
Clusterability as an Alternative to Anchor Points

Appendix
The Appendix is organized as follows.

• Section A presents the detailed examples and derivations of consensus equations.

• Section B includes proofs and other details about our theoretical results. Particularly,

– Section B.1 proves the uniqueness of T .
– Section B.2 justifies the feasibility of assumption |E∗3 | = Θ(N)

– Section B.3 shows the proof for Lemma 1
– Section B.4 shows the proof for Theorem 2.

• Section C presents more discussions, e.g., the soft 2-NN label clusterability, more details on local T (X), and the
feasibility of our Assumption 1 & 2 to guarantee the uniqueness of T .

• Section D shows more experimental settings and results.

A. Derivation of Consensus Equations
For the first-order consensuses, we have

P(Ỹ1 = j1) =
∑
i∈[K]

P(Ỹ1 = j1|Y1 = i)P(Y1 = i).

For the second-order consensuses, we have

P(Ỹ1 = j1, Ỹ2 = j2)

=
∑
i∈[K]

P(Ỹ1 = j1, Ỹ2 = j2|Y1 = i, Y2 = i)P(Y1 = Y2 = i)

(a)
=
∑
i∈[K]

P(Ỹ1 = j1, Ỹ2 = j2|Y1 = i, Y2 = i) · P(Y1 = i)

(b)
=
∑
i∈[K]

P(Ỹ1 = j1|Y1 = i) · P(Ỹ2 = j2|Y2 = i) · P(Y1 = i),

where equality (a) holds due to the 2-NN label clusterability, i.e., Y1 = Y2(= Y3) w.p. 1, and equality (b) holds due to the
conditional independency between Ỹ1 and Ỹ2 given their clean labels.

For the third-order consensuses, we have

P(Ỹ1 = j1, Ỹ2 = j2, Ỹ3 = j3)

=
∑
i∈[K]

P(Ỹ1 = j1, Ỹ2 = j2, Ỹ3 = j3|Y1 = i, Y2 = i, Y3 = i)P(Y1 = Y2 = Y3 = i)

(a)
=
∑
i∈[K]

P(Ỹ1 = j1, Ỹ2 = j2, Ỹ3 = j3|Y1 = i, Y2 = i, Y3 = i)P(Y1 = i)

(b)
=
∑
i∈[K]

P(Ỹ1 = j1|Y1 = i)P(Ỹ2 = j2|Y2 = i)P(Ỹ3 = j3|Y3 = i)P(Y1 = i).

where equality (a) holds due to the 3-NN label clusterability, i.e., Y1 = Y2 = Y3 w.p. 1, and equality (b) holds due to the
conditional independency between Ỹ1, Ỹ2 and Ỹ3 given their clean labels.

With the above analyses, there are 2 first-order equations,

P(Ỹ1 = 1) = p1(1− e1) + (1− p1)e2,

P(Ỹ1 = 2) = p1e1 + (1− p1)(1− e2).

Clusterability as an Alternative to Anchor Points

There are 4 second-order equations for different combinations of Ỹ1, Ỹ2, e.g.,

P(Ỹ1 = 1, Ỹ2 = 1) = p1(1− e1)2 + (1− p1)e2
2,

P(Ỹ1 = 1, Ỹ2 = 2) = p1(1− e1)e1 + (1− p1)e2(1− e2),

P(Ỹ1 = 2, Ỹ2 = 1) = p1(1− e1)e1 + (1− p1)e2(1− e2),

P(Ỹ1 = 1, Ỹ2 = 1) = p1e
2
1 + (1− p1)(1− e2)2.

There are 8 third-order equations for different combinations of Ỹ1, Ỹ2, Ỹ3, e.g.,

