
Exploration in Approximate Hyper-State Space

Exploration in Approximate Hyper-State Space
for Meta Reinforcement Learning

Supplementary Material

A. Additional Background
A.1. Randomised Prior Functions

In reinforcement learning, we can use the fact that unseen
states can be seen as out-of-distribution data of a model
that is trained on all data the agent has seen so far. Get-
ting uncertainty estimates on states can thus quantify our
uncertainty about the value of a state and in turn whether
we have explored these states sufficiently. We can think
about why exploration purely in the state space S (which
is shared across tasks) is not enough: if the agent has ex-
plored a state many times in one task and is certain of its
value, it should not necessarily exploit this knowledge in
a different task, because this same state could have a com-
pletely different value. We cannot view these as separate
exploration problems however, since we also have to try out
different deployed exploration strategies and combine the
information to meta-learn Bayes-optimal behaviour.

Therefore, we want to incentivise the agent to explore in
the hyper-state space S+ = S ⇥ B. Only if an environment
state together with a specific belief has been observed suffi-
ciently often to determine its value should the agent trust its
value estimate of that belief-state. This therefore amounts
to exploration in a BAMDP state space, which essentially
means trying out different exploration strategies in the en-
vironments of the training distribution. We use Random
Network Distillation (RND) (Osband et al., 2018; Burda
et al., 2019b; Ciosek et al., 2020) to obtain such uncertainty
estimates and review them using the formulation of Ciosek
et al. (2020) in the following.

Assume we are given a set of training data D = {si}Ni=1

of all states the agent has observed. To get uncertainty
estimates, we first fit B predictor networks gj(s) (j =
1, . . . , B) to a random prior process fj(s) each (a network
with randomly initialised weights, which is fixed and never
updated). We then estimate the uncertainty for a state s⇤ as

�2(s⇤) = max(0, �2
µ
(s⇤) + �v�(s⇤)� �2

A
), (7)

where �2
µ
(s⇤) is the sample mean of the squared errors

between the B predictor networks and the prior processes;
v�(s⇤) is the sample variance of the squared error. The first
quantifies our uncertainty, whereas the second quantifies
our uncertainty over what our uncertainty is. In practice,
B = 1 is typically sufficient and the second term disappears
(Ciosek et al., 2020). The term �2

A
is the aleatoric noise

inherent in the data which is an irreducible constant. In
theory, this can be learned as well and depends on how
much information can be extracted about the value of states

and actions from the data. In practice, we set this term to 0.

Given a hyper-state s+
t
= (st, bt), an ensemble of B prior

networks {f i(s+)}B
i=1 and corresponding predictor net-

works {hi(s+)}B
i=1, the reward bonus is defined as

rc(s
+
t
) = max(0, �mu2(s+

t
) + �v�(s

+
t
)� �2

A
) (8)

where �mu2(s+
t
) is the sample mean of the squared error

between prior and predictor networks and v�(s
+
t
) is the

sample variance of that error.

B. Additional Results
In this section we provide additional experimental results.
The first two sections are additional environments – in par-
ticular sparse environments used in the literature before, but
where we found that our baselines already performed very
well. In addition, we provide more details and results for
the experiments in the main paper.

Implementation details, including hyperparameters and en-
vironment specifications, are given in Appendix C. The
(anonymised) source code is attached as additional supple-
mentary material.

B.1. Meta-World

To test how our method scales up to more challenging prob-
lem settings, we evaluate it on the Meta-World benchmark
(Yu et al., 2019), where a simulated robot arm has to per-
form tasks. We evaluate our method on the ML1 benchmark,
of which three different versions exist: reach/push/pick-and-
place (in increasing order of complexity). In each of these,
task distributions are generated by varying the starting posi-
tion of the agent and the goal/object positions.

Each environment has a dense reward function that was de-
signed such that an agent trained on a single task (i.e., fixed
starting/object/goal position) can learn to solve it. Evalu-
ation is done in terms of success rate (rather than return),
which is a task-specific binary signal indicating whether the
task was accomplished (at any moment during the rollout).
Yu et al. (2019) proposed a sparse version of this benchmark
that uses this binary success indicator, rather than the dense
reward, for training. This sparse version was used in (Zhang
et al., 2020), on ML1-reach and ML1-push.

