
Incentivized Bandit Learning with Self-Reinforcing User Preferences

Tianchen Zhou 1 Jia Liu 1 Chaosheng Dong 2 Jingyuan Deng 2

Abstract
In this paper, we investigate a new multi-armed
bandit (MAB) online learning model that consid-
ers real-world phenomena in many recommender
systems: (i) the learning agent cannot pull the
arms by itself and thus has to offer payments to
users to incentivize arm-pulling indirectly; and
(ii) if users with specific arm preferences are well
rewarded, they induce a “self-reinforcing” effect
in the sense that they will attract more users of
similar arm preferences. Besides addressing the
tradeoff of exploration and exploitation, another
key feature of this new MAB model is to bal-
ance reward and incentivizing payment. The goal
of the agent is to minimize the accumulative re-
gret over a fixed time horizon T with a low total
payment. Our contributions in this paper are two-
fold: (i) We propose a new MAB model with
random arm selection that considers the relation-
ship of users’ self-reinforcing preferences and
incentives; and (ii) We leverage the properties of
a multi-color Pólya urn with nonlinear feedback
models to propose two MAB policies termed “At-
Least-n Explore-Then-Commit” and “UCB-List.”
We prove that both policies achieve O(log T ) ex-
pected regret with O(log T ) expected payment
over a time horizon T . We conduct numerical
simulations to demonstrate and verify the perfor-
mances of these two policies and study their ro-
bustness under various settings.

1. Introduction
In many online e-Commerce platforms, there exists a self-
reinforcing phenomenon, where the current user’s behavior
is influenced by the user behaviors in the past (Barabási
& Albert, 1999; Chakrabarti et al., 2005; Ratkiewicz et al.,
2010), or an item is getting increasingly more popular as it
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accumulates more positive feedbacks. For example, on a
movie rental website, current customers tend to have more
interest in Movie A that has 500 positive reviews, compared
with Movie B that only has 10 positive reviews. As an online
learner, the e-Commerce service provider wants to identify
the most profitable item in order to maximize the total profit
in the long run. In the literature, such an online profit
maximization problem can often be modeled by the multi-
armed bandit (MAB) framework (Berry & Fristedt, 1985;
Bubeck & Cesa-Bianchi, 2012). However, existing works on
MAB that consider the self-reinforcing preferences remain
quite limited (see, e.g., Fiez et al. (2018); Shah et al. (2018)).
In fact, Shah et al. (2018) showed that the self-reinforcing
preferences might render the classic UCB (upper confidence
bound) policy (Auer et al., 2002) sub-optimal, and new
optimal arm selection algorithms are necessary.

On the other hand, in many online learning problems that
utilize the MAB framework for sequential decision mak-
ing (e.g., recommender systems, healthcare, finance, dy-
namic pricing, see Bouneffouf & Rish (2019)), the learning
agent (e.g., an online service provider) cannot select the
arms directly. Rather, arms are pulled by the users who
are exhibiting self-reinforcing preferences. The agent thus
needs to incentivize users to select certain arms to maximize
the total rewards, while avoiding incurring high incentive
costs. Hence, the bandit models in (Fiez et al., 2018; Shah
et al., 2018) are no longer applicable, even though the self-
reinforcing preferences behavior is considered. Meanwhile,
there exist several works (Frazier et al., 2014; Mansour et al.,
2015; 2016; Wang & Huang, 2018) that studied incentivized
bandit under various settings and proposed efficient algo-
rithms (more details in Section 2), but none of these works
models users with self-reinforcing preferences.

The missing of joint modeling of incentives and self-
reinforcing preferences in the existing MAB framework
(two key features of many online e-Commerce systems) mo-
tivates us to fill this gap in this paper. Specifically, in this
work, we first propose a more general MAB model with
stochastic arm selections following user preferences, which
is closely modeling random user behaviors in most online
recommender systems. This is in stark contrast to most
existing works in the areas of incentivized bandits (Frazier
et al., 2014; Wang & Huang, 2018), where a (unrealistic)
deterministic greedy user behavior is often assumed. Un-
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der this model, a pair of fundamental trade-offs naturally
emerge: (1) Sufficient exploration is required to identify
an optimal arm, which may result in multiple pullings of
sub-optimal arms, while adequate exploitation is needed to
stick with the arm that did well in the past, which may or
may not be the best choice in the long run; (2) The agent
needs to provide enough incentives to mitigate unfavorable
initial bias and self-reinforcing user preferences, while in
the meantime avoiding unnecessarily high incentives for
users. As in most online learning problems, we use regret
as a benchmark to evaluate the performance of our MAB
policy, which is defined as the performance gap between
the proposed policy and an optimal policy in hindsight. The
major challenges in this new MAB model thus lie in the
following fundamental questions:
(a) During incentivized pulling, how could the agent main-

tain a good balance between exploration and exploitation
to minimize regret?

(b) How long should the agent incentivize until the right
self-reinforcing user preference is established toward an
optimal arm (so that no further incentive is needed)?

(c) Is the established self-reinforcing user preferences suffi-
ciently strong and stable to sustain the sampling of an
optimal arm over time without additional incentives? If
yes, under what conditions could this happen?

In this work, we answer the above questions by proposing
two “log(T )-regret-with-log(T )-payment” policies for the
incentivized MAB framework with self-reinforcing prefer-
ences. Our contributions are summarized as follows:
• We first show that no incentivized bandit policy can

achieve a sub-linear regret with a sub-linear total payment
if the feedback function that models the self-reinforcing
preferences has a super-polynomial growth rate. The
proof is inspired by a multi-color Pólya urn model, and
we also show how to guide the self-reinforcing prefer-
ences toward a desired direction.

• To address the unique challenges in the new MAB model,
we introduce (i) a three-phase MAB policy architecture
and (ii) a key result that shows that an O(log T ) incen-
tivizing period is sufficient for establishing dominance
for the multi-color Pólya urn model (see Section 4). All
of these results are new in the bandit literature, which
could be of independent interest for other incentivized
MAB problems.

• We propose two bandit policies, namely At-Least-n
Explore-Then-Commit and UCB-List, both of which are
optimal in regret. Specifically, for the two policies, we
analyze the upper bounds of the expected regret and the
expected total payment over a fixed time horizon T . We
show that both policies achieve O(log T ) expected re-
grets, which meet the lower bound in Lai & Robbins
(1985). Meanwhile, the expected total incentives for both
policies are upper bounded by O(log T ).

2. Related Work
The self-reinforcing phenomenon has received increasing
interest in several different fields recently under different
terminologies. In the random network literature, previous
works have studied the network evolution with “preferential
attachment” (Barabási & Albert, 1999; Chakrabarti et al.,
2005; Ratkiewicz et al., 2010). Also, a similar social be-
havior, referred to as herding, is studied in the Bayesian
learning model literature (Bikhchandani et al., 1992; Smith
& Sørensen, 2000; Acemoglu et al., 2011). For example,
Acemoglu et al. (2011) first studied the conditions under
which there exists a convergence in probability to the desired
action as the size of a social network increases. More re-
cently, Shah et al. (2018) incorporated positive externalities
in user arrivals and proposed MAB algorithms to maximize
the total reward. Then, Fiez et al. (2018) provided a more
general model, where the learning agent has limited infor-
mation. We note that the agents in Shah et al. (2018); Fiez
et al. (2018) have full control in determining which arm
for users to pull. In contrast, the agent in our MAB model
has no control over which arm to pull, and can only incen-
tivize users to indirectly induce the preferences toward a
desired arm. Eventually, which arm to be pulled is entirely
dependent on the current user’s random preference.

On the other hand, incentivized MAB has attracted growing
attention in recent years (Kremer et al., 2014; Frazier et al.,
2014; Mansour et al., 2015; 2016; Wang & Huang, 2018).
To our knowledge, Frazier et al. (2014) first adopted incen-
tive schemes into a Bayesian MAB setting. In their model,
the agent seeks to maximize time-discounted total reward by
incentivizing arm selections. Kremer et al. (2014) shares a
similar motivation as Frazier et al. (2014). But in the model
of Kremer et al. (2014), the agent does not offer payments
to the users. Instead, he decides the information to be re-
vealed to users as incentives. Subsequently, Mansour et al.
(2015) studied the case where the rewards are not discounted
over time. More recently, Wang & Huang (2018) consid-
ered the non-Bayesian setting with non-discounted rewards.
Agrawal & Tulabandhula (2020) considered incentivizing
exploration under contextual bandits. These models differ
from ours in both the incentive schemes and user behaviors.

Another line of research similar to incentivized bandit is
bandit with budgets (Guha & Munagala, 2007; Goel et al.,
2009; Combes et al., 2015; Xia et al., 2015), where the agent
takes actions with budget constraints. Guha & Munagala
(2007) developed approximation algorithms for a large class
of budgeted learning problems. Then, Goel et al. (2009)
proposed index-based algorithms for this problem. The
key difference from our work is that in these models, the
budget constraints are pre-determined, and the agents cannot
take any further actions as soon as the budget constraints
are violated. In contrast, the total payment in our model
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is evaluated only after the time horizon is finished, which
implies that bounding the total payment is part of our goals.

Although not cast in the MAB framework, the works on
urn models (Khanin & Khanin, 2001; Drinea et al., 2002;
Oliveira, 2009; Zhu, 2009) also share some relevant feed-
back settings to our model. Drinea et al. (2002) first pro-
posed a class of processes called balls and bins models with
feedback, which is a preferential attachment model for large
networks. They then proved the convergence results of the
model with various feedback functions. Later, Khanin &
Khanin (2001) improved the convergence result by showing
monopoly (to be defined later) happens with probability one
under a class of feedback functions included in Drinea et al.
(2002). Our proposed model is inspired by the ideas of feed-
back from Oliveira (2009), in which the author discussed
a natural evolution of the balls and bins process with non-
linear feedback. However, our model is focused on MAB
regret minimization, which is completely different from the
goals considered in these works.

3. System Model and Problem Statement
In this paper, we denote the set of arms offered by the agent
as A = {1, . . . ,m}. Each arm a follows a Bernoulli reward
distributionDa with an unknown mean µa > 0. The process
runs for T rounds. As shown in Fig. 1, in each time step
t ∈ {1, . . . , T}, a user arrives and chooses an arm I(t) to
pull, then receives a random reward X(t) ∼ DI(t), which
is observable to the agent. We use Ta(t) ,

∑t
i=1 1{I(i)=a}

to denote the number of times that an arm a is pulled up to
time t. We denote the total reward generated by arm a up to
time t as Sa(t) ,

∑t
i=1X(i) ·1{I(i)=a}. We let Ta(0) = 0

and Sa(0) = 0, ∀a ∈ A. We assume that there is a unique
best arm a∗ ∈ A, i.e., a∗ = arg maxa µa and µ∗ = µa∗ .