P(Ỹ1 = 1, Ỹ2 = 1, Ỹ3 = 1) = p1(1− e1)3 + (1− p1)e3
2,

P(Ỹ1 = 1, Ỹ2 = 1, Ỹ3 = 2) = p1(1− e1)2e1 + (1− p1)e2
2(1− e2),

P(Ỹ1 = 1, Ỹ2 = 2, Ỹ3 = 1) = p1(1− e1)2e1 + (1− p1)e2
2(1− e2),

P(Ỹ1 = 1, Ỹ2 = 2, Ỹ3 = 2) = p1(1− e1)e2
1 + (1− p1)e2(1− e2)2,

P(Ỹ1 = 2, Ỹ2 = 1, Ỹ3 = 1) = p1(1− e1)2e1 + (1− p1)e2
2(1− e2),

P(Ỹ1 = 2, Ỹ2 = 1, Ỹ3 = 2) = p1(1− e1)e2
1 + (1− p1)e2(1− e2)2,

P(Ỹ1 = 2, Ỹ2 = 2, Ỹ3 = 1) = p1(1− e1)e2
1 + (1− p1)e2(1− e2)2,

P(Ỹ1 = 2, Ỹ2 = 2, Ỹ3 = 2) = p1e
3
1 + (1− p1)(1− e2)3.

For a general K-class classification problem, we show one first-order consensus below:

e>j c
[1] = P(Ỹ1 = j)

=
∑
i∈[K]

P(Ỹ1 = j|Y1 = i)P(Y1 = i)

=
∑
i∈[K]

Tij · pi=e>j T>p.

The second-order consensus follows the example below:

e>j c
[2]
r = P(Ỹ1 = j, Ỹ2 = (j + r)K)

(a)
=
∑
i∈[K]

P(Ỹ1 = j|Y1 = i)P(Ỹ2 = (j + r)K |Y2 = i)P(Y1 = i)

=
∑
i∈[K]

Ti,j · Ti,(j+r)K · pi
(b)
= e>j (T ◦ Tr)>p,

where equality (a) holds again due to the 2-NN label clusterability the conditional independency (similar to binary cases),
and equality (b) holds due to Tr[i, j] = Ti,(j+r)K . We also show one third-order consensus below:

e>j c
[3]
r = P(Ỹ1 = j, Ỹ2 = (j + r)K , Ỹ3 = (j + s)K)

(a)
=
∑
i∈[K]

P(Ỹ1 = j|Y1 = i)P(Ỹ2 = (j + r)K |Y2 = i)P(Ỹ3 = (j + s)K |Y3 = i)P(Y1 = i)

=
∑
i∈[K]

Ti,j · Ti,(j+r)K · Ti,(j+s)K · pi
(b)
= e>j (T ◦ Tr ◦ Ts)>p,

where equality (a) holds again due to the 3-NN label clusterability the conditional independency (similar to binary cases),
and equality (b) holds due to Tr[i, j] = Ti,(j+r)K , Ts[i, j] = Ti,(j+s)K .

Clusterability as an Alternative to Anchor Points

B. Theoretical Guarantees
B.1. Uniqueness of T

We need to prove the following equations have a unique solution when T is non-singular and informative.

Consensus Equations

• First-order (K equations):

c[1] := T>p,

• Second-order (K2 equations):

c[2]
r := (T ◦ Tr)>p, r ∈ [K],

• Third-order (K3 equations):

c[3]
r,s := (T ◦ Tr ◦ Ts)>p, r, s ∈ [K].

Firstly, we need the following Lemma for the Hadamard product of matrices:

Lemma 2. (Horn & Johnson, 2012) For column vectors x and y, and corresponding diagonal matricesDx andDy with
these vectors as their main diagonals, the following identity holds:

x∗(A ◦B)y = tr
(
D∗xADyB

>) ,
where x∗ denotes the conjugate transpose of x.

The following proof focuses on the second and third-order consensuses. It is worth noting that, although the first-order
consensus is not necessary for the derivation of the unique solution, it still helps improve the stability of solving for T and p
numerically.

Step I: Transform the second-order equations. Denoted by Tr = TSr, where Sr permutes particular columns of T .
Let ei be the column vector with only the i-th element being 1 and 0 otherwise. With Lemma 2, the second-order consensus
can be transformed as

e>i c
[2]
r = e>i (T ◦ Tr)>p = tr

(
DeiT

>DpTSr
)

Then the (i, (i+ r)K)-th element of matrix T>DpT is

(T>DpT)[i, (i+ r)K] = e>i c
[2]
r .

With a fixed e>i c
[2]
r ,∀i, r ∈ [K], denote by

T>DpT = T†, (11)

where T†[i, (i+ r)K] = e>i c
[2]
r . Note T† is fixed given c[2]

r ,∀r ∈ [K].

