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1. Local Spectral Sparsification

In this section, we prove Theorem 4 ! and the accompanying
algorithm (Algorithm 4) for the local spectral sparsification
method.

Algorithm 4 LocalSS

Input: Local graph G; at each site S;, terminals 7', and a param-
eter €
Output: An approximate Schur Complement of G
1: for site S; do
2:  Constructs H; = (1 + ¢€)-SS(G;) by any standard spec-
tral sparsification algorithm, and then transmits it to the
coordinator;
3: Upon receiving all H;, the coordinator takes their union H =
Uj— H; and then returns SC(H, T);

Theorem 4. For a subset of terminals T C V in a graph
G(V, E), using communication cost O(ns) the local spec-
tral sparsification method (Algorithm 4) outputs a (1 + €)-
SC(G,T).

Proof. By the decomposability of spectral sparsifiers (The-
orem 3), it is easy to see H is a spectral sparsifier of G,
H = (1 +¢)-SS(G). Since a spectral sparsifier well ap-
proximates the spectrum of the input graph, the constructed
structure SC(H,T) = (1 + €)-SC(G,T). Because each
site transmits a spectral sparsfier of size O(n) to the coordi-
nator, the communication cost is O(ns) O
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'In this Appendix, the numbering of theorems and algorithms
is consistent with that in the paper, and all new theorems and
algorithms are numbered after those in the paper.

2. Local Schur Complement
2.1. Proof of Theorem 7

Theorem 7 (Decomposability of Spectral Sparsifiers for
Multi-Graphs). Let E1, - -- , E be any partition of the set
of edges E in a weighted undirected multi-graph G(V, E).
It holds that U_; (1 4 €)SS(G;(V, E;)) = (1 +¢)SS(G).

Proof. Throughout the proof, let F;, = (1 +
€)SS(G;(V,E;)), for 1 < i < s. According to the
definition of spectral sparsifiers, we have for every z € R"”,
it holds that

1—ez"Lgx<a’Lpz<(1+eaTLgax. (1)

Consider two parallel edges e (u, v) of weight W (e ) and
ea(u,v) of weight W(e3) in the multi-graph G. In the
adjacency matrix Ag of G, the entry for edge (u,v) is the
summation of weights of edges e; and e, W(e1) + W(ea).
Then it is easy to see that summing all Lg, for1 <: <'s
results in Lq.

Summing all inequalities (1) for 1 < ¢ < s, we get that
(1- e)xTLGx <alLpr <(1+ e)a:TLGm,

where F' is the union of all F; for 1 < 7 < s. Note that
the union of two parallel edges €] (u,v) of weight W (e})
and e (u, v) of weight W (e}) is an edge (u,v) of weight
W (e}) + W(e)). By definition of spectral sparsifiers, we
have that F' = U;_; (1+€)SS(G;(V, E;)) = (14¢€)SS(G).

O

2.2. Proof of Theorem 8

We first re-state Algorithm 1 in the main paper and then
prove Theorem 8.

Theorem 8. For a subset of terminals T' C V' and boundary
vertices B C V ina graph G(V, E), Algorithm I constructs
a (14€)-SC(G,T) using communication cost O(|TUBs),
which is close to the communication lower bound Q(|T|s).

Proof. By Theorem 6 in the main paper, we have H' =
U;_, H is a Schur complement of G w.r.t. T U B, H' =
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Algorithm 1 LocalSC

Input: Local graph G; at each site \S;, terminals 7', boundary
vertices B, and a parameter €
Output: (1+¢)-SC(G,T)

1: for site S; do

2:  Constructs H; = SC(G;, T U B);

3:  Constructs H; = (1 + €)-SS(H;) by any standard spec-
tral sparsification algorithm, and then transmits it to the
coordinator;

4: Upon receiving all H,’, the coordinator takes their union

H" = Uj_, H] and then returns SC(H",T);

communication cost o(|T' U B|?s,n + s), where the latter
is the communication cost of Algorithm 5. Similar to the
message passing model, when all vertices in G are included
in the terminals, the problem degenerates to distributed
spectral sparsification problem and incurs a communication
lower bound Q(n + s) = Q(|T| + s) (Chen et al., 2016).
This further shows the importance of the generalization of
sparsification to multi-graphs in the message passing model
as in Theorem 7.

SC(G,T U B). By the decomposability of spectral sparsi-
fiers (Theorem 3), we have H” = U;_, H/' constructed at
the coordinator is a spectral sparsifier of H', H” = (1 + ¢)-
SS(H'). Since a spectral sparsifier H" well approximates
the spectrum of H', we have H” = (1+¢)-SC(G,T U B),
and thus the constructed structure SC(H”,T) = (1 + ¢€)-
SC(G,T). Because each site transmits a spectral sparsfier
of size O(T'U B) to the coordinator, the communication cost
is O(|TUB|s). When all the vertices in a graph are included
inT (i.e., |T| = n), the problem degenerates to distributed
spectral sparsification problem, which has a communication
lower bound Q(ns) = Q(|T'|s) (Chen et al., 2016). O

3. Distributed Schur Complement in the
Blackboard Model

The message passing model represents distributed systems
with point-to-point communication, while the blackboard
model represents distributed systems with a broadcast chan-
nel, which can be used to broadcast a message to all sites.
We extend the local spectral sparsification to the blackboard
model. In the local spectral sparsification method (Algo-
rithm 5), all sites cooperate to construct a (1 4 €)-spectral
sparsifier H of G in the blackboard by any distributed spec-
tral sparsfication algorithm, e.g., (Chen et al., 2016; Zhu
et al., 2019). Then the coordinator constructs SC(H,T)
and returns it. However, this method incurs a communica-
tion cost O(n + s), which could be very large especially
when the number of terminals |7'| is much smaller than n.