1) Preference and Bias Modeling: Unlike most of the in-
centivized MAB models where users are rational and inde-
pendent, the user behavior is stochastic and influenced by
history in our model. Specifically, in each time step t, the
user has a non-zero probability λa(t) ∈ (0, 1) to pull each
arm a ∈ A, with

∑
a∈A λa(t) = 1,∀t. In other words, the

probability λa(t) can be viewed as the preference rate of
arm a in time step t. We adopt the widely used multinomial
logit model in the literature to model λa(t) as follows:

λa(t) =
F
(
Sa(t− 1) + θa

)∑
i∈A F

(
Si(t− 1) + θi

), (1)

where F (·) : R → (0,+∞) is a feedback function that is
increasing, and θa > 0 denotes the fixed initial preference
bias of arm a. Intuitively, the increasing feedback function
F (·) models the self-reinforcing user preference effect in
the following sense: if an arm a has been more profitable in
the past, a user who prefers arm a is more likely to arrive in
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Figure 1. Incentivized MAB model with stochastic arm selection
based on user preference rates and incentives.

the next round. A simple example of the feedback function
is F (x) =xα for some constant α>1. Here, α represents
the strength of the self-reinforcing preference: a larger α
implies a stronger self-reinforcing preference effect.

Several important remarks for the preference model in (1)
are in order. The multinomial logit model is based on the
behavioral theory of utility and has been widely applied in
the marketing literature to model the brand choice behavior
(Guadagni & Little, 2008; Gupta, 1988). The multinomial
logit model is also used in the social network literature to
model preferential attachment (Barabási & Albert, 1999),
where the probability that a link connects a new node j with
another existing node i is linearly proportional to the degree
of i. Notably, this multinomial logit model has also been
adopted in Shah et al. (2018) to model the same type of
self-reinforcing phenomenon in their MAB model.

2) Incentive Mechanism Modeling: Unlike in conven-
tional MAB models, the agent in our model can only offer
some incentive on the arm that the agent wants to explore,
so as to increase the users’ preferences of pulling this par-
ticular arm for the agent (as shown in Fig. 1). The agent’s
goal is to maximize total reward in the long run. In this
paper, we model the influence of the incentives by adopting
the so-called “coupon effects on brand choice behaviors” in
the economics literature (Papatla & Krishnamurthi, 1996;
Bawa & Shoemaker, 1987). In this model, the relationship
between coupons and choices is nonlinear, and the redemp-
tion rate increases with respect to the coupon value but
exhibits a diminishing return effect (Bawa & Shoemaker,
1987). Specifically, in time step t, if the agent wants to
explore arm a, the agent will offer a fixed payment b1 to the
current user to increase the user’s preference on pulling arm
a. Under the coupon effect model, the posterior preference
rates of the arms with incentive b are updated as follows:

λ̂i(t)=


Ḡ(b, t) + F

(
Si(t− 1) + θi

)
Ḡ(b, t) +

∑
j∈A F

(
Sj(t− 1) + θj

), i = a,

F
(
Si(t− 1) + θi

)
Ḡ(b, t) +

∑
j∈A F

(
Sj(t− 1) + θj

), i 6= a,

(2)

1In this paper, we consider fixed payment with the goal of
gaining a first fundamental understanding of the regret of the
proposed new MAB model. The problem of optimizing the total
cost of a time-varying payment strategy is an important related
problem, which will left for our future studies.
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where Ḡ : R2 → R+ is an increasing function of b with
Ḡ(0, ·) = 0, which can be interpreted as the impact of
payment b on users at time t. Intuitively, Ḡ(b, t) represents
the “impact” of offering incentive b on users at time t. Also,
Ḡ(b, t) has the property that it is increasing over time. The
interpretation is that, as arms gain higher accumulative total
reward

∑
i∈A F

(
Si(t− 1) + θi

)
as t increases (e.g., items

gaining more positive reviews), offering the same amount
of incentive b on any of them becomes more attractive.

Clearly, the posterior preference update in (2) still follows
the multinomial logit model. Also, we can see from (2)
that, as parameter b increases asymptotically (b ↑ ∞), we
have λ̂a(t) ↑ 1 and λ̂i(t) ↓ 0, ∀i 6= a, i.e., arm a is pre-
ferred with probability one. For simplicity in our subse-
quent analysis, in the rest of the paper, we rewrite λ̂i(t) in
the following equivalent form: we divide both the denom-
inator and numerator by

∑
i∈A F

(
Si(t − 1) + θi

)
and let

G(b, t) , Ḡ(b, t)/
∑
i∈A F

(
Si(t − 1) + θi

)
. Then, it can

be verified that Eq. (2) can be equivalently rewritten as:

λ̂i(t) =


λi(t) +G(b, t)

1 +G(b, t)
, i = a,

λi(t)

1 +G(b, t)
, i 6= a.

Clearly, G(b, t) remains an increasing function of b. Also,
we define the accumulative payment up to time step t as
Bt :=

∑t
i=1 bt, where bt ∈ {0, b}, ∀t, denotes the agent’s

binary decision whether to offer incentive b at time step t.

3) Regret Modeling: Let ΓT =
∑T
t=1X(t) denote the

accumulative reward up to time T . In this paper, we aim
to maximize E[ΓT ] by designing an incentivized policy π
with low accumulative payment in terms of growth rate
with respect to T . A policy π is an algorithm that pro-
duces a sequence of arms that are recommended at time step
t = 1, . . . , T . Similar to conventional MAB problems, we
measure our accumulative reward performance against an
oracle policy, where in hindsight the agent knows the best
arm a∗ with the largest mean and can always offer an infinite
amount of payments to users, so that the updated preference
rate of arm a∗ is always infinitely close to one. We denote
the expected accumulative reward generated under the ora-
cle policy up to time T as E[Γ∗T ] = µa∗T .2 The expected
(pseudo) regret is defined as: E[RT ] = µa∗T − E[ΓT ]. Our

2It is insightful to compare our oracle policy with Shah et al.
(2018). The oracle policy in Shah et al. (2018) does not achieve
µa∗T expected accumulative reward up to time T due to the follow-
ing key modeling difference: In Shah et al. (2018), it is assumed
that the agent can only feed a single arm at a time to the current
user. Hence, the oracle policy keeps only feeding the best arm to
all arriving users. However, in the early time steps, a fraction of
the users may not prefer the best arm due to initial biases. Hence,
the agent has to spend time mitigating these initial biases, resulting
in an expected accumulative reward smaller than µa∗T .

goal is to minimize E[RT ], with low expected accumulative
payment E[BT ] with respect to the time horizon T .

4. Policy Designs and Performance Analysis
In this section, we present two policies that achieve
O(log T ) expected regret with O(log T ) accumulative pay-
ment with respect to time horizon T .

4.1. The Basic Idea

The main idea of our two proposed policies is based on a
unique three-phase MAB policy architecture: 1) We first per-
form exploration among all arms by incentivizing pulling un-
til we know the best-empirical arm is optimal, i.e., â∗ = a∗

with high confidence; 2) We keep incentivizing the pulling
of the best-empirical arm â∗ until it dominates and attracts
users who favor this arm; and 3) We stop incentivizing
and rely on the self-reinforcing user preference to continue
pulling the optimal arm. The success of our incentivized
policy designs relies on guaranteeing the dominance of arm
â∗, which is defined as follows:

Definition 1 (Dominance). An arm is said to be dominant
if it produces at least half of the total reward.

Our MAB policy designs are based on a key fact that, if
the feedback function F (x)’s growth rate is superlinear
polynomial, then as soon as dominance is established, we
can stop incentivizing and rely on the users’ self-reinforcing
preferences to converge to one arm within a finite number
of rounds, i.e., an arm a ∈ A is the only arm to be sampled
eventually. We call this event as the monopoly by arm a
(monoa for short). We point out that a key contribution
in this paper is the insight that dominance happens much
sooner than establishing monopoly (to be shown later that
this only takes O(log(T )) rounds). This fact further implies
the existence of an incentivized policy with sub-linear total
payment. We formally state this fact as follows:

Lemma 1. (Monopoly) There exists an incentivized policy
that induces users’ preferences to converge in probability
to an arm over time with sub-linear payment, if and only if
F (x) satisfies

∑+∞
i=1

(
1/F (i)

)
< +∞.

Proof Sketch of Lemma 1. Our main technique for proving
Lemma 1 is an improved exponential embedding method.
This method simulates the reward generating sequence by
random exponentials. In what follows, we outline the key
steps of the proof and relegate the details to the supplemen-
tary material.

In contrast, we assume that the agent can feed all arms to each
user (closely models real-world recommender systems), and the
oracle policy offers an infinite amount of payment as incentives.
As a result, users will always pull the best arm with probability
one in each time step, which implies µa∗T expected accumulative
reward up to time T .
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Step 1) Construction of an Equivalent Reward Generating
Sequence: Define a sequence {χj}∞j=1 denoting the reward
generating order, where each element denotes the arm in-
dex. Note that an arm index appears in {χj} only if it is
pulled and generates a unit reward. We want to construct a
sequence {ζj} that has the same conditional distribution as
{χj} given history Fj−1. Then, the constructed sequence
{ζj} will be leveraged to prove the lemma.

For arm i, consider a collection of independent exponential
random variables {ri(n)} such that E[ri(n)] = 1/[µiF (n+
θi)]. We construct an infinite set Bi = {∑n

k=0 ri(k)}∞n=0,
where each element

∑n
k=0 ri(k) models the time needed for

arm i to obtain accumulative reward n. Then we mix and
sort Bi in an increasing order for all i ∈ A to form a new
sequence H . Our objective sequence {ζj} is the arm index
sequence out of H . Then, we can prove by induction that
given the previous reward history Fj−1, the constructed se-
quence {ζj} has the same conditional distribution as {χj}.
Step 2) Establishing Attraction Time: The proof of Lemma 1
is done once we show that if and only if any feedback
function F (x) > 0 satisfies

∑
i

(
1/F (i)

)
< +∞, then

P(∃a ∈ A, monoa) = 1. We define the attraction time
N as the time step when the monopoly happens. With the
constructed sequence {ζj}, we establish the necessity by
showing that if

∑
i

(
1/F (i)

)
< +∞ then P(N <∞) = 1,

and the sufficiency by showing that if
∑
i

(
1/F (i)

)
= +∞

then P(N =∞) > 0. This completes the proof.