Step II: Transform the third-order equations. Following the idea in Step I, we can also transform the third-order
equations. First, notice that

e>i c
[3]
r,s = e>i [(T ◦ Ts) ◦ Tr]>p = tr

(
Dei(T ◦ Ts)>DpTSr

)
.

Then the (i, (i+ r)K)-th element of matrix (T ◦ Ts)>DpT is

((T ◦ Ts)>DpT)[i, (i+ r)K] = e>i c
[3]
r,s.

With a fixed e>i c
[3]
r,s,∀i, r ∈ [K], denote by

(T ◦ Ts)>DpT = T‡,s ⇒ T>Dp(T ◦ Ts) = T>‡,s, (12)

Clusterability as an Alternative to Anchor Points

where T‡,s[i, (i+ r)K] = e>i c
[3]
r,s. According to Eqn. (11), we have

T>Dp(T ◦ Ts) = T>DpTT
−1(T ◦ Ts) = T†T

−1(T ◦ Ts) = T>‡,s.

Thus
(T ◦ Ts) = TT−1

† T>‡,s,∀s ∈ [K]. (13)

Step III: From matrices to vectors With Step I and Step II, we could transform the equations formulated by the second
and the third-order consensuses to a particular system of multivariate quadratic equations of T in Eqn. (13). Generally,
these equations could have up to 2K

2

solutions introduced by different combinations of each element in T . To prove the
uniqueness of T , we need to exploit the structure of the equations in (13).

For a clear representation of the structure of equations and solutions, we first consider one subset of the equations in (13).
Specifically, let s = 0 we have

(T ◦ T) = TT−1
† T>‡ . (14)

Then we need to study the number of feasible T satisfying Eqn. (14). Denote by A = T‡(T
−1
†)>. Then each row of T ,

denoted by u>, is a solution to the equation

Au = Duu (a.k.a.Au = u ◦ u). (15)

Till now, in Step III, we split the matrix T to several vectors u, and transform our target from finding a matrix solution T
for (13) to a set of vector solutions u for (15).

Assume there are M feasible u vectors. We collect all the possible u and define U := [u1,u2, · · · ,uM],ui 6= ui′ ,∀i, i′ ∈
[M]. If M = K, we know there exists at most K! different T (considering all the possible permutations of u) that Eqn. (14)
holds. Further, by considering an informative T as Assumption 2, we can identify a particular permutation. Therefore, if
M = K and T is informative, we know there exists and only exists one unique T that Eqn. (14) holds.

Step IV: Constructing the M -th vector Supposing M > K, we have

AU = A[u1,u2, · · · ,uK , · · ·uM] = [Du1u1,Du2u2, · · · ,DuK
uK , · · ·DuM

uM].

With a non-singular T (Assumption 1), without loss of generality, we will assume the first K columns are full-
rank. Then uM must be a linear combination of the first K columns, i.e., uM =

∑
i∈[K] λiui = Uλ0, where

λ0 = [λ1, λ2, · · · , λK , 0, · · · , 0]. According to the equationAu = Duu = u ◦ u, we have

AuM = DuM
uM = DUλ0

Uλ0,

and
AuM =

∑
i∈[M]

λ0[i]Aui =
∑
i∈[M]

λ0[i]ui ◦ ui = (U ◦U)λ0.

Thus
(U ◦U)λ0 = DUλ0Uλ0 = (Uλ0) ◦ (Uλ0).

Note that, the matrix U can be written as U = [UK ,UM−K], and the vector λ0 can be written as λ0 = [λ>, 0, · · · , 0]>,
where λ := [λ1, · · · , λK]>. Then the above equation can be transformed as follows:

(UK ◦UK)λ = uM ◦ uM , and UKλ = uM .

Similarly, ∀s ∈ [K], we have

(UK ◦ (S̄sUK))λ = uM ◦ (S̄suM), and UKλ = uM ,

where S̄suM denotes a row circular shift such that (S̄suM)[i] = uM [i+ s]. Note S̄s = S>s . Applying Lemma 2, we have

tr(DeiUKDλU
>
K S̄
>
s) = tr(DeiUKDλU

>
KSs) = (uM ◦ (S̄suM))[i]

Clusterability as an Alternative to Anchor Points

Then the (i, (i+ s)K)-th element of matrix UKDλU>K is

(UKDλU
>
K)[i, (i+ s)K] = (uM ◦ (S̄suM))[i] = uM [i] · uM [(i+ s)K].

