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Abstract

We consider the problem of learning fair policies
in (deep) cooperative multi-agent reinforcement
learning (MARL). We formalize it in a principled
way as the problem of optimizing a welfare func-
tion that explicitly encodes two important aspects
of fairness: efficiency and equity. We provide a
theoretical analysis of the convergence of policy
gradient for this problem. As a solution method,
we propose a novel neural network architecture,
which is composed of two sub-networks specifi-
cally designed for taking into account these two
aspects of fairness. In experiments, we demon-
strate the importance of the two sub-networks for
fair optimization. Our overall approach is general
as it can accommodate any (sub)differentiable
welfare function. Therefore, it is compatible with
various notions of fairness that have been pro-
posed in the literature (e.g., lexicographic max-
imin, generalized Gini social welfare function,
proportional fairness). Our method is generic and
can be implemented in various MARL settings:
centralized training and decentralized execution,
or fully decentralized. Finally, we experimen-
tally validate our approach in various domains
and show that it can perform much better than
previous methods, both in terms of efficiency and
equity.

1. Introduction

Adaptive distributed control systems start to be considered
in real applications, e.g., traffic light control (van der Pol &
Oliehoek, 2016), multi-robot patrolling (Portugal & Rocha,
2013), or internet congestion (Jay et al., 2019). Although
those systems generally may impact many end-users, the
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current main focus is on their performance with respect to
the total (or average) of some per-user efficiency measure
(e.g., waiting times of cars in traffic light control, safety of
different sites in patrolling, or throughput of users in internet
congestion). However, this approach is clearly unsatisfac-
tory due to the users’ conflicting interests. Thus, for such
systems, fairness becomes a key factor to consider in their
designs for their successful deployments and operations.

Fairness is a multifaceted concept (Section 2), which can
refer to or include different aspects, e.g., impartiality, equity,
Pareto-efficiency, envy-freeness, or proportionality among
others. Given the importance of this notion, it has been
investigated in various scientific disciplines, from philoso-
phy to computer science, including economics and applied
mathematics. In this work, fairness specifically refers to
the combination of the first three aspects. Interestingly, this
definition of fairness can be encoded in a fair social welfare
function, which combines the users’ utilities and can be
used to evaluate and compare different solutions.

In this paper, we consider adaptive distributed control sys-
tems modeled as cooperative decentralized multi-agent re-
inforcement learning (MARL), and study the problem of
learning fair distributed policies. This approach applies to
situations where a system designer needs to implement a
distributed system to solve a specific task (e.g., traffic regu-
lation, patrolling, or congestion control) for many users in
a fair way. Thanks to our definition of fairness, this prob-
lem can be expressed as a fair optimization problem, i.e.,
optimization of a fair social welfare function.

This formalization can then be tackled with standard multi-
agent deep reinforcement learning techniques. Yet, as agents
need to learn both efficiency and equity, two conflicting
aspects of fairness, a naive approach is insufficient, as shown
in our experiments. Thus, we propose a novel architecture
specifically designed for fair optimization in multi-agent
deep reinforcement learning (MADRL), which is shown to
experimentally over-perform previous approaches.

Contributions We formulate a general and principled
model for the problem of learning fair solutions in coopera-
tive multi-agent reinforcement learning (Section 3). We pro-
pose a simple, scalable and efficient decentralized method to
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solve this problem (Section 4). We also provide a theoretical
analysis of the convergence of policy gradient for this prob-
lem (Section 5). To validate our approach, we extensively
compare it with previous approaches and evaluate it on a
diverse set of domains (Section 6).

2. Related Work

The notion of fairness has been extensively studied in politi-
cal philosophy (e.g., (Rawls, 1971)), political sciences (e.g.,
(Brams & Taylor, 1996)) and in economics (e.g., (Moulin,
2004)). This literature has led to the considerations of var-
ious aspects of fairness, e.g., equal treatment of equals,
efficiency with respect to Pareto dominance, equal distribu-
tion (of goods, wealth, opportunities...), or envy-freeness,
which have been exploited in more applied fields, such as
operations research (OR), artificial intelligence (AI), or ma-
chine learning (ML). In this paper, we follow the approaches
based on social welfare functions (Moulin, 2004). Various
formulations have been considered, e.g., the utilitarian one
that considers the users’ total utility or the egalitarian ap-
proach that focuses on the lowest utility. In this paper, we
investigate a family of fair social welfare functions that en-
codes impartiality, equity, and efficiency (see Section 3.2).