Remark 1. The exponential embedding technique has been
applied in the literature (see, e.g., Zhu (2009); Oliveira
(2009); Davis (1990); Athreya & Karlin (1968)). This tech-
nique embeds a discrete-time process into a continuous-time
process built with exponential random variables. We adapt
it to our model by using exponential random variables with
specific distributions. The most significant feature of our
exponential embedding technique is that the random times
of different arms generating unit rewards are independent
and can be mathematically expressed as exponential distri-
butions, which facilitates our subsequent analysis.

Remark 2. A simple example that satisfies the condition
in Lemma 1 is F (x) = Cxα for some constants C > 0
and α > 1 (i.e., superlinear polynomial). In this case, there
exists an incentivized policy that induces all preferences
to converge over time with sub-linear total payment, since∑+∞
i=1 (1/iα) < +∞ with α > 1. Previous works (Drinea

et al., 2002; Khanin & Khanin, 2001) considering the balls
and bins model also studied this feedback function with α ≤
1. For α < 1, the asymptotic preference rates of arms are
all deterministic, positive, and dependent on the means and
biases of arms. For α = 1, the system is akin to a standard
Pólya urn model, and will converge to a state where all arms
have random positive preference rates depending on the
means and initial biases of the arms. For α > 1, the system

converges almost surely to a state where only one arm has a
positive probability to generate rewards, depending on the
means and initial biases of arms. Thus, systems under these
three α-values exhibit completely different behaviors.

Remark 3. In our later theoretical and numerical studies in
this paper, we will focus on the class of polynomial func-
tions F (x) = Θ(xα) with α > 1 as the feedback function.
We note that the use of F (x) = Θ(xα) does not lose much
generality since all analytic functions in a bounded range can
be approximated arbitrarily well by their Taylor polynomial
expansions. Also, since F (x) that satisfies the condition∑+∞
i=1

(
1/F (i)

)
< +∞ in Lemma 1 is lower bounded by

Ω(xα) with α > 1 (by considering
∑+∞
i=1

(
1/F (i)

)
as p-

series), F (x) = Θ(xα) with α > 1 is general enough to
cover a large class of functions.

4.2. The At-Least-n Explore-Then-Commit Policy

Our first policy is the At-Least-n Explore-Then-Commit
(ALnETC), which consists of three phases: the exploration
phase, the exploitation phase, and the self-sustaining phase.
The agent incentivizes in the first two phases. During the
exploration phase, ALnETC explores all arms until each
arm generates sufficient accumulative reward. Then, the
policy incentivizes the arm with the best empirical mean
until it dominates (as defined in Definition 1). Toward this
end, we define the sample mean of arm a ∈ A at time step t
as µ̂a(t) = Sa(t− 1)/Ta(t− 1). Then, we formally state
the ALnETC policy as follows:

Policy 1: At-Least-n Explore-Then-Commit

Given time horizon T , payment b and n = q lnT ,
where q > 0 is some tuning parameter:
1) Exploration Phase: Incentivize pulling arm a ∈
arg mini∈A Si(t) with payment b until time τn =
min{t : Sa(t) ≥ n, ∀a} ∧ T , when any arm has
accumulative reward of at least n.
2) Exploitation Phase: Incentivize pulling the
best-empirical arm â∗ ∈ arg maxa∈A µ̂a(τn) with
payment b until it dominates, i.e., Sâ∗(t) ≥∑
a6=â∗ Sa(t). Mark current time as τs.

3) Self-Sustaining Phase: Users pull arms based
on their own preferences until time T .

For the ALnETC policy, we next show that if the incentive
effect is sufficiently strong, then the dominance time τs
happens withinO(log T ) rounds, which is much sooner than
the attraction time (i.e., time for establishing monopoly). We
formally state this result as follows:

Lemma 2. (Dominance) In ALnETC, if the incentive sen-
sitivity function G(·) and the payment b satisfy G(b, t) > 1
for all t in the exploration and exploitation phases, then the
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expected dominant time τs is O(log T ).
Remark 4. In Lemma 2, the condition “G(b, t) > 1” has
an interesting interpretation in practice. Recall that G(b, t)
is defined as G(b, t) , Ḡ(b, t)/

∑
i∈A F

(
Si(t − 1) + θi

)
(cf. Section 3). Thus, G(b, t)> 1 means that the “incen-
tive impact” Ḡ(b, t) should be larger (could be ever so
slightly) than the “impact of arms’ accumulative reward”∑
i∈A F (Si(t−1)+θi) so that incentive control is possible.

Based on the above result, we will show next that once the
best-empirical arm dominates, then it implies sub-linear re-
gret and accumulative incentive payment. Intuitively, this is
because we will show that, within a finite number of steps
after dominance time τs, monopoly happens with proba-
bility one, and arm â∗ has a high probability to emerge
victorious in the monopoly (to be shown in the proof of The-
orem 3). If the time horizon T is sufficiently large to cover
the attraction time (i.e., the time when monopoly happens),
then arm â∗ will be sampled repeatedly after the attraction
time, while the expected pulling times from sub-optimal
empirical arms after the dominance is o(log T ) (which con-
tributes to the regret). Thus, the policy achieves a sub-linear
expected regret. For each arm a, we set ∆a = µ∗ − µa,
and let ∆min = mina 6=a∗ ∆a, ∆max = maxa 6=a∗ ∆a. We
formally state this result as follows:
Theorem 3. (At-Least-n Explore-Then-Commit) Given
a fixed time horizon T , if (i) G(b, t) > 1, (ii) q ≥
(2 maxa 6=a∗ µa)/∆2

min, (iii) F (x) = Θ(xα) with α > 1,
then the expected regret of ALnETC is upper bounded by:

E[RT ] ≤
∑
a∈A

2(G(b, t)− La∗)∆max(
G(b, t)− 1

)
µa

· q lnT + o(log T ),

where La = F (q lnT + θa)/
∑
i∈A F (µ∗T + θi). The

expected total payment is upper bounded by:

E[BT ] ≤
∑
a6=a∗

2b(G(b, t) + 1)

µa(G(b, t)− 1)
· q lnT.

Remark 5. For a given incentive b, as G(b, t) increases
asymptotically (large incentive impact), regret and total
payment decrease to some limiting amounts. This makes
intuitive sense since if the incentive has a larger impact on
users, it will reduce the pullings of random unfavorable
arms and shorten the exploration and exploitation phases.
On the other hand, as G(b, t) decreases towards one from
above, users are less affected by incentives, thus in many
instances the exploration phase never stops. This could lead
to linear expected regret and linear expected total payment.
Meanwhile, as q decreases, both regret and total payment are
smaller. But if q < (2 maxa6=a∗ µa)/∆2

min, the exploration
will be insufficient to guarantee the event {â∗ = a∗}. This
leads to a linear regret. Also, a large ∆max implies larger a
loss of pullings of suboptimal arms to reach n accumulative
reward during exploration phase, leading to a larger regret.

Proof Sketch of Theorem 3. Due to space limitation, we
provide a proof sketch here and relegate the details to the
supplementary material. By the law of total expectation, the
expected regret up to time T can be decomposed as:

E[RT ] ≤ E[RT | â∗ = a∗]︸ ︷︷ ︸
(a)

+T · P(â∗ 6= a∗)︸ ︷︷ ︸
(b)

.

To bound E[RT ], we want to upper bound both E[RT | â∗ =
a∗] and P(â∗ 6= a∗). First, in (b), the probability P(â∗ =
a∗) ≤ P

(
µ̂a(τn) ≥ µ̂a∗(τn)

)
is bounded by O(T−1) by

leveraging the Chernoff-Hoeffding bound. Also, noting that

(a) = µ∗T −
(
E[Γτs | â∗ = a∗]+E[ΓT −Γτs | â∗ = a∗]

)
,

where Γt is the accumulative reward up to time t, we first
need to upper bound E[τn] and E[τs]. Consider E[τn], we
show that the number of pulling of arm a to get a unit reward
is a geometric random variable with parameter larger than
µaG(b, t)/

(
G(b, t) + 1

)
. Then, for each arm a ∈ A to

obtain at least n accumulative reward, the expected time
needed is upper bounded by

E[τn] ≤ G(b, t) + 1

G(b, t)
·
∑
i∈A

q lnT

µi
.

For E[τs], since τs is the earliest time for the system to
reach dominance, τs satisfies the condition µâ∗E[Tâ∗(t)] ≥∑
a 6=â∗ µaE[Ta(t)]. With the bound of E[τn], after relaxing

the inequality and some rearrangement, we obtain the upper
bound as follows:

E[τs] ≤
G(b, t) + 1

G(b, t)− 1
·
∑
a6=a∗

2q lnT

µa
.

According to the policy, the expected accumulative payment
E[BT ] can be bounded by bE[τs] and part of the expected
regret E[Γτs | â∗ = a∗].

The next challenge is to show whether the dominant arm has
a large enough probability to “win” in monopoly during the
self-sustaining phase. We use D(u0, n0) to denote the “bad
event” that the fraction of accumulative reward from weak
arms increases over time. Formally, suppose that at time step
τs, there are u0n0 accumulative reward generated by weak
arms, where n0 is the total reward and u0 < 1/2 is the frac-
tion. Then, D(u0, n0) happens if ∃t′ ∈ (τs, T ], un accu-
mulative reward is generated from weak arms with fraction
u > u0. The probability of eventD(u0, n0) can be bounded
as P

(
∃n > n0, D(u0, n0)

)
≤ e−(u0n0)γ = e−O(log T )γ

with constant γ ∈ (0, 1/4) using the improved exponential
embedding method and a Chernoff-like bound developed
in the supplementary material. The upper bound of event
D(u0, n0) decreases as u0n0 increases monotonically over
time. Thus, the arms that stay on the weak side for a long
time have little chance to win back.
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Lastly, we bound the term E[RT − Rτs | â∗ = a∗] in (a),
which contributes to the o(log T ) regret term in Theorem 3.
After time τs, a unit reward is generated by sub-optimal
arms with probability upper bounded by e−(u0n0)γ , and
then the next unit reward is also generated by sub-optimal
arms with probability upper bounded by e−(u0n0+1)γ . Thus,

E[RT −Rτs | â∗ = a∗] ≤ e−(u0n0)γ +e−(u0n0+1)γ + · · · ,

with the summation on the right hand side bounded by
O
(
(log T )1−γe−(log T )γ

)
and γ ∈ (0, 1/4).