Then we have
UKDλU

>
K = Q, and Q = uMu

>
M .

When T is non-singular, we know U is invertible (full-rank), then

Dλ = (U−1
K uM)(U−1

K uM)>.

Thus Rank(Dλ) = 1. Recalling 1>λ = 1, the vector λ could only be one-hot vectors, i.e. ei,∀i ∈ [K]. This proves uM
must be the same as one of ui, i ∈ [K].

Wrapping-up: Unique T From Step III, we know that, if M = K, we have a unique T under the assumption that T
is informative and non-singular. Step IV proves the M -th (M > K) vector u must be identical to one of ui, i ∈ [K],
indicating we only have M = K non-repetitive u vectors. Therefore, our consensus equations are sufficient for guaranteeing
a unique T . Besides, note there is no approximation applied during the whole proof. Thus with a perfect knowledge of
c[ν], ν = 1, 2, 3, the unique T satisfying the consensus equations is indeed the true noise transition matrix.

B.2. Feasibility of Assumption |E∗3 | = Θ(N)

We discuss the feasibility of our assumption on the number of 3-tuples. According to the definition of E∗3 , we know there are
no more than |E∗3 | ≤ bN/3c feasible 3-tuples. Strictly deriving the lower bound for |E∗3 | is challenging due to the unknown
distributions of representations. To roughly estimate the order of |E∗3 | (i.e., the maximum number of non-overlapping
3-tuples), we consider a special scenario where those high-dimensional representations could be mapped to a 2-D square
of width

√
N/3, each grid of width 1 has exactly 3 mapped representations, and one mapped representation is at the

center of each grid (also the center of each circle). Consider a particular construction of feasible 3-tuples as illustrated in
Figure 4. We require that, for each grid, the 2-NN fall in the corresponding circle. Otherwise, they may become the 2-NN of
representations in other nearby girds. Assume the 2-NN are independently and uniformly distributed in the unit square,
thus the probability of both 2-NN falling in the circle is (π/4)2. Noting there are N/3 grids in the big square illustrated in
Figure 4, the expected number of feasible 3-tuples in this case is π2

48 ·N = Θ(N). Although this example only considers a
special case, it demonstrates the order of |E∗3 | could be Θ(N) with appropriate representations.

...

... ...

*
*

*

Figure 4. Illustration of a special case.

B.3. Proof for Lemma 1

Then we present the proof for Lemma 1.

Proof. Recall in Eqn. (7), each high-order consensus pattern could be estimated by the sample mean of |E∗3 | independent
and identically distributed random variables, thus according to Hoeffding’s inequality (Hoeffding, 1963), w.p. 1− δ, we
have

|ĉ[i][j]− c[i][j]| ≤

√
ln 2

δ

2|E∗3 |
, i = 1, 2, 3,∀j,

Clusterability as an Alternative to Anchor Points

which is at the order of O(
√

ln(1/δ)/N).

B.4. Proof for Theorem 2

Consider a particular uniform off-diagonal matrix T , where the off-diagonal elements are Tij = 1−Tii

K−1 . Recall the clean
prior probability for the i-th class is pi. To find the upper bound for the sample complexity, we can only consider a subset of
our consensus equations. Specifically, we consider the equations related to the i-th element of Eqn. (2) and Eqn. (3) when
r = 0. Then a solution to our consensus equations will need to satisfy at least the following two equations:

p̂iT̂ii + (1− p̂i)
1− T̂ii
K − 1

= ĉ1, (16)

p̂iT̂
2
ii + (1− p̂i)

(1− T̂ii)2

(K − 1)2
= ĉ2, (17)

where p̂i and T̂ii denote the estimated clean prior probability and noisy transition matrix, ĉ1 and ĉ2 denote the corresponding
estimates of first- and second-order statistics. Lemma 1 shows, with probability 1− δ:

|ĉi − ci| ≤ O

(√
ln(1/δ)

N

)
.

Multiplying both sides of Eqn. (16) by Tii and adding Eqn. (17), we have

K(K − 1)p̂iT̂
2
ii + (1− p̂i)(1− T̂ii) = (K − 1)ĉ1T̂ii + (K − 1)2ĉ2.