One may attempt to extend the local Schur complement
method to the blackboard model. One can still construct SC
of the local graph G; w.r.t. T U B, H] = SC(G;,T U B),
at each site .S; as in Step 2 of Algorithm 1. However, we
cannot employ existing spectral sparsification algorithms
(Chen et al., 2016; Zhu et al., 2019) to construct (1 + €)-
SS(Us_, H}) using communication cost of O(|T'U B| + s).
This is because the algorithms do not work for multi-graphs.
It is unclear how the sampling-based algorithms perform
sampling on multiple edges incident to the same two ver-
tices at different sites. Therefore, it is an open problem to
constructa (1+¢€)-SC(G, T) in the blackboard model using

Algorithm S LocalSS-BL

Input: Local graph G; at each site S;, terminals 7', and a param-
eter €
QOutput: An approximate Schur Complement of G
1: All sites cooperate to construct H = (1 + €)-SS(G) in the
blackboard by any distributed spectral sparsification algorithm,
e.g., (Chen et al., 2016; Zhu et al., 2019);
2: The coordinator returns SC(H,T');

Theorem 9. For a subset of terminals T C V in a graph
G(V, E), in the blackboard model Algorithm 5 constructs a
(14+¢€)-SC(G,T) using communication cost O(n + s) .

Proof. By the correctness of the distributed spectral sparsi-
fication in the blackboard model, we have H is a spectral
sparsifier of G, H = (1 + ¢€)-SS(G). Since a spectral spar-
sifier well approximates the spectrum of the input graph,
the constructed structure SC(H,T) = (1 +¢)-SC(G,T).
The communication cost is the same as that of distributed
spectral sparsfication, O(n + s) (Chen et al., 2016; Zhu
etal., 2019). O

4. Distributed Pair-Wise Spanners

In this section, first we define the notations we will use and
then provide the missing details of our results for source-
wise, pair-wise, and subset-wise spanners in Sections 4.1,
4.2, and 4.3, respectively.

Notations. In a graph G(V, E), the set of neighbors of a
vertex u € V is N(u) = {v|(u,v) € FE). The neigh-
bors of a set of vertices U C V are N(U) = U,y N (v).
Let the edge set between vertex u and a vertex set U,
E(u,U) = {(u,v)]|(u,v) € Fandv € U} and e(u,U)
be an arbitrary edge in E(u,U). For a subset of edges
F C B, let E(u,U,F) = E(u,U) N F and e(u, U, F) be
an arbitrary edge in E(u, U, F'). We denote the cluster of
vertex u as C'(u) and the clusters corresponding to vertex
set U as C(U) = UyeyC(u). For a set of vertex pairs
P CV xV,letits hitting set H(P) = {H C V |V(u,v) €
P,u € Horv € H}. The distance between two vertices
u,v € V in a subgraph G’ of G is denoted by d(u, v, G’)
and the shortest path realizing it is II(u, v, G’) (ties are
broken arbitrarily).
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The function Sample(U, p) takes a set U and a parameter
p as input and outputs a set formed by independently sam-
pling each element of U with probability p. The function
Send(X, Dest) sends data X to the destination Dest and
Dest can be the coordinator (C'O) or all sites (AS). Simi-
larily, Send(X,Y, Dest) sends data X and Y to Dest. All
steps in the pseudo-code are executed in the coordinator
CO, unless stated explicitly in all sites AS.

Algorithm 6 BFSTree

Input: A vertex r and a graph G
Output: An edge set T’
1: L={r},T = ({r},0); AS: L* = 0;
2: while L # () do
3:  Send(L,AS);

4: AS: L* = L* UL, Send(N(L) — L*,e(N(L) —
L),CO);

5 N =Uas(N(L) — L"),

6:  for each vertex v € N do

7: T=TU (v,e(v,L));

8 L=N;

9: return T’

(Fernandez et al., 2020) provided an algorithm for construct-
ing a BES tree from a given vertex in the message passing
model. We formally present the algorithm in Algorithm 6
and will use the following theorem in our proofs. One may
notice that 0-S-sourcewise and 0-P-pairwise spanners H
of G can be constructed by growing a BFS tree from each
vertex in .S and H(P) in G respectively and then adding all
edges in the BFS trees to H. Then it is easy to derive the re-
sults for constructing O-sourcewise and O-pairwise spanners
in Theorems 11 and 12, respectively.

Theorem 10 (A BFS Tree (Fernandez et al., 2020)). The
deterministic communication complexity of computing a
BFS tree from a given vertex in the message passing model
with or without duplication is O(sn).

Theorem 11 (0-Sourcewise Spanner). For a graph
G(V, E) and source vertices S C 'V, the algorithm which
executes a BFS tree from each vertex in S and returns the
union of the BFS trees, outputs a 0-S-sourcewise spanner
of size O(|S|n) using communication cost O(|S|ns).

Theorem 12 (0-Pairwise Spanner). For a graph G(V, E)
and vertex pairs P C'V x V| the algorithm which executes
a BFS tree from each vertex in H(P) and returns the union
of the BFS trees, outputs a 0-P-pairwise spanner of size
O(|H(P)|n) using communication cost O(|H(P)|ns).