4.3. The UCB-List Policy

In this section, we propose a UCB-List policy to further
improve the performance of the ALnETC policy. UCB-List
is similar to ALnETC and also consists of three phases.
During the exploration phase, the agent initially puts all
arms in one set, and then incentivizes the least pulled arm
in the set. Meanwhile, it removes arms that are estimated to
be sub-optimal, until only one arm is left in the set, which
is viewed as the best-empirical arm. Note that in this phase,
users can still pull any arm regardless of the set. Then, the
agent incentivizes users to sample the best-empirical arm
until it dominates. The UCB-list policy is stated as follows:

Policy 2: The UCB-List Policy

Given time horizon T and payment b, define the
confidence interval of arm a at time step t as ca(t) =√

lnT/2Ta(t):
Initialization: Incentivize pulling arms satisfying
Ta(t) = 0 with payment b until mina∈A Ta(t) = 1.
Let set U = A.
1) Exploration Phase: While |U | > 1, keep re-
moving any arm a satisfying µ̂a(t) + ca(t) ≤
maxi 6=a,i∈U

(
µ̂i(t)− ci(t)

)
from U if there is any.

Then, incentivize pulling arm a ∈ arg mini∈U Ti(t)
with payment b. If |U | = 1, let arm â∗ = {a : a ∈
U} and mark current time as τ1.
2) Exploitation Phase: Incentivize pulling arm
â∗ with payment b until it dominates: Sâ∗(t) ≥∑
a6=â∗ Sa(t). Mark current time as τs.

3) Self-Sustaining Phase: Users pull arms based
on their own preferences until time T .

Compared to ALnETC that requires a tuning parameter q,
UCB-List does not need any tuning parameter and dynami-
cally eliminates suboptimal arms, while still balancing the
exploration-exploitation trade-off to achieve O(log(T )) re-
gret andO(log(T )) payment. We state this result as follows:

Theorem 4. (UCB-List) Given a fixed time horizon T , if
G(b, t) > 1, and F (x) = Θ(xα) with α > 1, then the

expected regret of UCB-List E[RT ] is upper bounded by∑
a 6=a∗

[
8∆a

(
G(b, t)−1

)
+8∆max(

G(b, t)−1
)
∆2
a

lnT+4∆a+
4∆max

G(b, t)−1

]
,

with the expected payment E[BT ] upper bounded by

2G(b, t) + 1

G(b, t)− 1

[
8b lnT

∆2
min

+
∑
a 6=a∗

(
8b lnT

∆2
a

+ 4b

)]
.

Remark 6. Without any tuning parameter, the UCB-List
policy adapts to a larger range of systems. The system
parameters such as means of arms µ or their gap summation∑
a 6=a∗ ∆a play an important role in both regret and total

payment. As
∑
a6=a∗ ∆a decreases (implying it is harder to

differentiate a∗), longer exploration and exploitation phases
are needed, resulting in larger expected regret and total
payment. Also, similar to Theorem 3, as G(b, t) ↓ 1, the
expected regret and expected total payment are closer to
being linear, because of the weak incentive effect.

Proof Sketch of Theorem 4. We provide a proof sketch here
and relegate the details to the supplementary material. The
expected time for initialization can be upper bounded by
O(1) trivially. By the law of total expectation, we have:

E[RT ] ≤E[Rτ1 ]︸ ︷︷ ︸
(a)

+E[Rτ2 −Rτ1 | â∗ = a∗]︸ ︷︷ ︸
(b)

+ E[RT −Rτ2 | â∗ = a∗]︸ ︷︷ ︸
(c)

+T · P(â∗ 6= a∗)︸ ︷︷ ︸
(d)

.

In what follows, we will bound the four terms on the right-
hand-side one by one.

(a) In the exploration phase, since the regret results from
the pulls of sub-optimal arms, the expected regret at time
step τ1 can be written as E[Rτ1 ] =

∑
a6=a∗ ∆aE[Ta(τ1)].

Thus, term (a) can be bounded if we upper bound E[Ta(τ1)]
for each a ∈ A. Let U(t) denote the set of arms that can
get payment at time t. Consider the following two cases:
(i) At time t ≤ τ1, a∗ ∈ U(t) and there exists at least one
suboptimal arm a ∈ A, a 6= a∗ such that a ∈ U(t). In
this case we upper bound the probability P

(
∃a 6= a∗ : a ∈

U(t), a∗ ∈ U(t)
)
, and by using the Chernoff-Hoeffding

bound, we obtain that when Ta(t) ≥ (8 lnT )/∆2
a we have

P
(
∃a 6= a∗ : a ∈ U(t), a∗ ∈ U(t)

)
≤ 2T−1. Thus, in

this case, the expected regret is contributed by a suboptimal
arm a is ∆aE[Ta(t)] ≤ (8 lnT )/∆a + 2∆a; (ii) At time
t ≤ τ1, a∗ is eliminated by some suboptimal arm a ∈ U(t).
With the Chernoff-Hoeffding bound, we obtain P

(
∃a 6= a∗ :

a ∈ U(t), a∗ /∈ U(t)
)
≤ 2T−1. Summing over all possible

cases and all suboptimal arms, E[Rτ1 ] is bounded by:

E[Rτ1 ] ≤
∑
a 6=a∗

8 lnT

∆a
+ 4∆a.
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(b) In the exploitation phase, the expected regret E[Rτ2 −
Rτ1 | â∗ = a∗] is upper bounded by O(E[τ2 − τ1]) since

E[Rτ2 −Rτ1 | â∗ = a∗] ≤ ∆max

G(b) + 1
· E[τ2 − τ1].

In term (a), the upper bound of E[Rτ1 ] implies that each
suboptimal arm a is pulled at least (8 lnT )/∆2

a with a∗

being pulled at least (8 lnT )/∆2
min times, similar to the

proof of Theorem 3 we obtain the upper bound of both
E[τ1] and E[τ2− τ1]. This leads to the upper bounds of both
E[Rτ2−Rτ1 | â∗ = a∗] and E[BT ] = (E[τ1]+E[τs−τ1])b.

(c) This term represents the expected regret from τ2 to T .
Similar to the proof of Theorem 3, this part of expected re-
gret is bounded by O

(
(log T )1−γe−(log T )γ

)
, γ ∈ (0, 1/4).

(d) The probability P(â∗ 6= a∗) can be bounded by O(T−1)
since P(â∗ 6= a∗) = P

(
∃a 6= a∗ : a ∈ U(t), a∗ /∈ U(t)

)
,

which can be bounded by 2T−1 as in (a)-case (ii).

Combining steps (a)–(d) yields the result stated in the theo-
rem and the proof is complete.

5. Simulations
In this section, we conduct simulations to evaluate the per-
formances of ALnETC and UCB-List policies.

5.1. Comparisons with Baselines

We first compare the ALnETC policy with two baselines:
i) no incentive control, and ii) with incentive control only
during exploration. We only compare ALnETC with the
baselines since UCB-List outperforms ALnETC (to be dis-
cussed next). The simulation setting is as follows: a two-
armed model with means µ = [0.3, 0.5] and initial biases
θ = [100, 1], the feedback function F (x) = xα with
α = 1.5 and payment b = 1.5 with an incentive impact
function G(x, t) = x. We use the optimal ALnETC param-
eter q = 15. The results are shown in Fig. 2, where each
data point is averaged over 1000 trials. We observe that
the average regret under no incentives grows linearly due
to the large initial bias toward the suboptimal arm and self-
reinforcing preferences. The average regret under partial
incentive is also linear since the incentive is insufficient to
offset the initial bias toward the suboptimal arm. In con-
trast, the average regret of ALnETC policy follows a log(T )
growth rate.

5.2. Comparisons with Imperfect Conditions

In real-world applications, some of our model conditions
may not always hold (e.g., the conditions G(b, t) > 1 and
F (x) = Θ(xα) with α > 1). Therefore, we conduct the
simulations to study the robustness of our proposed policies.
The system setting in the group with incentive is almost the
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Figure 2. Comparison of ALnETC and baselines.

same as that in Section 5.1: a two-armed model with means
µ = [0.3, 0.5] and initial biases θ = [100, 1], the feedback
function F (x) = xα. The key difference is that, in this
study, we set α ≤ 1 and G(b, t) < 1 (i.e., the conditions in
our theoretical results are not satisfied). Specifically, we set
the value of G(b, t) to be 0.5 and 0.2, implying a weaker
incentive impact. Also, we choose the value of α to be
1.0 and 0.2, implying a weaker self-reinforcing preference
strength. We use the optimal ALnETC parameter q = 15.
The results are shown in Fig. 3, where each data point is
averaged over 1000 trials. We observe that as the values of
α and G(b, t) decrease, the average regrets of both policies
increase. Specifically, when the incentive impact G(b, t)
becomes small enough, or the self-reinforcing preference
strength is weak enough (e.g., α ≤ 1), the regrets of both
policies no longer exhibit sub-linear trends.
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(a) Performance of ALnETC.
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(b) Performance of UCB-List.

Figure 3. Comparisons of imperfect conditions.

5.3. Comparisons between ALnETC and UCB-List

Finally, we compare ALnETC and UCB-List. The sim-
ulation setting is as follows: a three-armed model with
means µ = [0.2, 0.4, 0.6] and initial biases θ = [10, 10, 1],
the feedback function F (x) = xα, α = 1.5 and payment
b = 1.2 with an incentive impact function G(x, t) = x.
For ALnETC, we set the optimal parameter q = 20. Four
groups of simulations are conducted and the results are
shown in Fig. 4-7, where each data point is averaged over
1000 trials. Fig. 4 illustrates the performance of both aver-
age regret and total payment. Fig. 4 also serves as a bench-
mark for comparisons with other three groups of results. In
each of Figs. 5–7, only one parameter is changed compared
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Figure 4. Benchmark results.
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Figure 5. Policy performance with parameter α = 2.
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Figure 6. Policy performance with parameter θ = [50, 50, 1].

to the benchmark group. This helps us observe the changes
in average regret and total payment. In Fig. 5, all settings
are the same as Fig. 4 except α = 2. In Fig. 6, all settings
are the same as those in Fig. 4 except θ = [50, 50, 1]. In
Fig. 7, all settings are the same as Fig. 4 except b = 1.8.

The results show that both policies achieve O(log T ) av-
erage regrets and O(log T ) average total payment. This
indicates that: i) both policies balance the exploration-
exploitation trade-off so that an order-optimal regret can
be reached; ii) both policies balance the trade-off between
maximizing the total reward and keeping the total payment
growing at rate O(log T ). In Fig. 5, the results show that
both policies achieve a smaller average regret, because the
self-reinforcing preferences are easier to converge to the
incentivized arm under a larger α. Also, ALnETC incurs a
higher total payment because it incentivizes the pulling of
sub-optimal arms more often. In Fig. 6, both policies have
larger average regrets because it takes more effort for both
policies to mitigate the larger initial biases. In Fig. 7, as the
payment for each time step increases from 1.5 to 1.8, the
average regrets are not affected significantly, while the total
payments increases correspondingly. Thus, a proper amount
of payment depends on specific system parameters.
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Figure 7. Policy performance with parameter b = 1.8.