Note the above equality also holds for the true values pi, Tii, c1, c2. Taking the difference we have

(T̂ii − Tii)(K(K − 1)pi(Tii + T̂ii)− (1− pi)− (K − 1)c1)

=(K − 1)2(ĉ2 − c2) + (K − 1)(ĉ1 − c1)T̂ii −K(K − 1)T̂ 2
ii(p̂i − pi)− (T̂ii − 1)(p̂i − pi).

Taking the absolute value for both sides yields

|T̂ii − Tii| · |K(K − 1)pi(Tii + T̂ii)− (1− pi)− (K − 1)c1|
≤(K − 1)2|ĉ2 − c2|+ (K − 1)|ĉ1 − c1|+ (K(K − 1) + 1)|p̂i − pi|

From Eqn. (16), we have

p̂i =
K − 1

K

ĉ1 − 1/K

T̂ii − 1/K
+

1

K
.

Thus

|p̂i − pi| ≤
K − 1

K

|ĉ1 − c1|
min(T̂ii, Tii)− 1/K

,

indicating |p̂i − pi| is at the order of |ĉ1 − c1|. Note that

K(K − 1)pi(Tii + T̂ii)− (1− pi)− (K − 1)c1 ≥ K(K − 1)piTii − (1− pi)− (K − 1)c1.

When K(K − 1)piTii − (1− pi)− (K − 1)c1 > 0, we have

|T̂ii − Tii| ≤
(K − 1)2|ĉ2 − c2|+ (K − 1)|ĉ1 − c1|+ (K(K − 1) + 1)K−1

K
|ĉ1−c1|

min(T̂ii,Tii)−1/K

K(K − 1)piTii − (1− pi)− (K − 1)c1
.

Then by union bound we know, w.p. 1−2δ, the estimation error |T̂ii−Tii| is at the same order as |ĉi− ci|, i.e. O(
√

ln(1/δ)
N).

Clusterability as an Alternative to Anchor Points

C. More Discussions
C.1. Soft 2-NN Label Clusterability

The soft 2-NN label clusterability means one’s 2-NN may have a certain (but small) probability of belonging to different
clean classes. Statistically, if we use a new matrix T soft to characterize the probability of getting a different nearest neighbor,
i.e. T soft

ij = P(Y2 = j|Y1 = i) = P(Y3 = j|Y1 = i), the second-order consensuses become c[2]
r := (T ◦ (T softTr))

>p

and the third-order consensuses become c[3]
r,s := (T ◦ (T softTr) ◦ (T softTs))

>p. Specifically, if T soft
ij = e, ∀i 6= j and

T soft
ii = 1− (K − 1)e, 0 ≤ e < 1/K, where e captures the small perturbation of the 2-NN assumption, our solution will

likely output a transition matrix that affects the label noise between the effects of T softT and T . The above observation
informs us that our estimation will be away from the true T by at most a factor e. When e = 0, we recover the original
2-NN label clusterability condition.

C.2. Local T (X)

Sparse regularizer Compared with estimating one global T using the whole dataset of size N , each local estimation
will have access to only M instances, where M � N . Thus the feasibility of returning an accurate T (xn) requires more
consideration. In some particular cases, e.g., HOC Local in Table 1, when p is sparse due to the local datasets, we usually
add a regularizer to ensure a sparse p, such as

∑
i∈[K] ln(ci + ε), ε → 0+, where ci is the i-th element of p. Note the

standard sparse regularizer, i.e. `1-norm ‖p‖1, could not be applied here since ‖p‖1 = 1. Therefore, with a regularizer that
shrinks the search space and fewer variables, we could get an accurate estimate of T (X) with a small M .

Other extensions Even with M -NN noise clusterability, estimating T (X) for the whole dataset requires executing
Algorithm 1 a numerous number of times (∼ N/M). If equipped with prior knowledge that the label noise can be divided
into several groups and T = T (X) within each group (Xia et al., 2020b; Wang et al., 2021), we only need to estimate T for
each group by treating instances in each group as a local dataset and directly apply Algorithm 1. As a preliminary work on
estimating T relying on clusterability, the focus of this paper is to provide a generic method for estimating T given a dataset.
Designing efficient algorithms to split the original dataset into a tractable number of local datasets is interesting for future
investigation.