4.1. Source-Wise Spanners (Proof of Theorem 1)

We first re-state the two sub-routines, Clustering and
PathBuying-S, for sourcewise spanners and then derive
the communication cost of PathBuying-S.

Algorithm 2 Clustering

Input: A vertex set U and a graph G

Output A set C of clusters and an edge set

C={Cu)=0|lueU};H=1

: Send(U, AS)

1 AS: Send(N(U),e(N(U),

: N =Uas(N(U));

: for each vertex v € N do
(u,0) = e(v, U);
H=HU (u,v);

C(u) = C(u) Uw;

X =V —-N—-U; Send(X, AS);

10: AS: Send(E(X,V),CO);

11: H=HU (UasE(X,V));

12: return (C, H);

U),CO)

PP?h‘S’.\U"““’N:—‘

Algorithm 3 PathBuying-S

Input: A vertex set S, a graph G, an edge set H, a parameter f
and a set C of clusters
Output: An edge set F'

1: F=0;

2: for each vertex r € S do

32 L={r}, T=({r},0); AS: L* = 0;

4:  while L # 0 do

5: Send(L, AS);

6: AS: L* = L* UL, Send(N(L) — L*,e(N(L) —

,L),CO);

7. N:UAs(N(L)—L*);

8: for each vertex v € N do

9: ife(v, L, H) # () then

10: T=TU(v,e(v,L,H));

11: else

12: T=TU(v,e(v,L));

13: lf\{e\eeﬂ(r,v T)ande & H}| > f then
14: = N — {v}; Continue;

15: if C ( ) has not been reached before then

16: F =FUII(r,v,T);

17: if all clusters in C have been reached then
18: Go to Line 2;

19: L=N;
20: return I

Theorem 13. The communication complexity of
PathBuying-S (Algorithm 3) is O(|S|ns).

Proof. The asymptotical communication complexity of Al-
gorithm 3 is the same as that of executing |.S| BFSTree
routines (Algorithm 6), each for one vertex in S. Ac-
cording to Theorem 10, the communication complexity is
O(|S|ns). O

Now we are ready to present the algorithm (Algorithm 7)
for constructing (+2)-sourcewise spanners and prove the
corresponding theorem, Theorem 1.

Theorem 1 ((+2)-Sourcewise Spanner). For a graph
G(V, E), source vertices S C V and a constant ¢, using
communication cost O(\S |ns) Algorithm 7 constructs a
(42)-S-sourcewise spanner of size O(n/4S|/*1og®/* n)
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Algorithm 7 (+2)-Sourcewise-( Pairwise-)Spanner

Input: A graph G(V, E), a source vertex set S (or vertex pairs
P) and a parameter ¢
Output: An edge set H
I: H = 0; h = (n|S|)"*log®*
|P|1/3 10g2/3 n: }

n; {respectively, h =

2: 1f|S| < h {|H(P)| < h} then

3: = UresBFSTree(r,G); {respectively, H =
TE'H(p)BFSTT@@(T G);}

4: return H;

5: U = Sample(V,clogn/h); (C, H) = Clustering(U, G);

6: R = Sample(U, h?/(cnlogn)); T =
UrerBFSTree(r,G);

7. H=HUT;

8: F = PathBuying-S(S, G, H, 3¢*nlog> n; ;
{F = PathBuying-2P(P,G, H,3c¢*nlog n/h2

9: H=HUF,

10: return H;

O(n*7¢).

Proof. When the size of S, |S| < h, the proof becomes
trivial based on Theorem 11. In the following, we only
consider the complementary case.

with probability 1 —

Stretch. We first prove that with probability 1 — O(n~°)
the constructed structure H is a (+2)-S-sourcewise spanner.
That is, for every u,v € SXV, d(u,v, H) < d(u,v,G)+2.

We say the shortest path II(u,v) fromu € Stov € V' is
expensive if after Line 6, IT has more than 3¢2n log? n /h?
missing edges in H. Otherwise, II is cheap. For an ex-
pensive path II(w,v), the number of distinct clusters to
which II’s vertices belong must be at least ¢>nlog® n/h?.
Otherwise, there will be four vertices in one cluster, im-
plying that there is a shorter path from u to v than II,
contradicting its optimality. Then with high probability
IT passes through a cluster C; whose center u; is sam-
pled as a root to grow a BFS tree and edges of the tree
are included in H. The probability that II does not pass
through such a cluster is also the probability that none of
the clusters II’s vertices belong to is sampled, i.e., at most
(1 — h%/(cnlog n))CQ”lOg2 n/h® — O(n=°). Let w be a
vertex in II N C;. We have d(u,u;, H) = d(u, u;, G) <
d(u,w,G) + 1. The first equation is because we add edges
in the BFS tree rooted at u; to H and the second inequality
is due to the triangle inequality. Similarly, we also have
d(u;,v, H) < d(w,v,G) 4+ 1. By the triangle inequality,
we then have
d(u,v, H) < d(u,u;, H) + d(u;, v, H)
d(u,w,G) + d(w,v,G) + 2

=d(u,v,G) + 2.