Such approaches, referred to as fair optimization, have been
adopted before in OR and related fields (Ogryczak et al.,
2014), and have many applications notably in networking
(Amaldi et al., 2013; Shi et al., 2014). Various classic OR
problems have been studied in the fair optimization setting,
e.g., location (Neidhardt et al., 2008), allocation (Bertsimas
et al., 2011), or Markov decision process (Ogryczak et al.,
2013). As typical in OR, those works usually deal with a
centralized and known environment setting. Our work can
be seen as an extension of this literature to the decentralized
and learning setting.

In Al fairness has been considered in multi-agent systems
with a large focus on resource allocation problems, notably
with envy-freeness (Chevaleyre et al., 2006) and some works
in non-cooperative games (de Jong et al., 2008; Hao & Le-
ung, 2016). In contrast, we deal with more complex control
problems, but in the cooperative setting. As such, our
proposition is based on MARL instead of a game-theoretic
formulation, which is more suitable for the non-cooperative
setting. Besides, we formulate fairness with respect to users
instead of agents, which is a more general framework.

Recently, fairness has started to become an important topic
in ML. Indeed, as ML models are deployed in various ap-
plications (e.g., banking or law enforcement), the decisions
made on their outputs may severely impact some users due
to the presence of bias in data. Different ML tasks have been
inspected in this regard, e.g., classification (Dwork et al.,
2012; Zafar et al., 2017; Sharifi-Malvajerdi et al., 2019),

ranking (Singh & Joachims, 2019), sequential-decision mak-
ing (Busa-Fekete et al., 2017) or clustering (Chierichetti
et al., 2017). Most of such work focuses on the impartiality
aspect of fairness, expressed at the individual or group level,
which leads to a constrained-based or penalty-based formu-
lation. However, some recent work (Speicher et al., 2018;
Heidari et al., 2018) advocates a more complete approach
based on fair social welfare function that we also adopt in
our work. Besides, such approach was recently investigated
in single-agent deep reinforcement learning (RL) (Siddique
et al., 2020).

Due to the recent successes of deep RL, research on
MADRL has become very active (Hernandez-Leal et al.,
2019). Different settings have been considered depending
on whether training or execution is centralized or not, state
observability is partial or not, and communication is allowed
or not. Some recent work focuses on tackling problems
related to decentralized training (Zhang et al., 2018), com-
munication (Foerster et al., 2016; Sukhbaatar et al., 2016),
coordination (van der Pol & Oliehoek, 2016), or agent mod-
eling (Raileanu et al., 2018). In cooperative MADRL, the
usual approach is based on a utilitarian formulation or a
unique common reward signal.

However, fairness has been explicitly considered in multi-
agent sequential decision-making in some few exceptions
(Zhang & Shah, 2014; Jiang & Lu, 2019). Zhang & Shah
(2014) consider a regularized maxmin egalitarian approach
in order to find an equitable solution. Yet, this may be
deficient as the solution without the worse-off agent may
not be fair. Also, this work does not consider learning. In
order to learn fair solutions, Jiang & Lu (2019) propose FEN,
a decentralized method using two main ingredients. First,
a gossip algorithm is used to estimate the average utility
obtained by all agents. Second, the policy of each agent has
a hierarchical architecture, where the high level decides to
optimize its own utility or not, and the low level is composed
of several sub-policies: the first one optimizes the individual
reward gathered by the agent, while the others optimize
their probability of being selected by the higher level. That
work has several limitations. It implicitly assumes that
agents have equal access to resources, which may not be true
in practice (see Section 6). Besides, fairness is implicitly
defined with the coefficient of variation (CV)!, an inequality
measure —measuring the dispersion of the utility— which
does not guarantee efficiency.

3. Formalization

Notations For any natural integer n, [n] denotes the set
{1,...,n}. Vectors, which are column vectors, and ma-
trices are denoted in bold and their components in normal

"The ratio of the standard deviation to the mean.
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typeface with indices, e.g., x = (z1, ..., z,). For any set
X, A(X) denotes the set of probability measures over X.

3.1. Multi-Agent Reinforcement Learning

Recall that a decentralized partially observable Markov de-
cision process can be defined with the following n-tuple
(S, A = (Aie)s (Oi)ieinys Py (Qi)iern,7,y) where
N is the number of agents, S is the global state space, A; is
the action space of agent i, O; is the observation space of
agent i, P : S x A — A(S) is the joint transition function,
Q; : § = A(0O;) is the observation function of agent 4, r is
a joint reward function, and v € (0, 1) is a discount factor.