The agent is trained on a set of 50 environments and evalu-
ated on unseen environments from the same task distribution.
In all baselines, the agent has 10 episodes to adapt, and per-
formance is measured in the last rollout. Since we consider
the online adaptation setting where we want the agent has
to perform well from the start, we trained VariBAD and Hy-
perX to maximise online return during the first two episodes.
This is more challenging since it includes exploratory ac-
tions.



Exploration in Approximate Hyper-State Space

Dense Rewards Sparse Rewards
Method Test Episode Reach Push Pick-Place Reach Push Pick-Place

MAML⇤ 10 48 74 12 - - -
PEARL⇤ 10 38 71 28 - - -
RL2⇤ 10 45 87 24 - - -
E-RL2+ 10 - - - 28 7 -
MetaCURE+ 10 - - - 46 25 -

VariBAD 1 100 100 29 (6/20 seeds) 100 100 2 (1/20 seeds)
VariBAD 2 100 100 29 100 100 2

HyperX 1 100 100 43 (9/20 seeds) 100 100 2 (1/20 seeds)
HyperX 2 100 100 43 100 100 2

Table 2. Meta-test success rates on the ML1 Meta-World benchmark, for the dense and the sparse reward version. ⇤Results taken
from Yu et al. (2019). +Results taken from Zhang et al. (2020). We ran VariBAD and HyperX for 5 random seeds for dense reach/push,
and 20 seeds for dense pick-place. VariBAD and HyperX were trained to maximise expected online return within 2 episodes. The first
(few) episodes often includes exploratory actions, yet have higher success rate than existing methods that maximise final episodic return.
For the sparse Pick-Place environment, in brackets we report the number of seeds that learned something.

Table 2 shows the results for both the dense and sparse
versions of ML1.

ML1-reach / ML1-push. VariBAD achieves 100% success
rate on both the dense and the sparse version of ML1-reach
and ML1-push in the first rollout. Compared to other exist-
ing methods – even MetaCURE (Zhang et al., 2018) which
explicitly tries to deal with sparsity – this is a significant
improvement. We confirm in our experiments that HyperX
does not decrease performance and also reaches 100% suc-
cess rate on these environments.

ML1-pick-place. The environment ML1-pick-place is
more challenging, because the task consists of two steps:
picking up an object and placing it somewhere (where both
the object and goal location differ across tasks). Even on the
dense version, existing methods struggle. HyperX achieves
state of the art on this task with 44.5% success rate, sug-
gesting HyperX can help meta-learning even when rewards
are dense. For VariBAD and HyperX we found that our
agents either learn the task near perfectly (and have close to
100% success rate in the first rollout), or not at all. VariBAD
learned something for 6 out of 20 seeds, and HyperX learned
something for 9 out of 20 seeds. For the sparse version of
this environment, we only saw some success for 1/20 seeds
for both VariBAD or HyperX.

We suspect that the main challenge in ML1-Pick-Place is the
short horizon (150), which does not give the agent enough
time to explore during meta-training. This is why HyperX
can give some improvement even in the dense version. In
an upcoming version of Meta-World (Yu et al., 2019), the
horizon will be increased to 200, opening up interesting
opportunities for future research on sparse Pick-Place.

B.2. Sparse 2D Navigation

We evaluate on a Point Robot 2D navigation task used by
Gupta et al. (2018); Rakelly et al. (2019); Humplik et al.
(2019). The agent must navigate to an unknown goal sam-
pled along the border of a semicircle of radius 1.0, and
receives a reward relative to its proximity to the goal when
it is within a goal radius of 0.2. Thus far, only Humplik
et al. (2019) successfully meta-learn to solve this task by
meta-training with sparse rewards, though they rely on priv-
ileged information during meta-training (the goal position).
The other methods meta-train with dense rewards and eval-
uate using sparse rewards. We use a horizon of 100 here
(instead of 20 as in the papers above) to give VariBAD and
HyperX enough time to demonstrate interesting exploratory
behaviour.