<
<

For a cheap path II(u, v), let w be the first clustered vertex
in IT when traversed from v to v and let C; and u; be the

cluster and the cluster center, respectively. If there exists
no such a clustered vertex w, then all vertices in II are in
H already, and d(u, v, H) = d(u,v, G). Because edges of
all unclustered vertices are in H, d(w, v, H) = d(w, v, Q).
By construction, PathBuying-S adds the shortest path IT’
between every pair of a source vertex and a cluster to H,
if I’ contains at most 3¢%n log? n/h? missing edges in H.
Then there is a vertex w’ in C; such that the shortest path
IT(u, w') from w to w’ in G is added to H by PathBuying-
S, and d(u,w’, H) = d(u,w’,G) < d(u,w,G). Finally,
by the triangle inequality we have

d(u,v, H) < d(u,w', H) + d(w',w, H) + d(w,v, H)
<d(u,w,G) + 2+ d(w,v,G)
=d(u,v,G) + 2.

Size. We now prove that the size of H (# edges in H) is
O(n®/4|S[*/*10g®* n) with probability 1 — O(n2~¢). In
the Clustering function (Algorithm 2), each clustered vertex
adds one edge to H, and thus the number of edges added
by clustered vertices is O(n). The probability that a vertex
of degree larger than h has no sampled neighbors and left
unclustered is at most (1 — clogn/h)* = O(n=¢). By a
union bound, all vertices of degree larger than h are clus-
tered with probability 1 — O(n?~¢). Then the number of
edges added by unclustered vertices is O(nh) with proba-
bility 1 — O(n2~¢).

In Line 6, the expected number of sampled vertices as BFS
tree roots Ris n-clogn/h-h?/(cnlogn) = h. By a Cher-
noff bound, the probability of |R| > 4h is O(exp(—h)).
Then the number of edges added by BFS trees is O(nh)
with probability at least 1 — exp(—h) > 1 — O(1/n°).
In Line 8, recall that Path Buying-S adds, for every pair
of a source vertex u € S and a cluster C; € C, the
shortest path between them to H, if it contains at most
3c?nlog® n/h? missing edges in H. The expected num-
ber of clusters in Line 5 is |C| = nclogn/h. By a
Chernoff bound, the probability of |C| > 4nclogn/h is
O(exp(—nclogn/h)) < O(n~°), where the last inequal-
ity is due to o < n. Then the number of edges added
by PathBuying-S is |F| = 3c¢*>nlog®n/h? - |S|-|C| =
O(n?|S|log® n/h?). Summing over all steps and substitut-
ing h = (n|S|)*/*1og®* n, the total number of edges in H
is O(n®/4|S|Y/*10g®* n) with probability 1 — O(n2~¢).

Communication Complexity. We first prove that by taking
the sampled cluster centers U as an input, Clustering in
Line 5 has communication cost O(hns). In Clustering
(Algorithm 2), Line 2 has communication cost O(ns) be-
cause O(|U|) = O(n) vertices are transmitted from the
coordinator to each of the s sites. Line 3 has the same com-
munication cost because O(n) vertices, each with at most
one edge, are transmitted from each of the s sites to the
coordinator. Finally, Line 10 w.h.p. incurs communication
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cost O(hns) because, as we proved earlier in the size bound,
w.h.p. the number of edges of unclustered vertices is O(nh)
and the fact that these edges may be presented in each of
the s sites. Therefore, in total the function Clustering
incurs a communication cost O(hns). For Line 6, the exe-
cutions of |R| BFSTree incur O(|R|ns) = O(hns) com-
munication. By Theorem 13, PathBuying-S in Line 8
incurs O(|S|ns) communication. The other steps will in-
cur no communication because they are executed only in
the coordinator. Therefore, the total communication cost
is O(hns + hns + |S|ns) = O(|S|ns), where the equality
follows from that 2 < |S|. This completes the proof.  [J

4.2. Pair-Wise Spanners (Proof of Theorem 2)

For ease of discussions, we separate Theorem 2 into two
theorems, Theorem 15 for (+2)-pairwise spanners and The-
orem 17 for (+4)-pairwise spanners, and then prove each
of them independently.

We first derive the communication cost of the path-buying
procedure, PathBuying-2P, for (+2)-pairwise spanners.

Algorithm 8 PathBuying-2P

Input: Vertex pairs P, a graph G, an edge set H, a parameter f
and a set C of clusters
Output: An edge set F'
1I: F=0;
2: for each vertex r € H(P) do
33 L= {r} T = ({r},0),
L

Sy = {ul(r,u) € P}; AS:

4: whlle L # ( do

5: Send(L, AS);

6: AS: L* = L* UL, Send(N(L) — L*,e(N(L) —

L),CO);

7: N:UAs(N(L)—L*);

8: for each vertex v € N do

9: ife(v, L, H) # () then

10: T=TU (v,e(v, L, H));

11: else

12: T=TU (v,e(v, L));

13: lf\{e\eel'[(rvT)andegH}\>fthen
14: = N — {v}; Continue;

15: lf’U € S, then

16: F=FUIl(r,v,T);

17: if all vertices in S, have been reached then
18: Go to Line 2;

19: L =N,
20: return F;

Theorem 14. The communication complexity of
PathBuying-2P (Algorithm 8) is O(|H(P)|ns).

Proof. The asymptotical communication complexity of Al-
gorithm 8 is the same as that of executing |H (P)| BFSTree
routines (Algorithm 6), each for one vertex in H(P). Ac-
cording to Theorem 10, the communication complexity is
O(|H(P)|ns). O

Now we are ready to prove the main theorem for (42)-
pairwise spanners.