Since the operations of an agent may impact many different
users, we extend the previous formulation by redefining
the reward function to be vectorial: r» : S x A — RP
where D is the number of users. A user can represent
an individual or a group of individuals. We denote r =
(rk)ke[p)- As the system is distributed, the agents may not
observe the whole reward vector. At a given time step, an
agent i observes 1, = (7 )ker, where I; C [D]. Note that
the partial observability of rewards does not imply reward
independence between agents. The rewards depend on the
state of the whole system and the actions of all agents. For
ease of presentation of our solution method, we will assume
that the set [; is fixed for each agent ¢ and the sets I;’s of
all agents form a partition of [D]. Our approach can readily
be extended to the more general case where the sets I; and
I; of two agents may have a non-empty intersection. Note
that our formulation is strictly more general than the usual
approach where fairness is defined over agents. By setting
D = N and I; = {i}, we can recover the usual formulation.

A joint policy can be written as follows m(alo) =
(m1(a1]o1),...,mn(an|on)). The individual policy of the
i agent is denoted 7; : O; — A(A;) since an agent
only perceives its local observation. Likewise, since each
agent cannot access the whole reward vector nor the joint
state, each agent learns an individual state value function
Vi, : O; — Rl in order to approximate V7,(s) =

Er [Yi01 7 ' | S0 = s|, which represents the util-
ities of users in I; in state s.

3.2. Fairness Formulation

The notion of fairness we focus on in this paper encom-
passes three important aspects (Adler, 2012): impartiality,
equity, and efficiency. Impartiality corresponds to the “equal
treatment of equals” principle, which is arguably one of the
most important pillars of fairness. In this paper, we assume
that all users are identical and should therefore be treated
similarly. In terms of utility vectors, impartiality implies
that permutations of a utility vector are equivalent solutions.

Equity is based on the Pigou-Dalton principle (Pigou, 1912;

Dalton, 1920), which states that a reward transfer from a
better-off user to a worse-off user yields a fairer solution.
Formally, it is expressed as follows: for any utility vector
u € RP, if uj —u; > ¢ > 0, then u + ce; — ce;j is
considered fairer than u, where e; € RP (resp. e; € RD)
is the null vector except in component ¢ (resp. j) where
it is equal to 1. Such a transfer is called a Pigou-Dalton
transfer. This principle formally expresses the notion of
equal distribution of “wealth”, which is the basis of the
equity property that we want our fairness concept to satisfy.
This principle is natural in our context where accumulated
rewards vectors are interpreted as wealth distributions.

Efficiency states that between two feasible solutions, if one
solution is (weakly or strictly) preferred by all users, then
it should be preferred to the other one. This simply corre-
sponds to Pareto dominance? in the space of users’ utilities.
Although efficiency is not always considered an integral part
of fairness, one could argue that it would be unfair in the
name of equity not to increase the rewards of all or some
users while not decreasing the rewards of any other users, if
that were possible. Without efficiency, giving no reward to
all users would be as good as giving 100 to all users.

To make this notion of fairness operational, we adopt the ap-
proach based on social welfare functions. A social welfare
function (SWF) is a function ¢ : RP — R, which aggre-
gates a utility vector and measures how good it is in terms of
social good. Naturally, among all SWFs, we consider those
that satisfy the notion of fairness we have just discussed.

Impartiality implies that an SWF ¢ should be symmetric,
that is ¢ should be independent of the order of its arguments,
i.e., ¢(u) = ¢(u,) where o is a permutation and u,, is the
vector obtained from vector u permuted by o. Efficiency
means that ¢ should be strictly monotonic with respect to
Pareto dominance, i.e., u > v = ¢(u) > ¢(u'). Fi-
nally, the Pigou-Dalton principle implies that ¢ should be
strictly Schur-concave (i.e., strictly monotonic with respect
to Pigou-Dalton transfers).

In this paper, an SWF will be called fair SWF if it satisfies
the three previous properties. Many fair SWFs have been
proposed in the literature. One may distinguish two main
families. The first is the generalized Gini SWF (GGF),
which is defined as follows:

Guw(u) = > wiu] (1)

ke[D]

where w € [0,1]7 is a fixed strictly decreasing weight
vector (i.e., wy > wy > ... > wp) and u' is the vector
obtained from w by sorting its components in an increasing
order. By choosing appropriately the weights w (and in

