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Abstract
Cold boot attacks inspect the corrupted random
access memory soon after the power has been
shut down. While most of the bits have been
corrupted, many bits, at random locations, have
not. Since the keys in many encryption schemes
are being expanded in memory into longer keys
with fixed redundancies, the keys can often be
restored. In this work, we combine a novel cryp-
tographic variant of a deep error correcting code
technique with a modified SAT solver scheme
to apply the attack on AES keys. Even though
AES consists of Rijndael S-box elements, that are
specifically designed to be resistant to linear and
differential cryptanalysis, our method provides a
novel formalization of the AES key scheduling
as a computational graph, which is implemented
by a neural message passing network. Our results
show that our methods outperform the state of the
art attack methods by a very large margin.

1. Introduction
Many cipher architectures use expanded keys in their
code. For reasons of efficiency, these algorithms do not
re-calculate the expanded key with the expansion function
each time a message is to be encrypted or decrypted. In-
stead, it is written to some RAM device (such as DDR and
SRAM), until it is used. These devices often induce a secu-
rity leak: after the power is shut down (even if the device
is damaged, deleted, or burned) parts of the data still exist
in the memory. This phenomenon is called data remanence
(Gutmann, 2001; Skorobogatov, 2005). Its occurrence was
established for a variety of memory devices (Yitbarek et al.,
2017; Bauer et al., 2016).

A cold boot attack is a side-channel attack (Halderman et al.,
2009), in which the attacker tries to recover the encryption
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key by exploiting the memory leakage and the redundancy of
the key expansion function used by the encryption method.

This attack is well-known, and defense methods for it have
been heavily researched (Ooi & Kam, 2009). Vulnerable de-
vices include computers and smartphones (CBT, a;b; Müller
et al., 2012; CBT, c;d). Examples of encryption systems
that have been broken by this attack include Microsoft’s
BitLocker, Apple’s FileVault, Linux’s Dm-crypt, TrueCrypt,
Google’s Android’s disk encryption, and many others.

The data remanence phenomena are often modeled in one of
two ways: a theoretical model and a more practical one. In
both models, there is a tendency of decaying the bit values
to the ground state, which can be 0 or 1. For simplicity, we
assume that 0 is the ground state. The strength of this trend
depends on the hardware, the temperature, and the time that
has elapsed since the power was turned off.

This model is formalized in the literature by the probability
δ0 that a key-bit with a value of 1 on the original key will
corrupt to value 0. Common values in the literature are in
the range of δ0 ∈ [0.3, 0.75]. In the theoretical model, we
assume that no bit will corrupt from 0 to 1. The realistic
model accounts for some reading errors for bits with an
original value of 0. Let δ1 be the probability that a key-
bit with an original value of 0 will corrupt to value 1. In
the theoretical model δ1 = 0.0, and in the realistic model
δ1 ∈ {0.0005, 0.001}.

The main computational problem is the one of recovering
an encryption key from its corrupted key by using the redun-
dancy that is induced by the key expansion function. In this
paper, we present a new algorithmic method based on deep
learning for the key recovering problem. While the previous
leading methods are based completely on SAT solvers, our
method contains a deep network that provides an estimate
of the solution, which is subsequently used to seed the SAT
solver. The network employs techniques from the field of
error-correcting codes, which are further enhanced by cryp-
tographic components that we term as neural S-boxes. Our
method is employed in order to drastically improve an ex-
isting algorithm for recovering AES-256 keys (Daemen &
Rijmen, 1999). AES is the most popular symmetric cipher
and it considered to be completely secure.
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2. Related Work
We discuss cold boot attacks and then neural networks for
error correcting codes. The latter provides a solid foundation
for our technique.

2.1. Cold Boot Attack

The first algorithm invented for cold boot attacks was by
Halderman et al. (2009). Using techniques from the field of
error correcting codes, a method was presented for recover-
ing DES, AES, tweak and RSA keys. Subsequent methods
were based on a variety of techniques and ideas, such as
integer programming and solving polynomial systems of
equations (Albrecht & Cid, 2011), SAT solvers (Kamal &
Youssef, 2010) , MAX-SAT solvers (Liao et al., 2013) and
more (Tsow, 2009), (Tanigaki & Kunihiro, 2015).