Theorem 15 ((+2)-Pairwise Spanner). For a graph
G(V,E), vertex pairs P CV x V and a constant c, using
communication cost O(|H(P)|ns) Algorithm 7 constructs a
(42)-P-pairwise spanner of size O(n|P|Y/310g*® n) with
probability 1 — O(n?~¢).

Proof. When H(P) < h, the proof is trivial based on The-
orem 12 and thus we assume H(P) > h. As shown in
Algorithm 7, the path-buying procedure PathBuying-2P
is different from PathBuying-S in source-wise spanners
while the clustering procedure and the BFS trees construc-
tions remain the same.

Stretch. We first prove that with probability 1 —O(n~¢) the
constructed structure H is a (42)-P-pairwise spanner, i.e.,
for every (u,v) € P, d(u,v, H) < d(u,v, G) + 2. Similar
to the proof of Theorem 1, we also separate the shortest
paths II(u,v) for (u,v) € P into expensive and cheap
paths. II(u, v) is expensive if after Line 6, IT has more than
3¢2nlog? n/h? missing edges in H. Otherwise, II is cheap.
The stretch guarantees for expensive paths are provided by
the clustering procedure and the BFS trees constructions,
as can be found in the proof in Theorem 1. For cheap
paths TI(u, v), PathBuying-2P (Algorithm 8) adds their
missing edges in H. Therefore, d(u, v, H) = d(u,v,G).

Size. As proved in Theorem 1, the number of edges added
by Clustering is O(nh) with probability 1 — O(n?~¢) and
the number of edges added by BFS trees is O(nh) with
probability 1 — O(1/n°). The number of edges added
by PathBuying-2P is |F| = 3c*nlog®n/h? - |P| =
O(n|P|log®n/h?). Summing over all steps and substi-
tuting h = | P|*/310g?/3 n, the total number of edges in H
is O(n|P|*/310g*® n) with probability 1 — O(n2~¢).

Communication Complexity. As proved in Theorem
1, the function Clustering incurs communication cost
O(hns), and the BFS trees incur O(hns) communica-
tion. By Theorem 14, PathBuying-2P in Line 8 incurs
O(|H(P)|ns) communication. The other steps will incur
no communication because they are executed only in the
coordinator. Therefore, the total communication cost is
O(hns + hns + [H(P)|ns) = O(|H(P)|ns), where the
equality follows from that h < |#H(P)|. This completes the
proof. O

For (+4)-Pairwise-Spanner, the clustering procedure
and the BFS trees constructions remain the same as those
in source-wise spanners, as shown in Algorithm 11. How-
ever, there is an additional prefix-suffix-buying procedure
PrefixSuf fix Buying before the path-buying procedure
Pathbuying-4P. For every pair (u,v) in P, it adds the first
[ and the last [ missing edges in IT(u, v, G) to an edge set F.
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Algorithm 9 PrefixSuffixBuying

Algorithm 10 PathBuying-4P

Input: Vertex pairs P, a graph G, an edge set H, a parameter [
and a set C of clusters
Output: An edge set F'
1. F=0,
2: for each vertex r € H(P) do
33 L ={}T=({r}0),S = {ul(r,u) € P}; AS:
L* =0;

4:  while L # (0 do
5: Send(L, AS);
6: AS: L* = L* UL, Send(N(L) — L*,e(N(L) —
L*,L),C0);
7: N:UAs(N(L)—L*);
8: for each vertex v € N do
9: ife(v, L, H) # () then
10: T=TU (v,e(v,L, H));
11: else
12: T=TU(v,e(v,L));
13: if v € S, then
14: Add the first [ missing edges and the last [ missing
edges in the path from 7 to v in 7" to F';
15: if all vertices in S, have been reached then
16: Go to Line 2;
17: L =N,
18: return F;

This can be achieved by growing a BFS-like tree from each
vertex u in P’s hitting set, H(P) = {X C V' |VY(u,v) €
P,u € Xorv € X} and when a vertex v which forms
a pair with v in P is reached, maintaining F' accordingly.
After PrefixSuf fix Buying, Pathbuying-4P is only re-
quired to be performed for shortest paths between a subset of
cluster centers X, which is obtained by independently sam-
pling each cluster center in U with probability 3¢logn/I.
In the following, we prove that this can reduce the number
of edges to O(n|P|?/7) at the expense of a larger stretch
(44) while keeping the communication cost O(H(P)ns).

Theorem 16. The communication complexity of
PrefixSuf fix Buying (Algorithm 9) and Path Buying-
AP (Algorithm 10) are O(|H(P)|ns) and O(|X|ns),
respectively.

Proof. The asymptotical communication complexity of Al-
gorithm 9 is the same as that of executing |H (P)| BFSTree
routines (Algorithm 6), each for one vertex in H(P). The
asymptotical communication complexity of Algorithm 10 is
the same as that of executing | X'| BFSTree routines, each
for one vertex in X. Then by Theorem 10, their communi-
cation complexity are O(|H(P)|ns) and O(| X |ns), respec-
tively. O

Theorem 17 ((+4)-Pairwise Spanner). For a graph
G(V,E), vertex pairs P CV x V and a constant c, using
communication cost O(|H(P)|ns) Algorithm 11 constructs
a (+4)-P-pairwise spanner of size O(n|P|?/710g® " n)
with probability 1 — O(n?~°).