C.3. Feasibility of Assumption 1 and Assumption 2

1. Denote the confusion matrix by C[h], where each element is Cij [h] := P(Y = i, h(X) = j) and h(X) = j
represents the event that the classifier predicts j given feature X . Then the noisy confusion matrix could be written as
C̃[h] := T>C[h]. If T is non-singular (a.k.a. invertible), statistically, we can always find the inverse matrix T−1 such
that the clean confusion matrix could be recovered as C[h] = (T−1)>C̃[h]. Otherwise, we may think the label noise
is too “much” such that the clean confusion matrix is not recoverable by T . Then learning T may not be meaningful
anymore. Therefore, Assumption 1 is effectively ensuring the necessity of estimating T .

2. We require Tii > Tij in Assumption 2 to ensure instances from observed class i (observed from noisy labels) are
informative (Liu & Chen, 2017). Intuitively, this assumption characterizes a particular permutation of row vectors in T .
Otherwise, there may exist K! possible solutions by considering all the permutations of K rows (Liu et al., 2020).

D. More Detailed Experiment Settings
D.1. Generating the Instance-Dependent Label Noise

In this section, we introduce how to generate instance-based label noise, which is illustrated in Algorithm 2. Note this
algorithm follows the state-of-the-art method (Xia et al., 2020b; Zhu et al., 2021). Define the noise rate (the global flipping
rate) as η. To calculate the probability of xn mapping to each class under certain noise conditions, we set sample instance
flip rates qn and sample parameters W . The size of W is S ×K, where S denotes the length of each feature.

First, we sample instance flip rates qn from a truncated normal distribution N(η, 0.12, [0, 1]) in Line 2. The average flipping
rate (a.k.a. average noise rate) is η. qn avoids all the instances having the same flip rate. Then, in Line 3, we sample
parameters W from the standard normal distribution for generating the instance-dependent label noise. Each column of W
acts as a projection vector. After acquiring qn and W , we can calculate the probability of getting a wrong label for each

Clusterability as an Alternative to Anchor Points

Algorithm 2 Instance-Dependent Label Noise Generation
Input:

1: Clean examples (xn, yn)
N
n=1; Noise rate: η; Size of feature: 1× S; Number of classes: K.

Iteration:
2: Sample instance flip rates qn from the truncated normal distribution N (η, 0.12, [0, 1]);
3: Sample W ∈ RS×K from the standard normal distribution N (0, 12);
for n = 1 to N do
4: p = xn ·W // Generate instance dependent flip rates. The size of p is 1×K.
5: pyn = −∞ // Only consider entries that are different from the true label
6: p = qn · SoftMax(p) // Let qn be the probability of getting a wrong label
7: pyn = 1− qn // Keep clean w.p. 1− qn
8: Randomly choose a label from the label space as noisy label ỹn according to p;
end for

Output:
9: Noisy examples (xi, ỹn)

N
n=1.

instance(xn, yn) in Lines 4 – 6. Note that in Line 5, we set pyn = −∞, which ensures that xn will not be mapped to its
own true label. In addition, Line 7 ensures the sum of all the entries of p is 1. Suppose there are two features: xi and xj
where xi = xj . Then the possibility p of these two features, calculated by x ·W , from the Algorithm 2, would be exactly
the same. Thus the label noise is strongly instance-dependent.

Note Algorithm 2 cannot ensure Tii(X) > Tij(X) when η > 0.5. To generate an informative dataset, we set 0.9 · Tii(X)
as the upper bound of Tij(X) and distribute the remaining probability to other classes.

D.2. Basic Hyper-Parameters

To testify the classification performance, we adopt the flow: 1) Pre-training→ 2) Global Training→ 3) Local Training. Our
HOC estimator is applied once at the beginning of each above step. Each training stage re-trains the model. In Stage-1, we
load the standard ResNet50 model pre-trained on ImageNet to obtain basic representations. At the beginning of Stage-2 and
Stage-3, we use the representations given by the current model. All experiments are repeated three times. HOC Global only
employs one global T with G = 50 and |E| = 15k as inputs of Algorithm 2. HOC Local uses 300 local matrices (250-NN
noise clusterability, |Dh(n)| = 250, G = 30, |E| = 100) for CIFAR-10 and 5 local matrices (10k-NN noise clusterability,
|Dh(n)| = 10k, G = 30, |E| = 5k) for CIFAR-100. Note the local matrices may not cover the whole dataset. For those
uncovered instances, we simply apply T .