?For any (u,u’) € RP*P 4 Pareto-dominates u’ (denoted
w > u')if Vi, u; > uj and 37, u; > uj.
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some cases allowing them to be weakly decreasing), this
family of SWF includes the maxmin egalitarian approach
(wp = 1,wy = ... = wp = 0), the regularized maxmin
egalitarian approach (w1 = 1,we = ... = wp = ¢€), the
leximin egalitarian approach (Vi, w;/w;+1 — ©0), or the
utilitarian approach (Vi, w; = 1). However, requiring that
weights w are strictly decreasing is important to ensure that
the obtained solution is fair (i.e., Pareto optimal and equi-
table). Another family of SWF can be written as follows:

where U : R — R is strictly increasing and strictly con-
cave. Recall a function that is symmetric and strictly con-
cave is strictly Schur-concave. This family is very gen-
eral and includes proportional fairness (Piéro et al., 2002)
when U(z) = log(x) and more generally a-fairness (Mo
& Walrand, 2000) when Uy (z) = 2 if @ # 1 and
Us(z) = log(x) otherwise, with parameter « > 0 con-
trolling the aversion to inequality. We denote the corre-
sponding SWF ¢,. When o — o0, it tends to the leximin
egalitarian formulation. Even more broadly, this family in-
cludes SWFs derived from the generalized entropy index
(Shorrocks, 1980).

The exact choice of an SWF depends on the specific prob-
lem one wants to solve. Intuitively, a fair SWF trades off
between equity and efficiency: optimizing a given fair SWF
amounts to selecting among Pareto-optimal solutions the
one with the best trade-off. As we aim at designing a generic
approach for fairness, we leave this choice unspecified.

3.3. Problem Statement

As usual, in order to tackle problems with large-sized or
even continuous state/action spaces, we assume that the
policy space is parameterized. Based on the notion of fair
SWE, our problem can be simply formulated as follows:

max 6(J (0)) @

where 0 is the parameters of the joint policy of all the agents
and J;(0) = Eg[>_,v'ri] is the expected sum of dis-
counted rewards for user k. Interestingly, the two families of
fair SWFs that we recalled correspond to concave functions,
which implies that (2) is a convex optimization problem.

Since each user’s utility only depends on one agent, our
problem can be written as:

mgmxfj(@) = mélX¢(J11(91),---,JIN(GN)) 3)

where 8 = (01, ...,0y) is the policies’ parameters of w =
(m1,...,mN) respectively and I; corresponds to the set of
indices of users whose utilities depend on agent ¢. In the next

section, we propose an efficient MADRL method to solve
this problem. Note that although J(8) is vectorial, this is a
single objective optimization problem since ¢ : R” — R.
We leave for future work the case where the satisfaction of
one user may depend on several agents.

This formulation, which may appear restrictive, is already a
generalization of the usual setting where fairness is defined
over agents. Moreover, it enjoys attractive advantages. It
is simple, and transparent, openly presenting what is opti-
mized. It is theoretically-founded as fair SWFs encode a
clear and well-defined notion of fairness. This formulation
and our solution method are generic, since it accepts any
(sub)differentiable social welfare function (actually, even if
it does not encode fairness).

4. Solution Method

To learn distributed fair policies, our solution is based on the
optimization of SWFs combined with communication be-
tween agents. To efficiently optimize the SWF, we propose
Self-Oriented Team-Oriented networks (SOTO) updated by
dedicated policy gradients (Algorithm 1).

4.1. Policy Gradient

As the problem we want to solve can be expressed as a
convex optimization problem, we adopt a policy gradient
approach implemented in an actor-critic architecture for
increased efficiency. In the context of decentralized policies,
we can derive a direction to optimize the SWF for the i
agent (see (3)):

Vo, ¢(J(0)) = Vud(J(0))T - Vo, J(0),  (4)

where Vg, J(0) is a D X |§;|-matrix representing the usual
stochastic policy gradient over the D different reward com-
ponents and V,¢(J(0)) is a D-dimensional vector. For
instance, with GGF, V,,G.,(J(0)) = w, where o is a per-
mutation that sorts J(0) in an increasing order. Similarly,
for a-fairness, we have V¢, (J(0)) = J(0)~* where
exponentiation is componentwise.

Let A(s, a) denote a D-dimensional vector representing the
joint advantage function of taking the joint action a in joint
state s under the joint policy parameterized by 6. Using the
policy gradient theorem (Sutton et al., 2000) and since the
policies are independent, the gradient can be written as:

V0,J(8) =Eo[A(s,a) - Vi, logmo(als)" | 5)

~ Eq KAIj (s, a))jem -V, log e, (ai|0i)T} ;

where a; refers to the individual action taken by the i agent,
0; is the local observation of the i agent sampled from
Q;(s) and Vg, log 7y, (a;|0;) is a |0;|-dimensional vector.
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Figure 1: The SOTO architecture is composed of a self-oriented
policy and a team-oriented policy. The self-oriented policy opti-
mizes its individual utility J7, and recommends an action distribu-
tion to the team-oriented policy, which optimizes the SWF ¢(J).
Dashed arrows represent backpropagation flow.