Input: A vertex set X, a graph GG, an edge set H, a parameter f
and a set C of clusters
Output: An edge set F'

1. F=0;

2: for each vertex r € X do

33 L={r},T=({r},0); AS: L* = 0;

4:  while L # () do

5 Send(L, AS);

6: AS: L* = L UL, Send(N(L) — L*,e(N(L) —

L*, L),CO);

7: N:UAs(N(L)—L*);

8: for each vertex v € N do

9: ife(v, L, H) # 0 then

10: T=TU (v,e(v,L,H));

11: else

12: T=TU v,e(v,L));

13: if [{e|e € II(r,v,T) and e ¢ H}| > f then
14: N = N — {v}; Continue;

15: if C(v) € C(X) and C(v) has not been reached

before then

16: F=FUI(r,v,T);

17: if all clusters in C'(X') have been reached then
18: Go to Line 2;

19: L =N,
20: return F

Proof. When |P| < clog®n, a spanner constructed
by (+2)-Pairwise-Spanner satisfies all required perfor-
mance measures. Otherwise, when H(P) < h, the proof is
trivial based on Theorem 12 and thus we assume H (P) > h.

Stretch. We first prove that with probability 1 — O(n?~¢)
the constructed structure H is a (+4)-P-pairwise spanner,
i.e., forevery (u,v) € P, d(u,v, H) < d(u,v,G) + 4. For
the shortest path II(u, v, G) between every pair (u,v) € P,
if before PrefizSuf fix Buying, the number of its miss-
ing edges in H is at most 2/, then PrefixSuf fix Buying
adds all its missing edges to an edge set F. Since F; will be
added to H, we have d(u,v, H) = d(u, v, G). Otherwise,
IT’s prefix with [ missing edges passes through at least [/3
distinct clusters. As otherwise, there will be four vertices
in one cluster, implying that there is a shorter path from u
to v than II, contradicting its optimality. Then with high
probability II’s prefix with [ missing edges passes through
a cluster whose center is from X. The probability that IT’s
prefix with [ missing edges does not pass through such a
cluster is also the probability that none of the [ /3 cluster cen-
ters is sampled, i.e., at most (1 — 3clogn/1)!/3 = O(n~°).
Similarly, II’s suffix with [ missing edges passes through a
cluster with its center in X with probability 1 — O(n~¢). By
a union bound, all prefixes and suffixes of shortest paths in
G pass through a cluster with its center in X with probability
1 —O(n?7°).

Let C; and C}; be the clusters which the prefix and the suffix
of II pass through respectively, and let u; and u; be their
cluster center respectively. Let v’ and v’ be vertices in IINC;
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Algorithm 11 (+4)-Pairwise-Spanner

Input: A graph G(V, E), vertex pairs P and a parameter ¢
Output: An edge set H

1: H=0;h=|P|*"10g® " n;1 =nlog®n/h>?

2: if |P| < clog* n then

3:  return (+2)-Pairwise-Spanner(G, P, c);

4: if [H(P)| < h then

5. H=U,cyp)BFSTree(r,G);

6: return H;

7: U = Sample(V,clogn/h); (C, H) = Clustering(U, G);
8 R = Sample(U, h?/(cnlogn)); T =

UrerBFSTree(r,G);
9 H=HUT,;
10: Fy = PrefizSuf fix Buying(P,G, H,l,C);
11: H= HU Fy;
12: X = Sample(U, 3clogn/l);
13: I, = PathBuying-4P(X, G, H,3c*nlog® n/h?, C);
14: H=HU F5;
15: return H;

and IT N C}, respectively. If after Clustering and the BFS
trees constructions, the shortest path II(u;, v, G) is an ex-
pensive path 2 , i.e., it has more than 3¢*n log® n /h? missing
edges in H, then we have d(u;,v’, H) < d(u;,v',G) + 2
as proved in Theorem 1. By the triangle inequality, we have

d(u7UaH) < d(u7u/aH) + d(ul7ui7H) + d(uiavl7H)+
d(v',v, H)

—~

d

d(u,v',G) +1+d(u,v',G) + 1+ 2+
d(v',v,G)

d(u,v,q) + 4.

INIA

If TI(u;,v’, G) is a cheap path, i.e., it has no more than
3c?nlog® n/h? missing edges in H, then PathBuying-
4P adds the shortest path between u; and a vertex w in C};
to an edge set F» by construction. Since F» will be added
to H, we have d(u;,w, H) = d(u;, w, G). By the triangle
inequality and by construction, we have

d(u,v, H) < d(u,v’, H) + d(u’,u;, H) + d(u;, w, H)+
d(w,v', H) +d(v',v, H)

<d(u,v,G) +1+d(u;,w,G) +2+d,v,G)
<d(u,v,G)+1+d(u;,v',G) +2+d(v',v, Q)

<d(u,u',G) + 1+ d(us, v, G) + d(u',v',G)+
2+d(v',v,G)

<d(u,v,G)+1+1+d v, G)+ 2+
d(v', v, G)

=d(u,v,G) + 4.

2We extend the notion of expensive and cheap paths to all pairs
of vertices in G, instead of only the pairs in P.