6. Conclusion
We proposed and studied an incentivized bandit model with
self-reinforcing preferences. Two policies are proposed
to achieve O(log T ) expected regrets with O(log T ) incen-
tivized costs, under the condition that the feedback function
satisfies F (x) = Θ(xα) for α > 1. We conjecture that
the feedback can be extended to a larger class of nonlin-
ear functions. We note that the area of incentivized MAB
with self-reinforcing preferences remains under-explored.
Future works include, for example, the design of incentive
schemes that can be time-varying in each time step, which
can either depend on the current state, or be restricted by
certain conditions. The self-reinforcing preferences can also
be viewed as contexts, and thus this setting can be modeled
by leveraging the contextual bandit framework with more
interesting properties.
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Supplementary Material

A. Proof of Lemma 1
Lemma 1. (Monopoly) There exists an incentivized policy that induces users’ preferences to converge in probability to an
arm over time with sub-linear payment, if and only if F (x) satisfies

∑+∞
i=1

(
1/F (i)

)
< +∞.

Let the sequence {χj}∞j=1 be the arm order that generates a unit reward in our model without the participation of incentive,
such that χj indicates the arm that generates the j-th unit reward, as shown in Figure 8. Next we will construct a sequence
that has the same conditional distribution as {χj}.

t10 4 8

2 2 2 23 3 31Pull arms: · · ·

{χj} = {2, 1, 3, · · · }

Figure 8. This figure shows an instance of sequence {χj}. At time step t = 1, arm 2 is pulled and generates 0 reward. At time step t = 2,
arm 2 is pulled and generates a unit reward. Thus, the first element χ1 in {χj} is the arm index 2 that generates the first unit reward. The
subsequent elements in the sequence are generated similarly.

Our main mathematical tool is the improved exponential embedding method. For each arm i ∈ A, we let {ri(n)}
be a collection of independent exponential random variables such that E[ri(n)] = 1

µiF (n+θi)
. We define set Bi :=

{∑n
k=0 ri(k)}∞n=0, where each element

∑n
k=0 ri(k) represents the random time needed for arm i to get n accumulative

reward, and define set G = B1 ∪ B2 ∪ · · · ∪ Bm. Let ζ1 be the smallest number in G and in general let ζj be the j-th
smallest number in G. Next, we define a new random sequence {ζj}, by making the j-th element of the sequence be the arm
i if ζj ∈ Bi. Then, we have the following lemma (to be proved later):
Lemma 5. Given the previous reward history Fj−1, the constructed sequence {ζj} is equivalent in conditional distribution
to the sequence {χj}.

Next, we formally define the notion of attraction time.
Definition 2 (Attraction time). Let N denote the attraction time, such that after this time step N , monopoly happens, i.e.,
only one arm has positive probability to generate rewards.

Necessity: if α > 1 then P(N <∞) = 1. With the help of improved exponential embedding, the time until the accumulative
reward of arm i ∈ A approaches infinity is

∑∞
k=0 ri(k). If the condition

∑
i

1
F (i) <∞ is satisfied, then we have

E
[ ∞∑
k=0

ri(k)
]

=
1

µi

∞∑
k=0

1

F (k + θi)
<∞.

So for each arm i ∈ A, P(
∑∞
k=0 ri(k) <∞) = 1. Let a = arg mini∈A{

∑∞
k=0 ri(k)}, then for each b 6= a, there exists a

finite number Kb such that
Kb∑
k=0

rb(k) <

∞∑
k=0

ra(k) <

Kb+1∑
k=0

rb(k).

Thus if we let N := maxi∈A,i6=a{
∑fi(k)
k=0 ri(k)}, then after this time N , only arm a can generate rewards.

Sufficiency: if P(N <∞) = 1 then
∑
i

1
F (i) <∞. If we show that when

∑
i

1
F (i) =∞ we have P(N =∞) > 0, then the

proof is done. When
∑
i

1
F (i) =∞, we have

E
[ ∞∑
k=0

ri(k)
]

=
1

µi

∞∑
k=0

1

F (k + θi)
→∞.
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Thus for any i ∈ A it takes infinite time to accumulate infinite reward, which implies P(N =∞) > 0. In fact, in this case
P(N =∞) = 1. We refer readers to Khanin & Khanin (2001) and Oliveira (2009) for further details.

A.1. Proof of Lemma 5

The proof of this lemma relies on the memoryless property of the exponential distribution as well as the following two facts:

Fact 1. If X1, · · · , Xm(m ≥ 2) are independent exponential random variables with parameter λ1, · · · , λm, respectively,
then min(X1, · · · , Xm) is also exponential with parameter λ1 + · · ·+ λm.

Fact 2. For two independent exponential random variables X1 ∼ exp(λ1) and X2 ∼ exp(λ2), P(X1 < X2) = λ1

λ1+λ2
.

Initially, in the sequence {ζj} when j = 1, since the initial value for arm i is its bias θi, using the above two facts:

P(ζ1 = i | F0) = P
(
ri(0) < min

j 6=i
{rj(0)}

∣∣∣∣F0

)
=

µiF (θi)∑
j∈A µjF (θj)

.

In our model, each arm i has probability µi · λi(t) = µiF (θi)∑
j∈A F (θj)

to generate the first reward every time step before it does.
The value of element χ1 is a random variable following multinomial distribution with single trial, i.e., with F0, the event
{χ1 = i} happens with probability P(χ1 = i | F0) = µiF (θi)∑

j∈A µjF (θj)
, and

∑
i∈A P(χ1 = i | F0) = 1. Thus

P(ζ1 = i | F0) = P(χ1 = i | F0)

Now suppose that before ζn, each arm a has been added to Na. Then

P(ζn = i | Fζn−1
) = P

(
ri(Ni + 1) < min

j 6=i
{rj(Nj + 1)}

∣∣∣∣Fζn−1

)
=

µiF (Ni + θi)∑
j∈A µjF (Nj + θj)

.

Correspondingly in our model, each arm i has probability µi · λi(t) = µiF (Ni+θi)∑
j∈A F (Nj+θj)

to generate the next reward every
time step before it does. The value of element χn is a random variable following multinomial distribution with single
trial, i.e., with Fχn−1 , the event {χn = i} happens with probability P(χn = i | Fχn−1) = µiF (Ni+θi)∑

j∈A µjF (Nj+θj)
, and∑

i∈A P(χn = i | Fχn−1) = 1. Thus,

P(ζn = i | Fζn−1
) = P(χn = i | Fχn−1

).

B. Proof of Lemma 2
Lemma 2. (Dominance) In ALnETC, if the incentive sensitivity function G(·) and the payment b satisfy G(b, t) > 1 for all
t in the exploration and exploitation phases, then the expected dominant time τs is O(log T ).

Recall that the definition of dominance is at time t ≥ τn, Sâ∗(t) ≥
∑
a 6=â∗ Sa(t). Thus arm â∗ is expected to dominate at

time t ≥ τn if

µâ∗E[Tâ∗(t)] ≥
∑
a 6=â∗

µaE[Ta(t)].
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We tighten this condition by narrowing the left-hand-side and amplifying the right-hand-side as follows:

µâ∗E[Tâ∗(t)] ≥
∑
a 6=â∗

µaE[Ta(t)]

⇒ Tâ∗(τn) + µâ∗E[Tâ∗(t)− Tâ∗(τn)] ≥
∑
a 6=â∗

Ta(τn) +
∑
a 6=â∗

µaE[Ta(t)− Ta(τn)]

⇒ n+ µâ∗E[Tâ∗(t)− Tâ∗(τn)]
(i)
≥ (µâ∗E[τn]− n) +

∑
a6=â∗

µaE[Ta(t)− Ta(τn)]

⇒ n+ µâ∗
G(b, t)

G(b, t) + 1
E[t− τn]

(ii)
≥ (µâ∗E[τn]− n) + µâ∗

E[t− τn]

G(b, t) + 1

⇒ E[t− τn]
(iii)
≥

(
E[τn]− 2n

µâ∗

)(
G(b, t) + 1

)
G(b, t)− 1

, (3)

where (i) is because arm â∗ is pulled at least n times during the exploration phase, (ii) is because by incentivizing arm â∗,
we have λ̂â∗(t) ≥ G(b,t)

G(b,t)+1 and λ̂a(t) ≤ 1
G(b,t)+1 for a 6= â∗, and (iii) is the rearrangement. Then we obtain the sufficient

condition of dominance (3). Since time τs is defined as the earliest time to reach dominance, we can upper bound E[τs− τn]
by

E[τs − τn] ≤

(
E[τn]− 2n

µâ∗

)(
G(b, t) + 1

)
G(b, t)− 1

. (4)

Next, we prove the following result for E[τn].

Lemma 6. In ALnETC, the expected exploration phase duration E[τn] is upper bounded by O(log T ).

B.1. Proof of Lemma 6

In ALnETC, during the exploration phase at time step t, the agent offers payment b to the user pulling arm i. The probability
that the arm i generates reward is λi(t)+G(b,t)

1+G(b,t) · µi > G(b,t)µi
1+G(b,t) . Thus, the number of attempts for arm i to generate a unit

reward is a geometric random variable with parameter larger than G(b,t)µi
1+G(b,t) . By the policy, during the exploration phase,

each arm generates at least n accumulative reward. Then we obtain

E[τn] ≤ n ·
∑
i∈A

1 +G(b, t)

G(b, t)µi
= O(n) = O(log T ). (5)

Lastly, it follows from Lemma 6 that E[τs] = E[τn] + E[τs − τn] = O(log T ). This completes the proof.

C. Proof of Theorem 3
Theorem 3. (At-Least-n Explore-Then-Commit) Given a fixed time horizon T , if (i) G(b, t) > 1, (ii) q ≥
(2 maxa 6=a∗ µa)/∆2

min, (iii) F (x) = Θ(xα) with α > 1, then the expected regret of ALnETC is upper bounded by:

E[RT ] ≤
∑
a∈A

2(G(b, t)− La∗)∆max(
G(b, t)− 1

)
µa

· q lnT + o(log T ),

where La = F (q lnT + θa)/
∑
i∈A F (µ∗T + θi). The expected total payment is upper bounded by:

E[BT ] ≤
∑
a6=a∗

2b(G(b, t) + 1)

µa(G(b, t)− 1)
· q lnT.