Our work focuses on AES-256, for which we are aware of
two existing contributions. The work of Tsow (2009) recov-
ers AES key schedules from decayed memory images. The
TSOW algorithm was presented for the theoretical model,
and the result was a success rate of 99.4% for 65% decay
rates. However for 70% the success rate was 0.0. Tanigaki
& Kunihiro (2015) presented an algorithm for the realistic
model, which is based on a combination of the TSOW Al-
gorithm and maximum likelihood approach. A theoretical
analysis showed that δ0 must be smaller than 0.75, when
δ1 = 0.001. We note that our success rate is not negligible
in this setting and compare with the method extensively in
our experiments.

There are considerably more contributions for the AES-128
cipher, which presents an easier problem since the search
space is reduced drastically with smaller keys. Halderman
et al. (2009) had a 70 % success rate for δ0 = 0.15 and
δ1 = 0.001. This result was improved by Tsow (2009) with
the TSOW algorithm. In the work of Kamal & Youssef
(2010) and Liao et al. (2013), two SAT-based algorithms
were proposed.

The first algorithm was designed for the theoretical decay
model, and achieved a success rate of 100% for δ0 = 0.78%.
However for 80% the results were limited. The second
algorithm was designed for the realistic model, and is based
on a partial MAX-SAT solver. The success rate of the
algorithm was 100% for δ0 = 0.76 and δ1 = 0.001. Due
to this success on the smaller keys, we implemented both
the SAT solver and the MAX-SAT solver techniques for the
aes-256 keys, and compare the results to our method.

2.2. Error Correcting Codes with Deep Learning

Deep learning was applied to various error correcting codes
over the past few years. Polar codes (Tal & Vardy, 2013)
which are use in 5G cellular communication, can be decoded

with neural networks with neural successive cancellation
decoding (Doan et al., 2018; Gross et al., 2020). Moreover,
an improved deep Polar decoding is introduced in (Gruber
et al., 2017; Xu et al., 2017; Teng et al., 2019).

In (An et al., 2020), the Reed-Solomon neural decoder is
introduced, which estimates the error of the received code-
words, and adjust itself to do more accurate decoding. Neu-
ral Bose–Chaudhuri–Hocquenghem (BCH) codes decoding
is introduced in (Kamassury & Silva, 2020; Nachmani &
Wolf, 2019; Raviv et al., 2020).

Low-Density-Parity-Check (LDPC) neural decoding is in-
troduced in (Habib et al., 2020). The paper demonstrates
a novel method for sequential update policy in the Tanner
graph. In (Jiang et al., 2019) a deep Turbo autoencoder is
introduced for point-to-point communication channels. Fur-
thermore, (Kim et al., 2018a;b) present a novel method for
designing new error correcting codes by neural networks. In
(Caciularu & Burshtein, 2020) a neural channel equalization
and decoding using variational autoencoders is introduced.
A deep soft interference cancellation for MIMO Detection
are present in (Shlezinger et al., 2020).

In this work, we will focus on neural belief propagation
decoding, as described by Nachmani et al. (2016). This
work demonstrated that short block codes, with up to a few
thousand bits, can be better decoded by a neural network
than by the vanilla belief propagation algorithm that the
network is based on. This method is highly relevant for
correcting AES corrupted keys and cold boot attacks, since
the length of the AES expansion key has a few thousand
bits.

3. Background
3.1. AES-256 Key Expansion Function

The AES algorithm (Daemen & Rijmen, 1999) is based on
the key expansion function f , which operates on a random
256-bit initial key

f : {0, 1}256 → {0, 1}1920 (1)

f is computed in iterations, also known as rounds. In each
iteration, 128 bits of the expansion are calculated from the
previous bits. The calculation consists of both linear and
non-linear operations. The non-linear ones are called the
Rijndeael substitution box or S-box for short.

The Rijndeael S-box function is described in detail in Chap-
ter 4.2.1 of (Daemen & Rijmen, 1999) and it is usually
implemented as a look-up-table. It is composed of two
transformations: (i) an affine transformation and (ii) Nyberg
S-box transformation (Nyberg, 1991). The Nyberg S-box
transformation is a mapping of an input vector to its mul-
tiplicative inverse on the Rijndael finite field: x→ x−1 in
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GF (28). This transformation is known as a perfect non-
linear transformation and satisfies certain security criteria.

We will use the following notations:

1. Denote the expanded key bits as ŵ := (w0, .., wn−1),
where n is the size of the expanded key, which is equal
to 1920. Denote the byte wi, ..., wi+7 as Wi, and the
double word wi, ..., wi+31 as W ′i , so W ′i (j) = wi+j .