(u, v, G) + 1+ d(ui, o', G) + 2+ d(v', v, G)

Size. As proved in Theorem 1, the number of edges added
by Clustering is O(nh) = O(n|P|2/"10g® " n) with
probability 1 — O(n?~¢), and the number of edges added by
BFS trees is O(nh) = O(n|P|*71og® " n) with probabil-
ity 1—O(1/n°). By construction, PrefizSuf fix Buying
adds for each pair in P at most 2/ edges, and thus the number
of edges it adds is | Fy | = 2I-|P| = O(nlog® n/h%/?|P|) =
O(n|P|>/"10g%"n). Since X is formulated by sam-
pling each vertex in U independently with probability
3clogn/l, its expected size is n - clogn/h - 3clogn/l =
3nc?log>n/hl = 3c2|P|3/"log?”"n. By a Chernoff
bound, the probability of |X| > 12¢2|PJ3/7log¥ " n is
O(exp(—3c2| P37 1og¥ " n)) = O(1/n¢), where the last
equality follows from the assumption that |P| > clog? n.
Therefore, the number of edges added by PathBuying-4P
is |[Fy| = 3c2nlog?n/h? - | X|2 = O(n|P|2/"1og® " n).
Summing over all steps, the total number of edges in H is
O(n|P|*/710g% ™ n) with probability 1 — O(n2°).

Communication Complexity. As proved in Theorem
1, the function Clustering incurs communication cost
O(hns), and the BFS trees incur O(hns) communication.
According to Theorem 16, PrefixSuf fixBuying and
PathBuying-4P incur O(|H(P)|ns) and O(|X|ns) =
O(|P|>/"ns) communication, respectively. The other steps
will incur no communication because they are executed only
in the coordinator. Therefore, the total communication cost
is O(hns+hns+|H(P)ns+|P[> "ns) = O(|H(P)|ns),
where the equality follows from that h < |H(P)| and
|P| > clog® n. This completes the proof. O

4.3. Subset-Wise Spanners (Proof of Corollary 1)

With the algorithms for constructing pair-wise spanners with
stretch (42) and (+4), we immediately get algorithms for
constructing T'-subsetwise spanners with the correspond-
ing stretch. Specifically, a (+2)-T-subsetwise and (+4)-
subsetwise-spanner of G can be constructed by setting
P = T x T and then applying a (+2)-P-pairwise and
(+4)-P-pairwise spanner in G, respectively. In the follow-
ing, we separate Corollary 1 into Corollaries 2 and 3 and
formally prove them.

Corollary 2 ((+2)-Subsetwise Spanner). For a graph
G(V,E), terminal vertices T and a constant ¢, using
communication cost O(|T|ns) Algorithm 12 constructs
a (+2)-T-subsetwise spanner of size O(n|T|*/31og?® n)
with probability 1 — O(n?~°).

Proof. Because P = T x T, we have |P| = |T|? and
H(P) = T. Then according to Theorem 15, Algorithm
12 returns a T-subsetwise spanner of stretch (42) and size
O(n|P|*/310g*? n) = O(n|T|>/*1og*® n). The commu-
nication cost is O(|H(P)|ns) = O(|T|ns). O
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Corollary 3 ((+4)-Subsetwise Spanner). For a graph
G(V,E), terminal vertices T and a constant ¢, using
communication cost O(|T|ns) Algorithm 12 constructs
a (+4)-T-subsetwise spanner of size O(n|T|*/71og® " n)
with probability 1 — O(n?~¢).

Proof. Because P = T x T, we have |P| = |T|? and
H(P) = T. Then according to Theorem 17, Algorithm
12 returns a T'-subsetwise spanner of stretch (+4) and size
O(n|P|*710g% " n) = O(n|T|*/710g® " n). The commu-
nication cost is O(|H(P)|ns) = O(|T|ns). O

Algorithm 12 (+2)-((+4)-)Subsetwise-Spanner

Input: A graph G, terminal vertices 7" and a parameter ¢
Output: An edge set H
1: H = (4+2)-Pairwise-Spanner(G,T x T, c) {respectively,
H = (4+4)-Pairwise-Spanner(G,T x T, c);}
2: return H,;

5. More Experimental Results

Datasets and Methods. We use two synthetic datasets,
Circles and Gaussians, and four real-world datasets Sculp-
ture, Sculpture-1M, Sculpture-11M, and Beach. The Circles
dataset consists of 2K vertices and about 17K edges. The
vertices are sampled from two circles of the same origin
and different radii 1 and 1.05, respectively. We connect
two vertices if they are mutually k-nearest neighbors of
each other for £ = 20, and use the standard RBF similarity
W (u,v) = exp{—||u — v||3/20?%} for o = 10. The Gaus-
sians dataset has 2/ vertices and about 12K edges with
k = 16 and 0 = 10 and each vertex from each of four
clusters is sampled from an isotropic Gaussians of variance
0.01. For the Sculpture dataset, we use a 55 x 120 version
of a photo of The Greek Slave 3 resulting in about 7K ver-
tices and 100K edges with k = 14 and o0 = 5. We also
use two larger datasets Sculpture-IM and Sculpture-11M
from 73 x 160 and 110 x 480 versions of the same photo,
respectively. Sculpture-1M consists of 11, 680 vertices and
1,063, 878 edges with k = 220 and ¢ = 5. Sculpture-11M
has 52, 800 vertices and 11,151,920 edges with £ = 500
and 0 = 5. For the Beach dataset we use a 524 x 88
version of a beach photo # and it has 46, 112 vertices and
73,159,983 edges with £k = 4000 and ¢ = 5. We consider
each pixel to be a vertex by mapping each pixel to a point in
R5,i.e., (x,y,7,9,b), where the last three coordinates are
the RGB values.