The approximation is due to using decentralized policies
with local observations.

However, in the decentralized multi-agent setting, comput-
ing (Ay,(s,a));jen) would usually require a centralized
critic, thus computing the correct direction Vg, ¢(J(0)) is
generally not possible. Instead, to approximate the aggre-
gated advantages, we use the local critic of each agent (each
critic ignores the effects of other agents):

Ali(sa a) ~ AI'L (Oivai) =Ty +7‘7Ii (0;) - ‘A/Il (Oi)7 (6)

with ' ~ P(:|s,a) and o, ~ €;(s’). Hence, to approxi-
mate the aggregate advantage (A7, (s, a));c|n], the agents
share their local advantages A 1;(05,a;). We denote this

approximated aggregate advantage by A(o, a):

(AI]. (s, a)) ~A(0,a) = (AIJ, (0}, aj)) )

JE[N] JE[N]

In practice, instead of using the temporal difference (6) over
one transition, TD()) can be used to reduce the bias of this
estimation (Sutton & Barto, 2018; Schulman et al., 2016).

By combining (4), (5) and (7), the SWF policy gradient
direction becomes:

Vo,0(J(0)) ~ Eg |[ASF - Uy, log mo, (ailo) "], ®)
where ASVF = V,,6(J(0))" - A(0, a). As the policies are
represented by neural networks, this gradient (8) is conve-
nient to compute by simply backpropagating ASWF inside
the policy network.

4.2. Neural Network Architecture

Since the agents do not have access to a centralized critic,
they may receive conflicting information about the quality of
their behaviors from ASWF. This can prevent an agent i from
knowing whether any good/bad performance with respect

to its “individual utility” J, (self-oriented performance)
or with respect to the global social welfare (team-oriented
performance) comes from themselves or from the behavior
of others (credit assignment problem with non-stationarity).

To avoid this conflict and potential catastrophic forgetting of
a good self-oriented behavior, we propose a neural network
architecture where the policy optimizing the individual util-
ity is no longer disturbed by the local critics of other agents
(Figure 1).

In this architecture, the actor is composed of two sub-
networks, which can be viewed as two different policies:
one is self-oriented and the other team-oriented. The critic
is designed in a similar fashion with two corresponding sub-
networks, which take the same inputs as their respective
policies, providing a critic to them. The self-oriented pol-
icy optimizes its individual utility given by its own critic
without taking into account the shared advantages. The
backpropagated advantages A™NP for the self-oriented pol-
icy are defined as:

AP =V, ¢(J(0))T - Ay, (0i, ). 9)

Note that for the specific case of |I;] = 1, ANP —
Aj (05, a;) is used directly as Vaur, ¢(J(8)) reduces to scal-
ing the learning rate. The team-oriented policy is updated
by (8) with the aggregated advantages ASWF.

The team-oriented policy takes as input the distribution pro-
posed by the self-oriented one, the estimated J () of its
neighbors, and the usual environmental observations. Ob-
serving J (@) is important because it is an essential informa-
tion for making a fair decision. Without it, an agent cannot
know whether all users are treated fairly or not, since it only
observes the rewards of a subset of the users. For instance,
in a resource collection task, an agent needs to know its own
score and its neighbors’ scores to decide if it wants to start
sharing resources. Moreover, having access to the output of
the self-oriented policy greatly simplifies decision-making
when an agent’s score is lower than its neighbors’: it can
simply mimic the self-oriented policy.

4.3. Training Schedule

Because the decentralized execution of independent poli-
cies causes non-stationarity in the gathered experience, like
previous MADRL methods (Foerster et al., 2016; Jiang &
Lu, 2019), we avoid off-policy learning. Therefore, to en-
sure on-policyness of transitions used to train our proposed
architecture, the policy applied in the environment must be
fixed during a period (we used the minibatch size). When an
episode starts (see Alg. 1), each agent chooses with probabil-
ity 3 if it applies its self-oriented policy (or its team-oriented
policy otherwise). Since, an agent must already know how
to exploit its own utility before being fair, 8 should be high
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Algorithm 1 SOTO algorithm in CLDE scenario

Given E the total number of episode
Initialize 7;, 7}, v;, v}, respectively the team-oriented/self-
oriented policies, team-oriented/self-oriented critics.
for each episode e do