2. Let S : {0, 1}8 → {0, 1}8 be a Rinjdeal S-box. We
can extend the definition of S to an input vector of 32
bits, where the result is obtained by applying S on each
byte separately.

3. c = c1, ..., c10 is a vector of fixed values that is defined
in the RCON table which is given in (Daemen & Rij-
men, 1999). This constant is used in the key expansion
function f .

4. R is the following rotation function:

R(w1, ..., w7, w8, ..., w32) = (w8, ..., w32, w1, ..., w7)
(2)

which is used in the key expansion function f .

5. k is the initial key size 256, and b is the block size 128.

6. % is the modulo operator and ⊕ is XOR operator.

7. For each key index i, we denote the round number as
r(i) = b ibc, and the double word number as d(i) =

b i32c

8. τ = n−k
b is the number of rounds in the key expansion

function.

The key expansion function is critical to understanding our
method. Here we describe the constraints that this func-
tion inducts on the key bits. For the i-bit in the key, the
constraints are given by:

1. ∀i : k ≤ i < n, i%b < 32, r(i)%2 = 0 :

wi = wi−k ⊕ S(R(W ′d(i−32)))(i%b)⊕ c r(i)
2

(3)

2. ∀i : k ≤ i < n, i%b < 32, r(i)%2 = 1 :

wi = wi−k ⊕ S(W ′d(i−32))(i%b) (4)

3. ∀i : k ≤ i < n, i%b ≥ 32 :

wi = wi−k ⊕ wi−32 (5)

Note that each equation contains three XOR operations
between variables, and in some of the equations there is a
XOR with a constant value.

3.2. Error Correcting Codes with Deep Belief
Propagation

A deep learning decoder for error correcting codes with a
belief propagation algorithm was introduced in (Nachmani
et al., 2016). The decoding process uses the well-known
belief propagation method and adds learnable weight to the
algorithm. Specifically, they add weights to the edges in the
Trellis graph. For a linear block code with k information
bits and n output bits, the parity check matrix of the linear
block code H has a size of (n− k)× n.

The deep neural Belief propagation algorithm that was intro-
duced in (Nachmani et al., 2016) has an input layer of n bits.
In the architecture that is defined in (Nachmani et al., 2016)
there are two types of hidden layers which are interleaved:
(i) variable layer for odd index layer j and (ii) check layer
for even index layer j.

For notational convenience, we assume that the parity check
matrix H is regular, meaning, the sum over each row and
column is fixed and denoted by dv and dc respectively. Each
column of the parity check matrix H is corresponding to
one bit of the codeword and obtains dv variable nodes in
each variable layer. Therefore, the total number of vari-
able processing units in each variable layer is E = dvn.
Similarly, each check layer has E = (n − k) × dc check
processing units.

During the decoding process, the messages propagate from
the variable layer to the check layers iteratively, where the
input to the network is the log likelihood ratio (LLR) ` ∈ Rn
of each bit:

`v = log
Pr (cv = 1|yv)
Pr (cv = 0|yv)

, (6)

where `v is the log likelihood ratio for each received signal
yv and cv is the bit that we want to recover.

Denote xj as the vector messages that propagate in the
Trellis graph. For j = 1 and for odd j, the computation in
each variable node is:

xje = xj(c,v) = tanh

1

2

lv +
∑

e′∈N(v)\{(c,v)}

we′x
j−1
e′


(7)

where N(v) = {(c, v)|H(c, v) = 1} is the set of all edges
that are connected to v and each variable node indexed the
edge e = (c, v) in the Tanner graph. we is a set of learnable
weights.

For even layer j, each check layer performs this computa-
tion:

xje = xj(c,v) = 2arctanh

 ∏
e′∈N(c)\{(c,v)}

xj−1e′

 (8)
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where for each row c of the parity check matrix H , N(c) =
{(c, v)|H(c, v) = 1} is the corresponding set of edges.

Overall, in the deep neural network that is proposed in
(Nachmani et al., 2016) there are L layers from each type
(i.e. variable and check). The last layer is a marginalization
layer with a sigmoid activation function which outputs n
bits. The v-th output bit is given by:

ov = σ

lv +
∑

e′∈N(v)

w̄e′x
2L
e′

 , (9)

where w̄e′ is another set of learnable weights. Moreover, in
each odd layer j, marginalization is performed by:

ojv = σ

lv +
∑

e′∈N(v)

w̄e′x
j
e′

 (10)

The loss function is cross entropy on the error after each j
marginalization:

L = − 1

n

L∑
h=0

n∑
v=1

cv log(o2h+1
v ) + (1− cv) log(1− o2h+1

v )

(11)
where cv is the ground truth bit.