In the rest of the proofs, for simplicity we will use the notations ∆a = µ∗ − µa, µmin = min
a∈A

µa, ∆max = max
a∈A

∆a and

∆min = min
a∈A

∆a.
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By the law of total expectation, the expected regret up to T is as follows:

E[RT ] = E[RT | â∗ = a∗]P(â∗ = a∗) + E[RT | â∗ 6= a∗]P(â∗ 6= a∗)

≤ E[RT | â∗ = a∗] + T · P(â∗ 6= a∗).

We want to bound both E[RT | â∗ = a∗] and P(â∗ 6= a∗) to get the regret bound. First we analyze the upper bound of the
part P(â∗ 6= a∗). We start with the following lemma.

Lemma 7. For each arm a 6= a∗, there exists a constant εa > 0 independent of n such that the following hold:

P
(
µ̂a(τn) > µa +

∆a

2

)
≤ 2e−2εan,

and

P
(
µ̂a∗(τn) < µa∗ −

∆a

2

)
≤ 2e−2εan.

Let arm a = arg maxi∈A,i 6=a∗ µ̂i(τn) denote the arm with largest sample mean and not equal to arm a∗ at time step τn. We
have:

P(â∗ 6= a∗) ≤ P
(
µ̂a(τn) ≥ µ̂a∗(τn)

)
(i)
≤ P

(
µ̂a(τn) ≥ µa +

∆a

2

)
+ P

(
µ̂a∗(τn) ≤ µa∗ −

∆a

2

)
(ii)
≤ 4e−

n∆2
a

2µa ,

where (i) is because µa + ∆a/2 = µa∗ −∆a/2, and the event {µ̂a(τn) ≥ µ̂a∗(τn)} implies either {µ̂a(τn) ≥ µa + ∆a/2}
or {µ̂a∗(τn) ≤ µa∗ −∆a/2}, and (ii) follows by leveraging Lemma 7. Recall that, in the policy, we define n = q log T .
Thus, if q ≥ 2 maxa 6=a∗ µa

∆2
min

, it then follows that P(â∗ 6= a∗) = O( 1
T ).

Next, we analyze the upper bound of the part E[RT | â∗ = a∗]. Let Γt denote the accumulative reward up to time step t.
Then, we have:

E[RT | â∗ = a∗] = E[Γ∗T ]− E[ΓT | â∗ = a∗]

= µ∗ · T − E[ΓT | â∗ = a∗]

= µ∗ · T −
(
E[Γτs | â∗ = a∗] + E[ΓT − Γτs | â∗ = a∗]

)
. (6)

During the exploration phase, since each arm generates rewards at least n times, we obtain:

E[Γτn | τn] = E
[∑
i∈A

(
n+ (Si(τn)− n)

)]
= m · n+ E

[∑
i∈A

(
Ti(τn) · µi − n

)]
= m · n+

∑
i∈A

µi

(
E[Ti(τn)]− n

µi

)
≥ m · n+ µmin ·

∑
i∈A

(
E[Ti(τn)]− n

µi

)
= m · n+

(
τn · µmin − µmin ·

∑
i∈A

n

µi

)
= τn · µmin + n ·

∑
i∈A

µi − µmin
µi

. (7)
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For each arm a ∈ A, let La = F (q lnT+θa)∑
i∈A F (µ∗T+θi)

. Thus at time t ∈ {τn + 1, . . . , T}, we have

E[λa(t)] = E
[

F (Sa(t− 1) + θa)∑
i∈A F (Si(t− 1) + θi)

]
(i)
≥ F (q lnT + θa)∑

i∈A F (µ∗T + θi)
= La,

where (i) is obtained since at time t > τn, Sa(t− 1) ≥ q lnT and Sa(t− 1) ≤ µ∗T for any a 6= a∗.

During the exploitation phase, the agent offers payment to users pulling arm â∗, so using the bound in (7) we obtain:

E[Γτs | â∗ = a∗, τn, τs]

= E[Γτn | τn] +

τs∑
t=τn+1

E
[
λa∗(t) +G(b, t)

1 +G(b, t)
· µ∗ +

∑
i∈A

λi(t)

1 +G(b, t)
· µi
]

≥ E[Γτn | τn] +

τs∑
t=τn+1

E
[
λa∗(t) +G(b, t)

1 +G(b, t)
· µ∗ +

(1− λa∗(t))
1 +G(b, t)

· µmin
]

= E[Γτn | τn] +

τs∑
t=τn+1

E
[

G(b, t)

1 +G(b, t)
· µ∗ +

µmin
1 +G(b, t)

+
λa∗(t)∆max

1 +G(b, t)

]

≥ E[Γτn | τn] +
µ∗(τs − τn)G(b, t)

1 +G(b, t)
+

(τs − τn)µmin
1 +G(b, t)

+
(τs − τn)La∗∆max

1 +G(b, t)

(i)
≥ τn · µmin + n ·

∑
i∈A

µi − µmin
µi

+
µ∗(τs − τn)G(b, t)

1 +G(b, t)
+

(τs − τn)µmin
1 +G(b, t)

+
(τs − τn)La∗∆max

1 +G(b, t)

= n
∑
i∈A

µi − µmin
µi

+
µ∗G(b, t) + µmin + La∗∆max

1 +G(b, t)
τs + τn · µmin −

µ∗G(b, t) + µmin + La∗∆max

1 +G(b, t)
τn

= n
∑
i∈A

µi − µmin
µi

+
µ∗G(b, t) + µmin + La∗∆max

1 +G(b, t)
τs −

(
G(b, t) + La∗

)
∆max

1 +G(b, t)
τn, (8)

where (i) is obtained by replacing E[Γτn | τn] using (7). Then replacing (6) using (8) and taking expectation with respect to
τn and τs, we obtain:

E[RT | â∗ = a∗]

≤ µ∗T − µ∗G(b, t) + µmin + La∗∆max

1 +G(b, t)
E[τs] +

(
G(b, t) + La∗

)
∆max

1 +G(b, t)
E[τn]− n

∑
i∈A

µi − µmin
µi

− E[ΓT − Γτs | â∗ = a∗]

= µ∗E[τs]−
µ∗G(b, t) + µmin + La∗∆max

1 +G(b, t)
E[τs] +

(
G(b, t) + La∗

)
∆max

1 +G(b, t)
E[τn]− n

∑
i∈A

µi − µmin
µi

+ µ∗
(
T − E[τs]

)
− E[ΓT − Γτs | â∗ = a∗]

=
∆max(1− La∗)

1 +G(b, t)
E[τs − τn] + ∆max · E[τn]− n

∑
i∈A

µi − µmin
µi

+ E[RT −Rτs | â∗ = a∗]. (9)

Then, the evaluation of E[RT | â∗ = a∗] boils down to evaluating E[τn], E[τs− τn] and E[RT −Rτs | â∗ = a∗]. We obtain
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from Lemma 2 and (9) that

E[RT | â∗ = a∗]

≤ ∆max(1− La∗)
1 +G(b, t)

·

(
n ·∑i∈A

1+G(b,t)
G(b,t)µi

− 2n

µ∗
)(
G(b, t) + 1

)
G(b, t)− 1

+ ∆maxn
∑
i∈A

1 +G(b, t)

G(b, t)µi
− n

∑
i∈A

µi − µmin
µi

+ E[RT −Rτs | â∗ = a∗]

= n

[(
G(b, t)− La∗

)(
G(b, t) + 1

)
G(b, t)

(
G(b, t)− 1

) ∑
a∈A

∆max

µa
− a∆max(1− La∗)

µ∗
(
G(b, t)− 1

) −∑
a∈A

µa − µmin
µa

]
+ E[RT −Rτ2 | â∗ = a∗]

(i)
≤ n

[
2
(
G(b, t)− La∗

)
G(b, t)− 1

∑
a∈A

∆max

µa

]
+ E[RT −Rτ2 | â∗ = a∗]

= O(log T ) + E[RT −Rτ2 | â∗ = a∗],

where (i) follows because G(b, t) + 1 < 2G(b, t). By leveraging Eqs (5) and (4), the expected accumulative payment E[BT ]
can also be upper bounded by

E[BT ] = b · (E[τn] + E[τs − τn]) ≤
∑
a 6=a∗

2b(G(b, t) + 1)

µa(G(b, t)− 1)
· q lnT = O(log T ).

Next, for simplicity, we consider a system with A = {1, 2}, where µ1 > µ2 and θ1, θ2 > 0. The idea of the policy is that
the agent keeps offering payment b to the users pulling arm 1 to help accumulate reward from arm 1 and keep the arm in the
leading side, i.e., arm 1 generates at least half of accumulative reward, until time step τs when arm 1 dominates and has an
overwhelming chance to be the only arm that can generate rewards after monopoly happens. This phenomenon is formulated
as follows: suppose at time step τs, S1(τs) + S2(τs) = n0, and S2(τs) = u0n0 with 0 < u0 <

1
2 and u0n0 � θ1, θ2. We

estimate the probability of a “bad” event D(u0, n0), where at some time step t′ > τs we have S1(t′) + S2(t′) = n > n0

and S2(t′) ≥ un with 0 < u0 < u < 1
2 , by leveraging the improved exponential embedding method, D(u0, n0) can be

expressed as follows:

D(u0, n0) =

( un−1∑
i=u0n0

r2(i) <

n−un−1∑
i=n0−u0n0

r1(i)

)
.

We will show later that P(D(u0, n0)) is very small, and with u0n0 getting larger, P(D(u0, n0)) is getting exponentially
smaller. This result is formally stated as follows:

Lemma 8. Suppose at time step τs there are n0 accumulative reward with u0n0, 0 < u0 <
1
2 generated by arm 2. Then,

there exists a constant γ ∈ (0, 1/4), such that for any u0 < u < 1
2 and all large enough n0, it holds that:

P
(
∃n > n0, D(u0, n0)

)
≤ e−(u0n0)γ .

By the above lemma, with u0n0 = O(τn) = O(log T ), we get P
(
D(u0, n0)

)
= O(e−(log T )γ ). This result can be extended

to the case with arm number m ≥ 2, by viewing the sum of accumulative reward generated from all sub-optimal arms as the
accumulative reward generated from a single “super arm.”