Other hyperparameters:
• Batch size: 128 (CIFAR), 32 (Clothing1M)
• Learning rate:

• CIFAR-10: Pre-training: 0.1 for 20 epochs→ 0.01 for 20 epochs. Global Training: 0.1 for 20 epochs→ 0.01 for 20
epochs. Local Training: 0.1 for 60 epochs→ 0.01 for 60 epochs→ 0.001 for 60 epochs.

• CIFAR-100: Pre-training: 0.1 for 30 epochs→ 0.01 for 30 epochs. Global Training: 0.1 for 30 epochs→ 0.01 for
30 epochs. Local Training: 0.1 for 30 epochs→ 0.01 for 30 epochs→ 0.001 for 30 epochs.

• Clothing1M: 0.01 for 25 epochs → 0.001 for 25 epochs → 0.0001 for 15 epochs → 0.00001 for 15 epochs
(Pre-training, Global training, and local training)

• Momentum: 0.9
• Weight decay: 0.0005 (CIFAR) and 0.001 (Clothing1M)
• Optimizer: SGD (Model training) and Adam with initial a learning rate of 0.1 (solving for T)

For each epoch in Clothing1M, we sample 1000 mini-batches from the training data while ensuring the (noisy) labels are
balanced. The global T is obtained by an average of T from 5 random epochs. We only use T (X) = T in local training.
Estimating local transition matrices using HOC on Clothing1M is feasible, e.g., assuming M -NN noise clusterability, but it
may be time-consuming to tune M . Noting our current performance is already satisfying, and the focus of this paper is on
the ability to estimate T , we leave the combination of T (X) with loss correction or other advanced techniques for future

Clusterability as an Alternative to Anchor Points

Algorithm 3 Local Datasets Generation
Input:

1: Maximal rounds: G′. Local dataset size: L. Noisy dataset: D̃ = {(xn, ỹn)}n∈[N]. Noisy dataset size: |D|.
Iteration:

2: Initialize the |D|-dimensional index list: S = 1
for k = 1 to G′ do

if(size(S[S > 0]) > 0) then
3: Idxselected = random.choice(S[S > 0]) // Choose a local center index randomly from the unselected index of D̃.

else
4: Idxselected = random.randint(0, |D|) // If the selected index has covered D̃, we choose local center randomly.

end if
5: Idxlocal = SelectbyDist(Idxselected, L) // Select the index of L features closest to Idxselected.
6: S[Idxlocal] = −1 // Mark the state of the selected index in S to avoid duplicate selection.
7: D̃k = D̃[Idxlocal] // Build a local dataset by selecting (xi, ỹi), i ∈ Idxlocal.
end for

Output:
8: Local Datasets D̃k = {(xn, ỹn)} ∪ {(xn1

, ỹn1
), · · · , (xnM

, ỹnM
)}, ni, k ∈ [L], i ∈ [M].

0 50 100 150 200 250 300
Trials

0.05

0.10

0.15

0.20

0.25

0.30

Es
tim

at
io

n
Er

ro
r

CIFAR-10, noise_label_human

Global
Local

Figure 5. Illustration of the global and local estimation errors. Global estimation error: 0.0970. Local estimation errors: mean = 0.1103,
standard deviation = 0.0278.

works.

D.3. Global and Local Estimation Errors on CIFAR-10 with Human Noise

Algorithm 3 details the generation of local datasets. Notice the fact that the i-th row of T (xn) could be any feasible values
when pi = 0, so as the estimates T̂local. In such case, we need to refer to T to complete the information. Particularly, we
calculate the weighted average value with the corresponding T̂ as

T̂local[i] = (1− ζ + p̂i)T̂local[i] + (ζ − p̂i)T̂ [i],

where T̂local[i] and T̂ [i] denote the i-th row of estimates T̂local and T̂ , p̂i denotes the estimated clean prior probability of
class-i given the local dataset. We use ζ = 1 for local estimates of CIFAR-10, and ζ = 0.5 for local estimate of CIFAR-100.

Figure 5 illustrates the variation of local estimation errors on CIFAR-10 with human noise using HOC.