4. Method
Our architecture contains two components: (i) A variant of
neural belief propagation decoder with neural S-box layers
and (ii) a Partial MAX-SAT solver. The proposed model is
depicted in Figure 1. The input to the neural belief prop-
agation is the corrupted bits l = l0, .., ln−1 and it predicts
an approximation for the original key o = o0, .., on−1. For-
mally, the value of the i-th bit in the original key was 1
with an approximated probability of oi. The input to the
Partial MAX-SAT solver is a CNF formula with part of it
defined by o′ ⊂ o , where the probabilities in o′ correspond
to bits that the network has high confidence in their values
(approximately 99%). The output of the Partial MAX-SAT
solver is the estimation of the desired key.

4.1. Rijndael S-box as Neural Network and the S-box
Layer

The belief propagation neural network is defined by a parity
check matrix H . However, the AES constraints in Eq. 3,4
are non-linear, since they include the S-box transformation.
Therefore, there is no parity check matrixH such thatHl =
0.

In order to convert these equations to linear form, one can
change the variables by concatenating W s′

t := S(W
′

t ) to

Wi, and construct a parity check matrix H for the new vari-
ables. However, since the S-box transformation is defined
by boolean vectors, and the neural belief propagation uses
fractions values another problem arises, one cannot calculate
W s′

t between layers of the neural belief propagation.

Therefore, in order to obtain a continuous and differentiable
version of the Rijndael S-box, we first train a neural network
Snn to mimic it:

Snn : x1, ..., x8 → y1, ..., y256 (12)

where xi ∈ [0, 1] and yi ∈ [0, 1]. The network has three
fully connected layers with 512 ReLU activations. It is
trained with a cross entropy loss function. An argmax
operation is performed on the output y, to obtain z1, ..., z8,
where it achieves 100% accuracy. We can extend the defini-
tion of Snn to an input vector of 32 bits, where the result is
obtained by applying Snn on each byte separately.

While the neural s-box is applied to bytes, the s-box layer
is applied to the entire expanded key, which is constructed
from a combination of neural S-boxes. Given an input vector
x̂ ∈ [−1, 1]n, the s-box layer calculates the output vector
ŝ ∈ [−1, 1]n+32τ+1 which is obtained by concatenation
of the input with 32τ elements, which are calculated by
applying the neural S-boxes on the corresponding bits of
the input as follows:

1. ∀i ∈ [0, n− 1] : ŝi = x̂i

2. ∀i ∈ [n, (n+ 32τ)− 2], i%32 = 0 :

(ŝi, .., ŝi+31) = Snn(x̂si(i), .., x̂si(i)+31)

where si(i) = b((i− n)%32) + k − 32

3. The last bit in ŝ is 1 (namely ŝn+32τ−1 = 1) and it is
used as a bias factor.

There are τ additional rounds on the AES-256 key expan-
sion, on each round 4 S-boxes are calculated. Overall, each
s-box layer consist of 4τ neural S-box instances.

4.2. Tailoring the Neural Belief Propagation

To predict the values of the AES key from the corrupted
keys, a naive way is to search the key that is close to the
corrupted one over the large space of the existing key.

However, when the decay percentage is high, the search
space is extremely large, and by design, the key expansion
function provides resistance against attacks in which part
of the cipher key is known, see Chapter 7.5 in (Daemen &
Rijmen, 1999).

Instead, due to the resemblance of the AES keys and the key
role of the XOR operation, we rely on network-based error
correcting code methods that are suitable for block ciphers.
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Figure 1. An overview of our method for a neural cold boot attack. The input is the initial key of 256 bits, then the AES key expansion
function f expands it to 1920 key. The expanded key was corrupted by the cold boot model. The corrupted key is inserted into a
cryptographic neural belief propagation decoder whose constructs form a novel formalization of the AES key expansion function. The
most accurate nl + nh bits are then selected in insert with the corrupted key to MAX-SAT solver. The MAX-SAT solver produces the
corrected AES key.

Such codes often employ expansion functions, which are,
however, linear.

We modify the neural belief propagation architecture as
follows: (i) adding a S-box layer after each check layer, (ii)
modify the layer structure: replacing `v in Eq. 7, 9, 10 with
the output of the marginalization layer oj−1v on the previous
iteration after it goes through the S-box layer. Figure 2
we depict the architecture of the modified neural belief
propagation.