Next, we bound the last part E[RT − Rτs | â∗ = a∗]. Note that the regret comes from pullings of sub-optimal arms,
and the expected number of attempts for each arm to get a unit reward is O(1) since µi > 0, i ∈ A. Let n0 denote the
accumulative reward from all arms at time step τs with u0n0, 0 < u0 <

1
2 rewards generated by sub-optimal arms. Note

that u0n0 = O(log T ) since u0n0 < τs and τs = O(log T ). Then, by Lemma 8, for the unit reward generated right after τs,
it is generated by sub-optimal arms with probability smaller than or equal to e−(u0n0)γ with γ ∈ (0, 1

4 ). When a unit reward
is generated by sub-optimal arms, the probability that the next unit reward is also generated by sub-optimal arms is smaller
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than or equal to e−(u0n0+1)γ . Thus, we can upper bound the expected regret E[RT −Rτs | â∗ = a∗] by

E[RT −Rτs | â∗ = a∗] ≤ e−(u0n0)γ + e−(u0n0+1)γ + · · ·

≤
∫ ∞
u0n0−1

e−n
γ

dn

= Ce−(u0n0−1)γ , (10)

where C only depends on u0n0 and γ such that C = O
(
(u0n0)1−γ) with γ ∈ (0, 1/4). Thus Eq. (10) is o(log T ). Now we

get the expected regret up to time step T as E[RT ] = O(log T ), this completes the proof.

C.1. Proof of Lemma 7

Fact 3 (Chernoff-Hoeffding bound). Let Z1, · · · , Zn be independent bounded random variables with Zi ∈ [a, b] for all i,
where −∞ < a ≤ b <∞. Then for all s ≥ 0

P
(∣∣∣∣ 1n

n∑
i=1

(Zi − E[Zi])

∣∣∣∣ ≥ s) ≤ exp

(
− 2ns2

(b− a)2

)
.

Let sequences {Xi(t)} denote the Bernoulli reward with support {0, 1} generated by arm i 6= a∗ at time step t. Thus, for
each time step t, Xi(t) is an i.i.d. random variable and E[Xi(t)] = µi. At time step τn, by the policy, each arm has at least
n accumulative reward. Since Si(τn) is the accumulative reward generated by arm i at time step τn we have Si(τn) ≥ n.
By Chernoff-Hoeffding bound, at time step τn for arm i, we get the following:

P
(
µ̂i(τn) > µi +

∆i

2

)
≤ 2e−2E[Ti(τn)](

∆i
2 )2

= 2e
−2

E[Si(τn)]

µi
(

∆i
2 )2

≤ 2e
−n∆2

i
2µi .

The proof for arm a∗ also follows from similar arguments and thus is omitted for brevity.

C.2. Proof of Lemma 8

Suppose at some time step t, there are n accumulative reward from both arms. Recall that for arm i ∈ A,
∑∞
j=n ri(j) <∞

and E
[∑∞

j=n ri(j)
]

=
∑∞
j=n

1
µiF (j+θi)

converges. To prove Lemma 8, we use the following lemma

Lemma 9. There exists a constant n0 such that for all n > n0,

P
(∣∣∣∣

∑∞
j=n ri(j)

E
[∑∞

j=n ri(j)
] − 1

∣∣∣∣ > n−
1
4

)
≤ e−n

1
4 , i ∈ A.

Given a constant t, define an event En0
where the following conditions hold simultaneously:∣∣∣∣

∑∞
j=u0n0

r2(j)

E
[∑∞

j=u0n0
r2(j)

] − 1

∣∣∣∣ ≤ (u0n0)−
1
4 , (11)

∀n > n0,

∣∣∣∣
∑∞
j=un r2(j)

E
[∑∞

j=un r2(j)
] − 1

∣∣∣∣ ≤ (un)−
1
4 , (12)∣∣∣∣

∑∞
j=(1−u0)n0

r1(j)

E
[∑∞

j=(1−u0)n0
r1(j)

] − 1

∣∣∣∣ ≤ ((1− u0)n0

)− 1
4 , (13)

∀n > n0,

∣∣∣∣
∑∞
j=(1−u)n r1(j)

E
[∑∞

j=(1−u)n r1(j)
] − 1

∣∣∣∣ ≤ ((1− u)n
)− 1

4 . (14)

By Lemma 9, we obtain the probability of event En0
as follows

P(En0
) ≥ 1− 2e−(u0n0)

1
4 −

∑
n>n0

2e−(u0n)
1
4 ≥ 1− e−(u0n0)γ ,
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with γ ∈ (0, 1
4 ) depending only on F and u0. If we show that for all large enough u0n0, En0

∩D(u0, n0) = 0, then the
proof is finished since it implies

P
(
∃n > n0, D(u0, n0)

)
≤ P(Ecn0

) ≤ e−(u0n0)γ .

We consider the definition of event D(u0, n0). By (11)–(14), we obtain

un−1∑
i=u0n0

r2(i) =

∞∑
i=u0n0

r2(i)−
∞∑

i=un

r2(i)

≥
(
1 + o(1)

) ∞∑
i=u0n0

1

µ2F (i+ θ2)
−
(
1 + o(1)

) ∞∑
i=un

1

µ2F (i+ θ2)
,

and similarly,

n−un−1∑
i=n0−u0n0

r1(i) ≤
(
1 + o(1)

) ∞∑
i=(1−u0)n0

1

µ1F (i+ θ1)
−
(
1 + o(1)

) ∞∑
i=(1−u)n

1

µ1F (i+ θ1)
.

By contradiction, suppose that En0 ∩D(u0, n0) 6= 0. It then follows that

(
1 + o(1)

) ∞∑
i=u0n0

1

µ2F (i+ θ2)
−
(
1 + o(1)

) ∞∑
i=un

1

µ2F (i+ θ2)

<
(
1 + o(1)

) ∞∑
i=(1−u0)n0

1

µ1F (i+ θ1)
−
(
1 + o(1)

) ∞∑
i=(1−u)n

1

µ1F (i+ θ1)
,

which implies
(1−u0)n0∑
i=u0n0

1

µ1F (i+ θ1)
<
(
1 + o(1)

) (1−u)n∑
i=un

1

µ1F (i+ θ1)
. (15)

We want to show that (15) cannot hold as u0n0 goes large, which implies En0 ∩D(u0, n0) = 0. Since F (x) = Ω(xα),
there exists k > 0 such that

(1−u)n∑
i=un

1

µ1F (i+ θ1)
≤ k

(
n0

n

)α (1−u)n∑
i=un

1

µ1F (n0

n i+ no
n θ1)

= k

(
n0

n

)α (1−u)n0∑
i=un0

1

µ1F (i+ θ1)
.

Also, note that [un0, (1− u)n0] ⊂ [u0n0, (1− u0)n0]. Therefore, there exists a constant d ∈ (0, 1) such that

(1−u)n∑
i=un

1

µ1F (i+ θ1)
≤ dk

(
n0

n

)α (1−u0)n0∑
i=u0n0

1

µ1F (i+ θ1)
,

which contradicts with (15) since o(1) goes to 0 as u0n0 goes to infinity, and this completes the proof.

C.3. Proof of Lemma 9

Let Rn =
∑∞
j=n ri(j), h(j) = µiF (j + θi), Zn =

∑∞
j=n

1
h(j)2 . We first show that for any t ∈ R+, we have

P(Rn − E[Rn] > t
√
Zn) ≤ e−t, (16)
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and

P(Rn − E[Rn] < −t
√
Zn) ≤ e−t. (17)

We only prove the first inequality and the proof of the second one is similar. Given a constant s, we have:

P(Rn − E[Rn] > t
√
Zn)

(i)
= P

(
es(Rn−E[Rn]) > est

√
Zn

)
(ii)
≤ e−st

√
ZnE

[
es

∑
j≥n(ri(j)− 1

h(j)
)

]
= e−st

√
Zn
∏
j≥n

E
[
es(ri(j)−

1
h(j)

)

]
(iii)
= e−st

√
Zn
∏
j≥n

e−
s

h(j)

1− s
h(j)

= e−st
√
Zn
∏
j≥n

e
−s
h(j)

[
1 +

s

h(j)
+

s2

h(j)2

1− s
h(j)

]
(iv)
≤ e−st

√
Zn
∏
j≥n

e
2s2

h(j)2

≤ exp(2s2Zn − st
√
Zn), (18)

where (i) follows from multiplying both sides by a variable s and exponentiate both sides, (ii) follows from Markov’s
inequality, (iii) is because given random variable X ∼ Exp(λ), E[eaX ] = 1

1− aλ
, a < λ, and (iv) follows from ex ≥ 1 + x.

We set s = 1√
Zn

, which is achievable since there exists n such that 1√
Zn
≤ h(n)

2 . Thus, by (18), we obtain P(Rn−E[Rn] >

t
√
Zn) ≤ e−t. Next, we use Lemma 1 in Oliveira (2009), which is restated as follows:

Lemma 10 (Oliveira (2009), Lemma 1). Define a feedback function F (x) = Θ(xα) where α > 1, and define the quantity

Sr(n) =

∞∑
j=n

1

F (j)r
, r ∈ R+, n ∈ N.

Then, for all r ≥ 1, Sr(n) converges and as n→ +∞

Sr(n)→ n

(rα− 1)F (n)r
.

By using Lemma 10, we obtain
√
S2(n) = n−

1
2S1(n) asymptotically. Note that S1(n) = µiE[Rn] and S2(n) = µ2

iZn.
Therefore, we obtain the relation between E[Rn] and

√
Zn as

√
Zn = n−

1
2ERn asymptotically. Then we replace t by n

1
4

in both (16) and (17), and we get the inequality in Lemma 9.

D. Proof of Theorem 4
Theorem 4. (UCB-List) Given a fixed time horizon T , if G(b, t) > 1, and F (x) = Θ(xα) with α > 1, then the expected
regret of UCB-List E[RT ] is upper bounded by∑

a6=a∗

[
8∆a

(
G(b, t)−1

)
+8∆max(

G(b, t)−1
)
∆2
a

lnT + 4∆a +
4∆max

G(b, t)−1

]
,

with the expected payment E[BT ] upper bounded by

2G(b, t) + 1

G(b, t)− 1

[
8b lnT

∆2
min

+
∑
a 6=a∗

(
8b lnT

∆2
a

+ 4b

)]
.
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We start in a similar way as the proof of Theorem 3. By the law of total expectation, the expected regret up to T can be
bounded as follows:

E[RT ] = E[RT | â∗ = a∗]P(â∗ = a∗) + E[RT | â∗ 6= a∗]P(â∗ 6= a∗)

≤ E[RT | â∗ = a∗] + T · P(â∗ 6= a∗).

We want to bound both E[RT | â∗ = a∗] and P(â∗ 6= a∗) to get the regret bound. We first consider E[RT | â∗ = a∗]. After
decomposing, we have:

E[RT | â∗ = a∗] = E[Rτ2 | â∗ = a∗] + E[RT −Rτ2 | â∗ = a∗]

= E[Rτ1 ] + E[Rτ2 −Rτ1 | â∗ = a∗] + E[RT −Rτ2 | â∗ = a∗]. (19)

Note that after initialization, i.e., let t0 be the time step when initialization is finished, each arm a has Ta(t0) ≥ 1 since the
number of attempts for each arm a to get a unit reward is a geometric random variable with parameter larger than G(b,t)µa

1+G(b,t) ,
which is independent of time. During the exploration phase, since the regret is caused by pullings of sup-optimal arms, the
expected regret after t time steps can be written as ∑

a 6=a∗,a∈A

∆aE[Ta(t)].

