would need large N comparable to n.

8. Conclusion and Discussion
In this article, we studied the estimation of f(✓) for a given
smooth additive function f based on noisy observations of
✓. The major motivation is that when dimension d is large
compared with the sample size n, the bias of the plug-in
estimator f(x̄) can be large, which makes it sub-optimal.
Thus non-trivial bias reduction is needed. We adopt the
idea of iterative bootstrap, and applied this approach to each
component function to derive a bias-reducing estimator. By
establishing upper bounds on the bias and normal approx-
imation results, we showed that the additive structure of
smooth function can contribute to a looser constraint on
smoothness to achieve asymptotic normality for the pro-
posed estimator. Meanwhile, those results also imply that
the proposed estimator is asymptotically efficient and can
be minimax optimal. We also addressed several adaptation
issues on the computational aspect. Numerical simulations
validate our analysis and show the new estimator’s advan-
tage over the plug-in approach in terms of bias reduction

1000 2000 4000 8000 16000

Sample Size (n)

10-4

10-2

|B
ia

s|

h( ) = 
3.5

, d = 256

N = 10, Bias                     

Plug-in
IB
Adaptive
0.5*d/n

0.5*d/n3.5/2

10-2.5

104

Sample Size (n)

10-2

10-1

V
a
ri
a
n
ce

h( ) = 
3.5

, d = 256

N = 10, Var

Plug-in
IB
Adaptive
C*d/n

1000 2000 4000 8000 16000

Sample Size (n)

10-4

10-2

|B
ia

s|

h( ) = 
3.5

, d = 256

N = 1e2, Bias

Plug-in
IB
Adaptive
0.5*d/n

0.5*d/n3.5/2

10-3

104

Sample Size (n)

10-2

10-1

V
a
ri
a
n
ce

h( ) = 
3.5

, d = 256

N = 1e2, Var

Plug-in
IB
Adaptive
C*d/n

1000 2000 4000 8000 16000

Sample Size (n)

10-4

10-2

|B
ia

s|

h( ) = 
3.5

, d = 256

N = 1e3, Bias

Plug-in
IB
Adaptive
0.5*d/n

0.5*d/n3.5/2

10-3.5

104

Sample Size (n)

10-2

10-1

V
a
ri
a
n
ce

h( ) = 
3.5

, d = 256

N = 1e3, Var

Plug-in
IB
Adaptive
C*d/n

Figure 3. Comparison of different choices of N

and confidence interval construction.

As we have shown both analytically and experimentally, the
proposed estimator can be minimax optimal when � � 2.
However, one interesting question to ask is that when � 2
(1, 2), whether the plug-in estimator is optimal or not. As
for this case, the estimator (3.3) is simply f(x̄). If f(x̄) is
not minimax optimal, then it implies that the threshold we
discussed on smoothness � > 1 + ↵ is sharp. Then how to
construct one would be interesting.

Another interesting future work direction is on the theoret-
ical guarantee of adaptive estimation. As we have already
mentioned in Section 7, the implementation of iterative boot-
strap step in estimator (3.3) requires one to resample the
random noise. Thus one needs to know the variance of
the noise in advance, which is not so realistic in practice.
We proposed a simple solution by using the sample vari-
ance computed from the observations as a surrogate. This
works well experimentally and we believe theoretical results
established in this paper should still hold in the Gaussian
case since the approximation error introduced by using sam-
ple variance should be of a much smaller order intuitively.
Nevertheless, theoretical justification in adaptive estimation
requires new techniques and methods for rigorous proofs
which are different from what we used here. We will leave
this as an interesting future research topic.
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Olivier Collier, Laéitia Comminges, and Alexandre B. Tsy-
bakov. On estimation of nonsmooth functionals of sparse
normal means. Bernoulli, 26(3):1989–2020, 2020.

David L. Donoho and Richard C. Liu. On minimax esti-
mation of linear functionals. University of California
(Berkeley). Department of Statistics, 1987.

David L. Donoho and Richard C. Liu. Geometrizing rates of
convergence, iii. The Annals of Statistics, 19(2):668–701,
1991.

David L. Donoho and Michael Nussbaum. Minimax
quadratic estimation of a quadratic functional. Journal of
Complexity, 6(3):290–323, 1990.

Jerome H. Friedman. Greedy function approximation: A
gradient boosting machine. The Annals of Statistics, 29
(5):1189–1232, 10 2001.
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