Figure 7A shows the performance of PEARL, VariBAD,
and HyperX at test time, when rolling out for 30 episodes.
Both VariBAD and HyperX adapt to the task quickly com-
pared to PEARL, but HyperX reaches slightly lower final
performance.

To shed light on these performance differences, Figures
7B and 7C visualise representative example rollouts for
the meta-trained VariBAD and HyperX agents. We picked
examples where the target goals are at the end of the semi-
circle, which we found are most difficult for the agents.
VariBAD (7B) struggles to find the goal, taking several
attempts to reach it. Once the goal is found, it does return
to it but on a sub-optimal trajectory. By contrast, HyperX
searches the space of goals more strategically, and returns
to the goal faster in subsequent episodes.



Exploration in Approximate Hyper-State Space

(A) Meta-Test Performance (B) VariBad example rollout (C) HyperX example rollout

Figure 7. Meta-test performance on the Sparse 2D Navigation environment. Left: Performance averaged over the task distribution at the
end of training. Because PEARL is not optimizing for optimal exploration, it requires many more episodes to find the goal. Both VariBad
and HyperX optimise for optimal exploration and are able to quickly find the goal. However, VariBad’s exploration is suboptimal, not
covering all possible goal locations equally well (see middle plot), explaining the lower performance compared to HyperX.

B.3. Treasure Mountain

Ablations. Figure 8A shows the learning curves for the
HyperX, in comparison to ablating different exploration
bonuses. When using only the hyper-state novelty bonus
rhyper, HyperX learns the inferior strategy of walking in
a circle: it has no incentive to go up the mountain early
in training (because beliefs there are meaningless because
the VAE has not learned yet to interpret the hint) and stars
avoiding the mountain. When using only the VAE recon-
struction error bonus rerror, the agent learns the superior
strategy of walking up the mountain to see the goal location
70% of the time (7/10 seeds). In contrast, HyperX, which
uses both exploration bonuses, learns the superior strategy
for all 10 seeds. Lastly, we tested VariBAD with a simple
state novelty exploration bonus: this again learns the infe-
rior circle-walking strategy only, because it quickly learns
to avoid the mountain top.

Baselines - Performance. Figure 8B shows the learning
curves for HyperX and VariBAD (discussed in Sec 5.1), as
well as additional baselines RL2 (Duan et al., 2016; Wang
et al., 2016) (which is a model-free method where the policy
is a recurrent network that gets previous actions and rewards
as inputs in addition to the environment state) and the Be-
lief Learning method of Humplik et al. (2019) (which uses
privileged information – the goal position – during meta-
training). Both these baselines also only learn the inferior
circle-walking strategy, because the correct incentives for
meta-exploration are missing.

Baselines - Behaviour. Figures 8C and 8D show meta-test
time behaviour of VariBAD and RL2: both methods learn to
walk in a circle until the goal is found. This was consistent
across all (10) seeds.

B.4. Sparse CheetahDir

Figure 9 shows the learning curves for the Sparse Chee-
tahDir experiments, with 95% confidence intervals (over 20
seeds). Fig 9A shows this for the Belief Oracle, with dif-
ferent exploration bonuses. Fig 9B shows this for HyperX,
with different exploration bonuses.

Figure 9C shows example behaviour of a suboptimal policy
at test time. The agent returns back into the zero-reward
zone after realising that the task was not ”go left”, but stays
in there instead of behaving optimally, which is going further
to the right and into the dense reward area beyond the sparse
interval border.

B.5. Sparse MuJoCo AntGoal

In addition to the main results in the paper (Sec 5.4) we
provide additional experimental results here.

Figure 10A shows the returns achieved by the agents across
different episodes. Figures 10B show the learning curves
for the returns during the first episode, with 95% confidence
intervals (shaded areas, 10 seeds). Figure 10C shows the
combined learning curves, comprising of all 6 episodes, with
95% confidence intervals (shaded areas, 10 seeds). Figures
12 and 11 show example rollouts for VariBAD and HyperX.