4.3. Defining the ECC constraints

Denote the S-box mimicking network output, given by a
vector Wi, as Zi = (zi, .., zi+7) := Snn(Wi). We denote
the concatenation of Zi, Zi+8, Zi+16, Zi+24 as Ẑi. We can
rearrange the constraints in Eq. 3, 4, 5 as follows:

1. ∀i : k ≤ i < n, i%b < 32, r(i)%2 = 0 :

0 = wi ⊕ wi−k ⊕ Snn(R(W
′

d(i−32)))(i%b)⊕ c r(i)
2

(13)

2. ∀i : k ≤ i < n, i%b < 32, r(i)%2 = 1 :

0 = wi ⊕ wi−k ⊕ Snn(W
′

d(i−32))(i%b) (14)

3. ∀i : k ≤ i < n, i%b ≥ 32 :

0 = wi ⊕ wi−k ⊕ wi−32 (15)

We define x as the concatenate of w and Ẑi: x =
(w0, .., wn−1, Ẑk−32, Ẑk−32+b, Ẑk−32+2b, .., Ẑn−32+τb).
By considering the XOR operation as the addition operator
over {0, 1}2, assuming for simplicity that R is the identity
function, so Snn(R(Ŵd(i−32))) = Ẑi and replacing

Snn(W ′i ) with Ẑi, one can transform Eq. 13, 14, 15 to a
matrix form using a matrix H ′ and a vector u, such that:

H ′x+ u = 0 (16)

where u is a constant vector that consists of the RCON
values ci and zeros and H ′ is a matrix with n− k rows, as
the number of bits calculated by the expansion function, and
n+ 32τ columns, as the number of variables.

∀i, j : 0 ≤ i < n− k, 0 ≤ j < (n+ 32τ)

H ′(i, j) =



1, if i%b ≥ 32 , j = i

1, if i%b ≥ 32 , j = i+ k

1, if i%b ≥ 32 , j = i+ k − 32

1, if i%b < 32 , j = i

1, if i%b < 32 , j = i+ k

1, if i%b < 32 , j = n+ 32r(i) + i%32

0, otherwise
(17)

The first three cases correspond to Eq. 15, the following
three cases correspond to Eq. 13 , 14.

Moreover, u is the constant vector that consists of the RCON
values and defined by ∀i : 0 ≤ i < n− k :

ui =

{
c r(i)

2
, if i%b < 32, r(i)%2 = 0

0, otherwise

Note that without assuming that R (in Eq. 13) is the identity
function, rather than a rotation function, one can rewrite
the same formulation with a single difference, applying
permutation on the vector x, or modify the equations where
r(i) is even. We did not use this assumption in practice
(implementation and experiments).
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Figure 2. The architecture of the cryptographic neural belief propagation. The input is the corrupted key of the 1920 bits. Each neural belief
propagation layer receives two vectors: (i) the output of the previous belief propagation layer xj−1

e′ , (ii) the output of the marginalization
layer oj−1

v , after going through the S-box layer. After the last iteration, we cut bits whose not approximated bits in the corrupted key.

It remains to convert Eq. 16 to a homogeneous form, by
using the bias trick. Instead of the XOR operation with the
bias u in Eq. 16, concatenate one bit with a constant value
of 1 to x. This bit used as a bias factor, and by using H ,
a concatenate of H ′ with u, we can formulate Eq. 16 as
follows:

H[x, 1] = H



w0

...
wn−1

ˆZk−32
ˆZk−32+b
ˆZk−32+2b

...
ˆZn−b−32
1


= 0 (18)

∀i, j : 0 ≤ i < n− k, 0 ≤ j ≤ (n+ 32τ) :

H(i, j) =



c r(i)
2
, if j = (n+ 32τ) and

i%b < 32 and r(i)%2 = 0

1, if i%b ≥ 32 , j = i

1, if i%b ≥ 32 , j = i+ k

1, if i%b ≥ 32 , j = i+ k − 32

1, if i%b < 32 , j = i

1, if i%b < 32 , j = i+ k

1, if i%b < 32 , j = n+ 32r(i) + i%32

0, otherwise
(19)

Note that the formulation of H also relevant for other vari-
ations of AES (i.e. k=128,192). Moreover, the same tech-
nique can be used to create deep architectures for side-
channel attacks for additional ciphers, for example Serpent
(Anderson et al., 1998).

Based on the H matrix described in Eq, 19, we construct a
neural belief propagation network, as described in Sec. 3.2.