Thus we can bound the expected regret during the exploration phase E[Rτ1 ] by bounding each E[Ta(τ1)] for a 6= a∗. Let
U(t) denote the set of arms that can get payment at time t. Consider the following two cases during the exploration phase:

(a) At time t ≤ τ1, a∗ ∈ U(t) and there exists at least one suboptimal arm a ∈ A, a 6= a∗ such that a ∈ U(t). Recall that
ca(t) =

√
lnT/2Ta(t) is the confidence bound of arm a at time step. In this case, we have:

P
(
∃a 6= a∗ : a ∈ U(t), a∗ ∈ U(t)

) (i)
≤ P

(
µ̂a(t) + ca(t) > µ̂∗(t)− ca∗(t)

)
· P
(
µ̂∗(t) + ca∗(t) > µ̂a(t)− ca(t)

)
≤ P

(
µ̂a(t) + ca(t) > µ̂∗(t)− ca∗(t)

)
(ii)
≤ P

(
µ̂a(t) + ca(t) > µa +

∆a

2

)
+ P

(
µ̂∗(t)− ca∗(t) < µ∗ − ∆a

2

)
, (20)

where (i) is obtained since arm a, a∗ ∈ U(t) implies that the upper confidence bound of both arms is larger than the other
arms’s lower confidence bound, (ii) is because µa + ∆a/2 = µ∗ −∆a/2, and the event {µ̂a(t) + ca(t) > µ̂∗(t)− ca∗(t)}
implies either {µ̂a(t) + ca(t) > µa + ∆a/2} or {µ̂∗(t) < µ∗ −∆a/2}. We consider the first probability in Eq. (20). By
Chernoff-Hoeffding bound we have

P
(
µ̂a(t) + ca(t) > µa +

∆a

2

)
= P

(
µ̂a(t)− µa >

∆a

2
− ca(t)

)
≤ e−2Ta(t)

(
∆a
2 −ca(t)

)2

= e−
(

lnT+
∆2
a

2 Ta(t)−∆a

√
2Ta(t) lnT

)
. (21)

Let ∆2
a

2 Ta(t)−∆a

√
2Ta(t) lnT = 0, we obtain Ta(t) = 8 lnT/∆2

a and Eq. (21) equals 1/T . Note that as Ta(t) increases,
Eq. (21) decreases monotonically. Similar bound can be obtained of the second probability in Eq. (20). Thus, in this case,
the expected regret contributed by a suboptimal arm a ∈ A is bounded by

∆aE[Ta(t)] ≤ 8 lnT

∆a
+ ∆aT · P

(
t < τ1 : a ∈ U(t), a∗ ∈ U(t)

)
≤ 8 lnT

∆a
+ 2∆a. (22)

(b) At time t ≤ τ1, a∗ is eliminated by some suboptimal arm a ∈ U(t), a 6= a∗. In this case, with similar technique as that
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in case (a) and Chernoff-Hoeffding bound, we have

P
(
∃a 6= a∗ : a ∈ U(t), a∗ /∈ U(t)

)
≤ P

(
µ̂a(t)− ca(t) > µ̂∗(t) + ca∗(t)

)
≤ P

(
µ̂a∗(t) + ca∗(t) ≤ µa∗ −

∆a

2

)
+ P

(
µ̂a(t)− ca(t) ≥ µa +

∆a

2

)
≤ e−2Ta∗ (t)

(
∆a
2 +ca∗ (t)

)2

+ e−2Ta(t)
(

∆a
2 +ca(t)

)2

= e−
∆2
a

2 Ta∗ (t)−lnT−∆a

√
2Ta∗ (t) lnT + e−

∆2
a

2 Ta(t)−lnT−∆a

√
2Ta(t) lnT

≤ 2T−1.

Note that P(â∗ 6= a∗) = P
(
∃a 6= a∗ : a ∈ U(t), a∗ /∈ U(t)

)
. Thus, in this case the expected regret contributed by a

suboptimal arm a ∈ A is upper bounded by

∆aE[Ta(t)] ≤ ∆aT · P
(
a ∈ U(t), a∗ /∈ U(t)

)
= 2∆a. (23)

Summing Eq. (22) and Eq. (23) over all suboptimal arms, the expected regret during the exploration phase is bounded by:

E[Rτ1 ] ≤
∑
a 6=a∗

8 lnT

∆a
+ 4∆a.

During the exploration phase at time step t < τ1, since the agent offers payment b to the user for pulling arm i, the
probability that the arm i is pulled is λi(t)+G(b,t)

1+G(b,t) > G(b,t)
1+G(b,t) . Thus, the number of attempts for arm i to get pulled is a

geometric random variable with parameter at least G(b,t)
1+G(b,t) . Since the above cases (a) and (b) imply the requirement of

8 lnT
∆2
a

+ 4 expected number of pullings from suboptimal arms, thus, the expected number of pullings for a suboptimal arm a

to guarantee at most 8 lnT
∆2
a

+ 4 number of pullings on every suboptimal arm is upper bounded by:

E[Ta(τ1)] ≤ G(b, t) + 1

G(b, t)

(
8 lnT

∆2
a

+ 4

)
.

Thus, E[τ1] is upper bounded by:

E[τ1] =
∑
a∈A

E[Ta(τ1)]
(i)
≤ G(b, t) + 1

G(b, t)

(
8 lnT

∆2
min

+
∑
a 6=a∗

(8 lnT

∆2
a

+ 4
))
, (24)

where (i) is due to the requirement of Ta∗(τ1) to be at most 8 lnT
∆2
min

, since the exploration phase stops once the sampled
strongest suboptimal arm is eliminated. By the definition of dominance, arm â∗ is expected to dominate at time t ≥ τ1 if

µâ∗E[Tâ∗(t)] ≥
∑
a 6=â∗

µaE[Ta(t)].

Similar as that in the proof of Lemma 2, after tightening the condition by narrowing the left-hand-side and amplifying the
right-hand-side, we obtain the sufficient condition of dominance as follows:

µâ∗E[Tâ∗(t)] ≥
∑
a 6=â∗

µaE[Ta(t)]

⇒ µâ∗Tâ∗(τ1) + µâ∗E[Tâ∗(t)− Tâ∗(τ1)] ≥
∑
a6=â∗

µaTa(τ1) +
∑
a6=â∗

µaE[Ta(t)− Ta(τ1)]

⇒ µâ∗E[Tâ∗(t)− Tâ∗(τ1)]
(i)
≥
∑
a6=â∗

(8µa

∆2
a

lnT + 4µa
)

+
∑
a6=â∗

µaE[Ta(t)− Ta(τ1)]

⇒ µâ∗G(b, t)E[t− τ1]

G(b, t) + 1

(ii)
≥
∑
a 6=â∗

(8µa

∆2
a

lnT + 4µa
)

+
maxa 6=â∗ µaE[t− τ1]

G(b, t) + 1

⇒ E[t− τ1]
(iii)
≥ G(b, t) + 1

µâ∗G(b, t)−max
a 6=â∗

µa

∑
a 6=â∗

(8µa

∆2
a

lnT + 4µa
)
, (25)
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where (i) is obtained since Tâ∗(τ1) > 0, (ii) is because by incentivizing arm â∗, we have λ̂â∗(t) ≥ G(b,t)
G(b,t)+1 and λ̂a(t) ≤

1
G(b,t)+1 for a 6= â∗, and (iii) is the rearrangement. Since time τ2 is defined as the earliest time to reach dominance, we can
upper bound E[τ2 − τ1] by

E[τ2 − τ1] ≤ G(b, t) + 1

µâ∗G(b, t)−max
a6=â∗

µa

∑
a6=â∗

(8µa

∆2
a

lnT + 4µa
)
. (26)

Thus, we can bound the regret during the exploitation phase E[Rτ2 −Rτ1 | â∗ = a∗] in (19) by

E[Rτ2 −Rτ1 | â∗ = a∗]
(i)
≤ ∆max

G(b, t) + 1
· E[τ2 − τ1]

≤
∑
a6=a∗

(
8∆max

∆2
a(G(b, t)− 1)

log T +
4∆max

G(b, t)− 1

)
,

where (i) follows because during the exploitation phase there is always a positive probability λ̂a(t) which is at most 1
G(b,t)+1

to pull suboptimal arm a. By using Eqs (24) and (26), the expected accumulative payment E[BT ] can also be upper bounded
by

E[BT ] = (E[τ1] + E[τs − τ1]) · b

≤ G(b, t) + 1

G(b, t)

(
8b lnT

∆2
min

+
∑
a 6=a∗

(8b lnT

∆2
a

+ 4b
))

+
G(b, t) + 1

µâ∗G(b, t)−max
a 6=â∗

µa

∑
a 6=â∗

(
8bµa

∆2
a

lnT + 4bµa

)
(i)
≤ G(b, t) + 1

G(b, t)

(
8b lnT

∆2
min

+
∑
a 6=a∗

(8b lnT

∆2
a

+ 4b
))

+
G(b, t) + 1

G(b, t)− 1

∑
a 6=â∗

(
8b

∆2
a

lnT + 4b

)

=
G(b, t) + 1

G(b, t)
· 8b lnT

∆2
min

+

(
G(b, t) + 1

G(b, t)
+
G(b, t) + 1

G(b, t)− 1

)
·
∑
a 6=â∗

(
8b

∆2
a

lnT + 4b

)
(ii)
≤ 2G(b, t) + 1

G(b, t)− 1

[
8b lnT

∆2
min

+
∑
a 6=a∗

(
8b log T

∆2
a

+ 4b

)]
,

where (i) follows from µ∗ > µa for a 6= a∗, and (ii) follows from rearranging of the coefficients containing G(b, t). The
choice of τ2 is sufficient to make the sampled best arm dominate at time step τ2 and have overwhelming probability to stay
in leading side in monopoly after τ2. The proof is the same as that in the proof of Theorem 3. Thus, the expected regret of
the last part E[RT −Rτ2 | â∗ = a∗] = O((log T )1−γe−(log T )γ ) = o(log T ) with γ ∈ (0, 1

4 ) and the proof is the same as
that in the proof of Theorem 3.

The above results show that we get the expected regret up to time step T as E[RT ] = O(log T ) with expected accumulative
payment E[BT ] = O(log T ), which completes the proof.