B =max(1l - 555,0)

for each agent i do

Initialize J;, =0

(7}, v}) with probability

17 7

(pi, w;) (73, v;) otherwise

end for
while episode e is not completed do
Collect M a minibatch of transitions with g while
updating and sharing J to the neighbors
for each agent i do
Update w; with TD(A\) on M
Compute A 1,(0i,a;) on M with w; and TD(\)
and send it to everyone (6)
if y; = m) then
Update 7} with ANP )
else
Collect and form A (o, a) @)
Update 7; with ASWF (®)
end if
(16, w3) (7}, v}) with prlob. B
(7, v;) otherwise
end for
end while
end for

at the beginning of training. However, since we ultimately
want to optimize the SWF, 3 should decrease over time.
When f reaches zero, which happens at half of the learning
with linear annealing in our experiments, the weights of the
self-oriented policy will not be updated anymore.

4.4. Communication

The presentation of our method corresponds to the Cen-
tralized Learning with Decentralized Execution (CLDE)
scenario. We can also evaluate our approach in the Fully
Decentralized (FD) scenario. Recall that for both scenarios,
during the execution phase, the communication for an agent
i is restricted to the sharing of its J, (@) with its neighbors.
During learning, while the agents in CLDE can communi-
cate with all other agents, the agents in FD are allowed to
communicate only with neighbors.

Note that our method never learns a centralized critic: it
neither communicates full states nor actions, but only J7, (0)
and advantages A 1,- Thus, it scales well since the costliest
operation depending on D is a matrix product of size D x m
where m is the minibatch size to compute ASWF,

When a complete minibatch is collected, the advantages are
shared during the learning phase to form A(o, a). This is
only possible in the CLDE scenario. In the FD scenario,
several rows of the advantages inside A (o, a) might be set
to zero for agents not being in the neighborhood. Instead of
using (7), we have

A(o,a) = ({Afj(0j7aj)7 if j € N(i) > |
jE[N]

0 otherwise

where N/ (i) refers to the neighbors of the i™ agent.

In the following paragraph, we compare the number of
messages (1 float) sent by an agent for different algorithms.
Given k; the number of neighbors of agent 7, with k; <
N — 1, at each time step the agent shares its Jp, (6) with
each neighbor. During the update phase, which happens
when a minibatch of size M is full, they also share their
estimated advantages for this minibatch and their estimated
Ji, to all agents. Thus, our method sends on average (k; +
(14 37)(N —1))|L;| messages per step for each agent in the
CLDE scenario and 2k;|I;| messages in the FD scenario. As
comparison, an agent in FEN sends on average gk messages
where g is the number of gossip rounds and k& is the number
of random chosen agents to send the message. Generally, g
needs to be greater than the diameter of the graph (so that the
information can traverse the graph), which is upperbounded
by the number of agents. Thus, assuming k ~ k;, our
method can be much more parsimonious than FEN in terms
of communication when N becomes large. Likewise, a
centralized critic would require even more communication
by sending on average 2 (dim(A;) + dim(O;) + |I;| +
1) + k;|I;| messages every steps.

5. Theoretical Analysis

We analyze the convergence of a policy gradient method
to solve Problem 3 under standard assumptions. The nov-
elty of our analysis is two-fold. Contrary to previous work,
we consider the partial observability of states and rewards,
which is more realistic and fits better the decentralized set-
ting. Besides, the overall objective is a non-linear concave
function of the vector of the expected discounted rewards.

We can prove the following convergence result, which we
state informally (see Appendix A for full details):

Theorem 5.1. Under standard assumptions with a linear
approximation scheme, the SWF objective 3(8%) converges
almost surely and with a sub-linear convergence rate within
a radius of convergence t of the optimal value J* where
t depend on the approximation errors of (a) estimating J,
(b) estimating A(o, a), and (c) ignoring the effects of one
agent’s action over other agents.

Interestingly, this result implies a corollary, which provides
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a high-probability bound on the number of iteration steps
before convergence. We provide all the details, further
discussion, and the proofs in Appendix A. Besides, this the-
oretical analysis somewhat further justifies our architecture
with a specific critic for the self-oriented policy, which helps
reduce error (b) and therefore the radius of convergence.

6. Experiments

To test our algorithms, we carried out experiments in three
different domains (detailed descriptions is available in the
appendix): Matthew Effect (Jiang & Lu, 2019), distributed
traffic light control (Lopez et al., 2018) and distributed data
center control (Ruffy et al., 2019). We also evaluated our
approach on the two other domains proposed by Jiang &
Lu (2019), Job Scheduling and Plant Manufacturing. How-
ever, Job Scheduling being an easy artificial domain and
Plant Manufacturing having an artificially-designed reward
function, most of those results are presented in the appendix.