4.4. Partial MAX-SAT Solver

Once we obtain the initial estimate from the neural network,
we use a Partial MAX-SAT Solver to search for the corrected
key. To run the solver, we define the following Conjunctive
Normal Form (CNF) formulas:

1. n variables, one per bit in the key v1, .., vn.

2. Converted the bit-relation in Eq. 3,4,5 that implies
by the key expansion function to a CNF formula by
CNF Factorization. The result is the formula ψAES ,
that consists of 217984 clauses and 1920 variables.
Eq. 5 for example, which is in the following form:
(a⊕ b = c), is replaced with the following clauses:

(i) ¬a ∧ ¬b ∧ ¬c (ii) ¬a ∧ b ∧ c

(iii) a ∧ ¬b ∧ c (iv) a ∧ b ∧ ¬c
With the other equations, the result is more compli-
cated, and each equation has been replaced by numer-
ous clauses. We then insert these clauses into the solver
as a hard formula. This formula is identical for all of
the instances and is calculated once in pre-processing.

3. For each bit whose value is 1 in the corrupted key,
we supply a single clause that enforces this key bit to
be 1, we denote this formula by ψmemory. Formally:
ψmemory := ∧i∈[n−1],li=1vi

4. Consider the nh bits with the highest value in the
network output o, and the nl bits with the lowest
values. These are the locations for which the net-
work is mostly confident. Let th be the nh-th highest
value in o, and the tl as the nl-th lowest values in o,
we take these as thresholds and define the formula:
ψnn :=

(
∧i∈[n−1],oi≥th ¬vi

)
∧
(
∧i∈[n−1],oi≤tl vi

)
We define ψAES as hard formula, and ψnn as soft formula.
In the theoretical decay model, ψmemory is defined as hard
formula, however in the realistic decay model is defined as
a soft formula.
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There is a large number of Partial MAX-SAT Solvers, which
operate in a wide variety of strategies. We select the WBO
Solver (wbo) with the implementation of (Zengler), which
is based on the unsatisfiability method (Martins et al., 2012),
and other enhancements (Martins et al., 2011; Manquinho
et al., 2010; 2009). We select this solver for three main
reasons:

1. We have the intuition that DPLL solvers will be suit-
able for this problem over randomized SAT solvers
due to the large complexity of the search space (there
are 21920 vectors, and there are numerous clauses).
This complexity makes us think that it is better to use
a solver that scans the space in an orderly manner.
We, therefore, decided to use CDCL solvers (Silva &
Sakallah, 2003; Marques-Silva & Sakallah, 1999; Ba-
yardo Jr & Schrag, 1997), the most popular variation
of DPLL solvers.

2. Since it achieved the best results in different cold boot
attack settings, for example (Liao et al., 2013).

3. In the early step of this development, we tried to in-
sert the complete key approximation from the neural
network into a CDCL solver, instead of using ψnn and
ψmemory. Empirically, we observe that inserting the
complete key approximation from the neural network
into a CDCL solver does not output the correct keys.
Therefore, we decided to focus on a small number of
bits. We chose the bits that the neural belief propaga-
tion is relatively sure in their values, and in total, the
probability that more than a few bits in the subset are
errors is very small (smaller than 1%). Therefore, it
was natural to use the UNSAT (Martins et al., 2012)
method which is suitable for the problem, since the
number of unsatisfiability soft clauses is small with
high probability.

4.5. The Overall Model

The input of our architecture is the vector l1, .., ln, which
represents the corrupted key. It is inserted into a crypto-
graphic variant of the neural belief propagation, which in-
cludes S-box layers. The S-box layers are based on the
fully-connected neural network Snn, which imitates the Ri-
jndael S-box and extends its functionality to non-binary
values. The original neural belief propagation layers are de-
fined by a parity check matrix H , which designed according
to the key expansion function, as designed in Eq. 19.

The modified neural belief propagation predicts the proba-
bility that each key bit was 1. We denote these probabilities
by o = o1, .., on. Based on l and o, we define the following
SAT instance, as described in detail in Sec. 4.4:

1. Define n variables, one per bit v1, .., vn.

2. ψnn a CNF that is induced by the neural belief propa-
gation predictions.

3. ψmemory a CNF that is induced by the corrupted key

4. ψAES a CNF that is equivalent to the key expansion
constraints.

We run the WBO solver on this instance. The output of our
model is the assignment that is returned from the solver.