Dense AntGoal. We also evaluated HyperX on the dense
AntGoal environment. VariBAD and HyperX were trained
to maximise performance within a single episode. PEARL
was trained with the default hyperparameters provided by
the open-sourced code of the authors. The results are::
VariBAD: -123 (Episode 1), HyperX: -127 (Episode 1),
PEARL: -200 (Episode 6). This confirms that HyperX does
not impact performance, but that there is also not much
room for improvement.



Exploration in Approximate Hyper-State Space

(A) Learning curves for ablations. (B) Learning curves for baselines.

(C) VariBAD (D) RL2

Figure 8. Treasure Mountain - Additional Rollouts. Shown are example rollouts for the final agents of VariBAD (Zintgraf et al., 2020)
and RL2 (Duan et al., 2016; Wang et al., 2016). They follow the inferior exploration strategy of walking around the circle until the treasure
is found, instead of climbing the mountain to directly observe the treasure and get there faster.

(A) Belief Oracle. (B) HyperX

(C) Behaviour of a policy which failed to learn
Bayes-optimal behaviour. We observe such
behaviour often when training HyperX with
the reward bonus on the hyper-states only,
rhyper(b, s).

Figure 9. HalfCheetahDir: Additional Results. Learning curves for the Belief Oracle (A) and HyperX (B), with and without reward
bonus, averaged over 20 seeds..

(A) Return per episode at meta-test time (stan-
dard error shaded). RL2 and PEARL do not
learn to solve the task and achieve a reward
of around -150 per episode.

(B) Learning curve (return in ep 1) (C) Learning Curve (sum of returns in ep 1-6)

Figure 10. Sparse AntGoal: Additional Plots. (10 seeds).



Exploration in Approximate Hyper-State Space

Figure 11. HyperX Example Rollouts Figure 12. VariBAD Example Rollouts



Exploration in Approximate Hyper-State Space

C. Implementation Details
The source code is available as additional supplementary
material. In this section, we provide the environment speci-
fications (C.1), runtimes (C.5), and hyperparameters (C.6).

C.1. Environment Specifications

In this section we provide additional details on the environ-
ments that were used in the main paper. Implementation of
these environments are in the provided source code.

C.1.1. TREASURE MOUNTAIN

This environment is implemented as follows. The treasure
can be anywhere along a circle of radius 1. Within that circle
is a mountain – implemented as another circle with radius
0.5. The horizon is 100 and there are no resets. The agent
always starts at he bottom of the circle. It receives a reward
of 10 when it is within a Euclidean distance of 0.1 within
the treasure (the treasure does not disappear, so it keeps
receiving this reward if it stays there). It receives a penalty
for climbing the mountain, given my �5.5 + ||(x, y)||2
where (x, y) is the agent’s position (the mountain center is
0, 0, and the mountain radius 0.5). If not at the treasure or
on the mountain, the agent gets a timestep penalty of at least
�5, which increases as the agent walks further outside the
outer circle (to discourage it from walking too far). The
agent cannot walk outside [�1.5, 1.5] in either direction.

The observations of the agent are 4D and continuous. The
first two dimensions are the agent’s (x, y)-position. The last
two dimensions are zero if the agent is not on the mountain
top, and are the (x, y)-coordinates of the treasure when
the agent is on the mountain top (within a radius of 0.1).
The agent’s actions are the (continuous) stepsize it takes in
(x, y)-direction, bounded in [�0.1, 0.1].

C.1.2. MULTI-STAGE GRIDWORLD

The layout of this environment is depicted in Fig 3. It consist
of three rooms which are of size 3⇥ 3 grid, and corridors
that connect the rooms of length 3. The environment state
is the (x, y) position of the agent, unnormalised. There are
five available actions: no-op, up, right, down, left.