The first domain is Matthew Effect where 10 pac-men with
different initial sizes have to collect resources which reap-
pear randomly each time they are collected in a grid. The
more resources an agent collects, the easier the task becomes
for an agent because its size and speed increase.

The second domain adopted is a distributed traffic light
control scenario. In this problem, we simulate a 3x3 inter-
section grid with Simulation of Urban Mobility (SUMO)
where each of the nine agents controls the traffic light phase
of one intersection. The global state is composed of the
waiting time, density of cars, queue lengths, and current
traffic-light phase of each intersection. For each agent, an
action amounts to choosing the next traffic-light phase. The
reward function of an agent is defined as the negative total
waiting time at its intersection. Fairness can be understood
as having low waiting times at every intersection. Note
this domain is typically an example where there is no equal
access to resources: some intersections will have naturally
more traffic than others.

Our third domain is a data center control problem, where 16
hosts are connected with 20 switches in a fat-tree topology
(see Figure 21 in the appendix). The network is shared
by a certain number of hosts. The state is composed of
information statistics about network features and the goal of
each host/agent is to minimize the queue lengths in network
switches. The continuous action corresponds to the allowed
bandwidth for a host.

In all our experiments, we rely on the Proximal Policy Op-
timization (PPO) algorithm (Schulman et al., 2017). The
detailed hyperparameters are provided and in Appendix D.1
and available online®. To demonstrate the generality of our

*https://gitlab.com/AARAL/DFRL
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Figure 2: Comparison of SOTO and Basic in Matthew Effect in
the CLDE and FD scenarios with GGF and a-fairness.
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Figure 3: Trajectory of solutions reached by Independent, FEN,
and SOTO on Matthew Effect in the CLDE scenario.

approach, we run our method with GGF (using w; = 2i)
and a-fairness (using o = 0.9). The different statistics are
computed over the 50 last trajectories of 5 different runs.

We name the methods that we evaluate as follows.
Basic(G,,) and Basic(¢,,) refer to baselines where PPO
optimizes the SWF directly without our proposed neural
network architecture. It is equivalent to removing the self-
oriented policy from our architecture and keeping the ob-
servation of neighbors J(8). SOTO(G,,) and SOTO(¢,,)
refer to instances of our proposed method. The prefix "FD”
refers to the fully decentralized version. We also compare
our methods with state-of-art algorithms such as FEN (Jiang
& Lu, 2019), a centralized critic method COMA (Foerster
et al., 2018) and value-based algorithm WQMIX (Rashid
et al., 2020). FEN without gossip, labeled "FEN-g”, as-
sumes that the agents know the average utility (e.g., by
exchanging all their utilities).

How does our architecture SOTO perform? We first
discuss the experimental results in Matthew Effect and com-
pare our architecture SOTO with several baselines. Similar
observations can be made in other domains. Comparing
to Basic, Figure 2 shows that SOTO provides a large im-
provement over the different criteria (for CV lower is better).
Both in CLDE and FD scenarios, with GGF and «-fairness,
our architecture Pareto-dominates the equivalent approach
using the basic architecture without it.
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Figure 4: Trajectory of solutions reached by Independent, FEN,
and SOTO on Matthew Effect in the FD scenario.
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Figure 5: Comparison of SOTO, centralized critic, value based ap-
proaches and Independent in Matthew Effect (top) and Job Schedul-
ing (bottom) in the CLDE scenario.

To compare with FEN, for better legibility, we plot the tra-
jectories of the policies obtained during training in the space
“efficiency” vs “equity” (Figure 3 and Figure 4 in the CLDE
and the FD scenario respectively): total income vs min re-
source collected (higher in both dimensions is better) and
total income vs CV (lower CV is better). As a sanity check,
we include Independent where each agent optimizes its own
utility, which in this domain is similar to optimizing the
total income. This plot clearly shows that FEN converges to
a worse policy than SOTO(G ) both in terms of efficiency
and equity. SOTO(¢,,) can also Pareto-dominate FEN in
terms of min resource collected, but not in terms of CV.
These plots illustrate that a-fairness provides a different
trade-off between efficiency and equity compared to GGF.
Our experiments also suggest that FEN may perform well
in terms of CV due to its low efficiency.

As a sanity check, we also compare our method with state-
of-the-art standard algorithms such as COMA and WQMIX.
In addition, we consider two other variants: COMA(G.,),
which is COMA extended to optimize G,,; CC(G,), which
is the equivalent of Basic but with a centralized state-value
function. Note that because of negative rewards, applying
¢« 1s not possible without tuning the reward function.