We note that in contrast to previous cold boot attack methods,
the input of our method is a floating vector over [0, 1] instead
of binary input 0, 1. In this way, one can better express the
decay model of the memory. In practice, this input can be
measured according to the voltage, the memory sector or, the
amount of time that elapsed from shutting down the power
to the time that the bits were read. However, to compare
with previous work on common grounds, our experiments
focus entirely on the binary case.

5. Experiments
We trained our proposed architecture with two types of
DRAM memory corruption processes: (i) the theoretical
model, where δ1 = 0, and (ii) a more realistic model, where
δ1 = 0.001. For each model, we test with different corrup-
tion rates δ0 ∈ [0.40, 0.72] for the theoretical model and
δ0 ∈ [0.50, 0.85] for the realistic model.

The training set contains generated random AES 256 keys.
Each batch contains multiple values of corruption rate which
are chosen randomly with a uniform distribution at a range
of [δ0/4,1− (1− δ0)/4] where δ0 is the corruption rate for
the test set in a given experiment.

During training, we use a batch size of 4, a learning rate
of 1e − 4, and an Adam optimizer (Kingma & Ba, 2014).
The number of iterations for the neural belief propagation
was L = 3. The parameters nl were 30 and nh was 0, we
multiplied the input l by a constant scaling factor of 0.12.

The S-box network Snn is trained with the Adam optimizer
with a batch size of 32 and a learning rate of 1e − 3. The
training set contains all 256 possible inputs. Our goal is to
approximate the Rijndael S-box function on continuous in-
puts, where it is not defined. Where it is defined, it achieves
100% accuracy and approximates the Rijndael S-box func-
tion perfectly.

The baseline methods we compare to include: (1) (Tsow,
2009) which recovers AES key schedules from decayed
memory images, (2) (Tanigaki & Kunihiro, 2015) which is
based on a maximum likelihood approach that recovers the
key in an imperfect asymmetric decay model, (3) (Kamal &
Youssef, 2010) which was the first to encode the problem
as SAT instant. (4) (Liao et al., 2013) A baseline method
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that is based on the same SAT solver, but in each instance,
we ignore the neural network approximation o, as expressed
by the formula ψnn. (5) A baseline method, as described in
Eq. 20, does not employ the S-box.

We run all SAT solvers with a timeout of one hour, with 600
keys per experiment. To reduce the variance of the results,
we use the same keys for both our model and the baselines
we run.

5.1. Ablation variants

In order to isolate the influence of the neural S-box com-
ponent Snn on the performance, we perform an ablation
analysis. In the first ablation study, we do not use Snn, and
connect l to the original (without any modifications) belief
propagation neural network directly. In these settings, we
ignore the non-linear constraints, and use H ′′, a sub-matrix
of H:

∀i, j : 0 ≤ i < n− k, 0 ≤ j ≤ n

H ′′(i, j) =


1, if i%b ≥ 32 and j = i
1, if i%b ≥ 32 and j = i+k
1, if i%b ≥ 32 and j = i+k-32
0, otherwise

(20)

Hl = 0 (21)

This ablation uses only linear constraints. Therefore, we
call it as ”LC”. The second ablation uses H , the full matrix,
but does not contain neural S-box layers inside the neural
belief propagation network. This ablation uses the original
belief propagation neural network architecture, which we
denote as ”OBPNN”.

In the ablation experiments, a neural belief propagation
network is constructed, as described in Sec. 3.2 based on
the H ′′ of Eq. 20.

5.2. Results for Theoretical Model δ1 = 0

Tab. 1 presents the results of the theoretical model. As can
be seen, our method can handle a corruption rate as high as
72%, while the method of Tsow (2009) cannot handle 70%
(and maybe even fails earlier).

For the lower corruption rate δ0, we can see that the results
are close to 100% for the SAT solver that does not employ
the network, for the network without the S-box component
followed by the SAT solver. However, when increasing
the corruption rate, the difference between the methods be-
comes more pronounced. The addition of the S-box slightly
improves in this setting.

Figure 3. Each line represents the performance per architecture
and specific corruption rate (c.r.). The dashed lines represent our
architecture and the other lines represent our OBPNN ablation. For
each value of nl, we show the accuracy of the bits in o′. When this
parameter is too high, the probability for more than a few errors
increases. On the other hand, if it too low, our network does not
influence the search of the SAT solver.