Each graph edge is assigned to a site S; for i € [1,s] by
a rule respecting the coordinators of its end vertex with a
smaller identifier. We first separate the 2-D space containing

3artgallery.yale.edu/collections/objects/14794
*www.kdnuggets.com/2019/08/introduction-image-
segmentation-k-means-clustering.html

all the vertices into s non-overlapping partitions, based on
angles in Circles or grids in the other datasets, and obtain
the vertices located within each partition. Then all edges
(u, v) of a vertex u in a partition, where u < v, are assigned
to the corresponding site.

We independently sample each vertex in the graph with
probably r and then use the sampled vertices as the ter-
minals. For the spectral sparsification, we employ the
implementation of Spielman and Srivastava (Spielman &
Srivastava, 2011) from github.com/danspielman/
Laplacians.jl. The computation of approximation
quality for checking how well one graph approximates an-
other is also from the same code. For simplicity, the com-
munication cost is the total number of edges communicated,
which approximates the total number of bits by a logarithmic
factor. The size of the constructed Schur complement (or
called SC size) is also recorded as it will affect the computa-
tional complexity of the subsequent tasks. All performance
measures are averaged over five runs and reported together
with their standard deviation.

Additional Results. The experimental results on the Gaus-
sians and Sculpture datasets under the baseline setting are
shown in Figures 1a and 1b, respectively. We observe that
the communication cost of LocalSS is close to the number
of edges in the graph even we increase the parameter €, be-
cause the spectral sparsification does not reduce the number
of edges by a large margin. However, LocalSC has a sig-
nificantly smaller communication cost, especially when e is
relatively larger, e.g., 0.6. We emphasize that the approxi-
mation qualities of the Schur complements constructed by
both methods are always much smaller than the parameter e
for all its tested values. For the Sculpture-1M dataset, Table
1 shows the small communication cost and good approxima-
tion quality of LocalSC compared to the centralized method
where all m edges in the original graph are communicated.

On the Circles dataset, we also investigate the effects when
the size of terminals, i.e., the sample rate r, increases but
other parameters remain the same. Figure 1c shows that the
communication cost of LocalSC increases slowly while the
communication cost of LocalSS keeps the same. Both are
consistent with our theoretical analysis. However, LocalSS
constructs a much denser Schur complement when |7| is
relatively large. Different from that LocalSC constructs the
Schur complement for a graph with the vertex set 7' U B,
LocalSS constructs the Schur complement for a graph with
the vertex set V', which requires more star-mesh transforms
and then adds more edges to the Schur complement.
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Table 1. Performance of LocalSC on Sculpture-1M dataset in the
baseline setting. Numbers in the parentheses are standard devia-
tions.

6. More Studies on Graph Sparisifiers and
Their Distributed Constructions

Graph sparsification or reduction is the task of approximat-
ing an arbitrary graph, and is often useful in the design
of efficient approximation algorithms. Several notions of
graph sparsification has been proposed. (Benczur & Karger,
1996) presented cut sparsifiers where the graph cut for every

are a subgraph that approximates shortest distances between
all vertex pairs in the input graph and were firstly proposed
in (Peleg & Schaffer, 1989). All these sparsifiers are con-
structed on the same vertex set as the input graphs.

Schur Complements. Different from the above sparsifiers,
given a subset of vertices called terminals in a graph, Schur
complement (Zhang, 2005) preserves effective resistances
and energy of electrical flows between the terminals (Dur-
fee et al., 2019). Its applications in semi-supervised learn-
ing, Markov chains and finite-element analysis, electrical
networks, and computer vision can be found in (Wagner
et al., 2018; Kyng et al., 2016; Koutis et al., 2011; Dorfler
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& Bullo, 2013; Zhang, 2005). Unfortunately, there is no
known study of constructing Schur complements in any
distributed computational model. Schur complements are
also known as Kron reduction, and have been compared to
other graph reduction techniques, which construct a small
graph, possibly with a reduced number of vertices, but pre-
serve the spectral property of the original graph (Loukas &
Vandergheynst, 2018; Loukas, 2019; Bravo Hermsdorff &
Gunderson, 2019). However, it is unclear how these tech-
niques can be adapted in the distributed environment. (Saad
& Sosonkina, 1999) studied how to use Schur complements
to solve a distributed sparse linear system, but they did not
work on distributed constructions of Schur complements.

Source-Wise and Pair-Wise Spanners. (Coppersmith &
Elkin, 2006) for the first time studied exact source-wise
spanners (called preservers). They showed a source-wise
preserver of size O(min{n'/?|S|?,n|S|}) (a pair-wise pre-
server of size O(min{n|P|*/2 n'/2|P|}), respectively).
(Bodwin & Williams, 2016) proved a new upper bound
of O(n?/3|P|?/3 4-n|P|*/3) for undirected and unweighted
graphs using a new type of tiebreaking scheme. Fur-
ther studies focused on approximate pair-wise spanners
of different stretch including (+2), (+4) and (+6) and
size O(n|P|'/3), O(n|P|?/7) and O(n|P|'/*) respectively,
and source-wise spanners with stretch e.g., (+2), (+4)
and (+6) and size O(n®*4|S|'/%), O(n'/?|S|?/?) and
O(n%/°|S|/?), respectively (Cygan et al., 2013; Parter,
2014; Kavitha, 2017; Abboud & Bodwin, 2016). Later,
(Abboud & Bodwin, 2016) considered lower bounds for
pairwise spanners and established their connection with
the lower bounds for pairwise preservers. (Censor-Hillel
et al., 2018) studied distributed constructions of pair-wise
spanners in the CONGEST model, but they are not for the
message passing model.
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