As expected, Figure 5 shows that COMA is better than
Independent in terms of total income. In Job Scheduling,
WQMIX performs well in terms of total income but it has
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Figure 6: Algorithms’ performances in the SUMO environment.
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Figure 7: Algorithms’ performances in data center control.

the worst CV, while COMA(G,,) and CC((G,) reach the
lowest (better) CV. It shows that our proposition of optimiz-
ing a SWF to achieve fairness can easily be extended with
a centralized critic. Due to the availability of (o, a), (7)
can be computed with less bias, which explains why it can
outperform SOTO. However, due to the centralized critic
and value function, those variants of COMA and vanilla
WQMIX are not able to scale in Matthew Effect where they
perform poorly compared to SOTO(G,).

Using the SUMO domain, we further demonstrate that our
method can scale up to more complex control tasks, even
with unequal access to resources. For this domain, we added
two classic baselines. At each time step, "Random” selects
an action according to a uniform random distribution and
“Fixed Strategy” cycles between the traffic-light phases fol-
lowing an optimized period. Note that a-fairness can not be
directly applied here because of negative rewards. Figure 6
shows that in terms of global waiting time, Independent
works better than Random, but worse than Fixed Strategy,
which means that being too selfish in this domain makes the
task harder to solve globally. On the contrary, if the agents
cooperate, the traffic flows more smoothly.

Our methods SOTO(G.,) and FD SOTO(G,,) are able to
reach the lowest waiting times. The latter performs better
than FEN and WQMIX on all other dimensions (global
waiting time, CV, and max waiting time). FEN achieves a
lower CV than Random but at the cost of the worst global
waiting time. Note that FEN diverges in this environment.

Using the data center control problem, we show how well
our method can perform on continuous action spaces. To
do so, we extended FEN to continuous actions and we also
added two classic baselines, "Random” and “Fixed Strat-

egy”. “Random Policy” selects an action according to a
uniform random distribution and “Fixed Strategy” always
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tialized self-oriented policy on Matthew Effect.
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Figure 9: Comparison of SOTO(G.) and SOTO(¢) with/without
pretraining in Matthew Effect in the CLDE scenario.

chooses an optimized fixed bandwidth for each host. Note
that a-fairness cannot also be applied directly here due to
negative rewards. In Figure 7, as expected, the random pol-
icy performs worse as it has the lowest total bandwidth. The
fixed policy performs better than random but worse than
RL algorithms except FEN. Our method with GGF has a
lower CV than current state-of-art FEN and the random pol-
icy. The fixed policy has the lowest CV as the same action
is applied to all agents. In terms of total bandwidth our
method performs very well as it maintains the maximum
and minimum bandwidths.

Ablation Study We first check that the information con-
tained in the self-oriented policy is really used by the team-
oriented policy. One could argue that SOTO works bet-
ter than Basic because of the additional inputs (the pro-
jection of the observation). To verify this hypothesis, we
trained SOTO with a randomly initialized self-oriented pol-
icy (equivalent of using the pretraining baseline with z = 0).
Therefore § is not used in this baseline. In Figure 8, it is
clear that the information gathered in the self-oriented policy
is important to optimize the SWF.

To justify the use of /3, we compare our approach in Matthew

Effect with two other baselines with pretraining, i.e., the
self-oriented policy is trained first, then the team-oriented
one is trained. Those baselines are labeled with the pt.
x” tag where x refers to the ratio of the episode dedicated
to the pretraining. Figure 9 clearly indicates that training
incrementally with 8 by switching the policy used is more
data efficient than using pretraining.

We refer the reader to Appendix B for additional experi-
ments analyzing SOTO, FEN, and Basic.

7. Conclusion

We justified and formalized in a theoretically founded way
the problem of fair policy optimization in the context of co-
operative multi-agent reinforcement learning with indepen-
dent policies. We proposed a simple, general and scalable
method with a novel neural network architecture allowing
an agent to learn to be first self-concerned in order to be
able to reach a fair solution in a second step. We further-
more provided a theoretical convergence analysis of policy
gradient for this fair optimization problem. We experimen-
tally shown that each component of our proposed method is
useful and that our approach achieves state-of-the-art results
on various domains in two different training scenarios.

As future work, the relaxation of impartiality, the non inde-
pendence of agents regarding users’ utilities, or the simul-
taneous learning of the self-oriented and the team-oriented
policies will be considered. Another interesting question is
how to learn to communicate to achieve fairer solutions.
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