5.3. Results for Realistic Model δ1 = 0.001

Tab. 2 depicts the results for the realistic model, where
δ0 = 0.001. Evidently, the baseline method struggles to
maintain a high level of performance as the corruption rate
increases. Our method, including the two simplified variants,
maintains a high performance until a corruption rate of
65%, after which the recovery rate starts to drop. For high
corruption rates, the advantage of using the network with
the S-box becomes clearer.

5.4. Model Analysis

In Figure 3, we present (i) the trade-off is expressed by the
size of o′. As the set size increases, the probability that
more than a few errors occur increases as well. We choose
nl, with a high probability (for example 99.5%) that there
are no more than two bits errors in o′. Therefore, according
to binomial calculation and the figure, we determine that
nh = 0 and nl = |o′| be in [20, 50] for most of the values
of δ0 and δ1 and. (i) How the insertion of the S-box layers
into the neural belief propagation improves the network
performance. Specifically, for each corruption rate, the
architecture that contains S-box layers increases the number
of bits that can be predicted with high confidence.
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Table 1. Performance evaluation for theoretical model (δ1 = 0). The success rate of a cold boot attack for AES-256 with different
corruption rates. Higher is better.

Model / Corruption rate 40% 50% 60% 65% 68% 70% 72% 74%

(Tsow, 2009) 100.0 100.0 100.0 100.0 N/A 0.0 0.0 N/A

MAX-SAT 100.0 100.0 97.92 93.95 84.12 73.56 49.53 15.95
Ours LC 100.0 100.0 99.11 95.74 88.88 81.25 53.45 18.61
Ours OBPNN 100.0 100.0 99.43 96.41 90.52 82.27 53.90 20.27
Ours 100.0 100.0 99.51 97.05 91.20 84.10 54.52 22.35

Table 2. Performance evaluation for realistic model (δ1 = 0.001). The success rate of a cold boot attack for AES-256 with different
corruption rates. Higher is better.

Model / Corruption rate 50% 55% 60% 65% 70% 75%

(Tanigaki & Kunihiro, 2015) (L=1024) 73.3 52.00 29.80 10.50 1.30 0.20
(Tanigaki & Kunihiro, 2015) (L=2048) 82.0 61.70 38.50 18.20 3.00 0.20
(Tanigaki & Kunihiro, 2015) (L=4096) 88.0 73.20 51.70 21.80 5.80 0.00
(Tanigaki & Kunihiro, 2015) (Best) 88.0 73.20 51.70 21.80 5.80 0.20

MAX-SAT 100.0 100.0 97.71 91.25 60.51 9.36
Ours LC 100.0 100.0 98.09 93.75 64.56 10.23
Ours OBPNN 100.0 100.0 98.83 95.11 66.67 13.69
Ours 100.0 100.0 99.34 96.0 66.84 14.34

6. Conclusions
ML is often considered unsuitable for problems in cryptog-
raphy, due to the combinatorial nature of such problems
and the uniform prior of the keys. In this paper, we present
convincing evidence in support of employing deep learning
in this domain. Specifically, we present a novel method that
combines a deep belief propagation neural network and an
adapted SAT solver to achieve the state of the art results in
the key recovery problem for cold boot attack.

Our method can recover keys with a high success rate in
corruption regions, in which no other method is successful
on the AES-256 cipher. Our method includes three new
techniques: (1) We successfully approximate the S-box
transformation by a neural network, despite it being highly
non-linear, not differentiable, designed to be resistant to
side-channel attacks, and known to be incompatible with a
computational graph representation. (2) A new error cor-
recting code representation of the AES family of codes that,
unlike previous work, is explicit and also considers all the
bits of the original key at once. This approach can be ex-
tended to other ciphers, such as Serpent (Anderson et al.,
1998). (3) We are the first, as far as we can ascertain, to
combine the approach of the error correcting codes with the
SAT solver approach.

As is shown in our experiments, the hybrid solution we
present can to correct bits whose initial value is one but their
corrupt value is zero. Detecting this event is challenging,

since its prior probability is very low.

The improved success rate of our method on this very popu-
lar cipher may have far-reaching implications. In addition,
the techniques we developed could facilitate an improved
success rate in other side channel attacks, for example
power analysis attacks (Kocher et al., 1998), timing attacks
(Kocher, 1996), and electromagnetic attacks (Sayakkara
et al., 2019; Quisquater, 2000).

An interesting direction for future research is to apply more
recent neural error correcting code decoders, such as those
based on hypernetworks (Nachmani & Wolf, 2019), and
evaluate if their improved performance on error correcting
codes carries over to the cold boot attack problem.
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