Three (initially unknown) goals (G1-G3) are placed in cor-
ners of rooms: G1 in the middle room, G2 in the room that
is on the side where G1 was placed, and G3 in the middle
room (but not where G1 was placed). The agent always
starts in the middle of the centre room and has H = 50
steps. The goals provide increasing rewards, i.e. r1 = 1,
r2 = 10 and r3 = 100, but are only sequentially unlocked;
G2 (r2) is only available after G1 has been reached; G3
(r3) is only available after G2 has been reached. The envi-
ronment is partially observable (Poupart & Vlassis, 2008;
Cai et al., 2009) as the agent only observes its position in

the environment and not which goals are unlocked. If the
agent is not on an (available) goal it gets r = �0.1. When
the agent stands on a goal, it keeps receiving the respective
reward while standing there (the goal does not disappear).
The best strategy is to search the first room for G1, then
search the appropriate room for G2, and then return to the
middle room to find G3.

C.2. Sparse HalfCheetahDir

We use the commonly used HalfCheetahDir meta-learning
benchmark (based on code of Zintgraf et al. (2020)), and
sparsify it as follows. If the agent’s x-position is within
[�5, 5] it only gets the control penalty; otherwise it gets the
standard dense reward comprised of the sum of the control
penalty and the 1D velocity in the correct direction.

C.3. Sparse MuJoCo AntGoal

We use the commonly used AntGoal meta-learning bench-
mark (based on code of Rakelly et al. (2019)), and sparsify
it as follows. We extend the environment’s state space by
including the x and y-position of the agent’s torso. In the
original AntGoal, the goal is sampled from within a circle
of radius of 3 with a higher chance of the goal being sam-
pled away from the centre of the circle. Unlike the dense
version where the agent receives a dense goal-related reward
at all times, our sparse AntGoal only receives goal-related
rewards when within a radius of 1 of the goal.

The agent receives at all time a control penalty and con-
tact forces penalty. When outside the goal circle, the agent
receives an additional constant negative reward that is equiv-
alent to the negative goal radius, i.e. �1. When within the
goal circle, the agent receives a reward of 1 for being within
the goal circle and a penalty equivalent to the negative dis-
tance to the goal, essentially encouraging the agent to walk
towards the centre of the goal circle.

C.4. Meta-World

We use the official version of Meta-World as pro-
vided by Yu et al. (2019) at https://github.com/
rlworkgroup/metaworld. As suggested by Yu et al.
(2019) and as tested in Zhang et al. (2020), for the sparse ver-
sion of this environment, we use the success criterion which
the environment returns, and give the agent a reward of 0
if success=False and a reward of 1 if success=True. The
success criterion depends on the environment; in ‘Reach’
for example it is true if the agent put its gripper close to the
(initially unknown) goal position, and false otherwise. For
evaluation, we report ‘Success’ if the agent was successful
at any moment during an episode, following the evaluation
protocol proposed by Yu et al. (2019).

https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld


Exploration in Approximate Hyper-State Space

C.5. Runtimes

Table 3 shows the runtimes for our experiments. Unless
otherwise stated, we used a NVIDIA GeForce GTX 1080
GPU. These runtimes should serve as a rough estimate, and
can vary depending on hardware and concurrent processes.

Environment Frames Runtime (ca.)

Treasure Mountain 8e+7 35h
Multi-Stage Gridworld 1e+8 65h (CPU)
Sparse HalfCheetahDir 3e+7 20h (CPU)
Sparse AntGoal 4e+8 65h
Meta-World 5e+7 45h
Sparse 2D Navigation 5e+7 12h

Table 3.

C.6. Hyperparameters

We train the policy using PPO, and we add the intrinsic
bonus rewards to the extrinsic environment reward and use
the sum when learning with PPO. We normalise the intrinsic
and extrinsic rewards separately by dividing by a rolling
estimate of the standard deviation.

On the next two pages we show the hyperparameters used
for the policy, the VAE, and the exploration bonuses. Hyper-
parameters were selected using a simple (non-exhaustive)
gridsearch.

For the MuJoCo environments, we only used the relevant
state information for the RND hyper-state bonus (the x-axis
for HalfCheetahDir, and the x-y-position for AntGoal).

RND Hyperparameter Sensitivity. To assess how sensi-
tive HyperX to choices of hyperparameters that affect the
hyperstate exploration bonus, we evaluated it on a range
of different choices, shown in Table 4. There is little sen-
sitivity to architecture depth and batchsize, as well as to
the output dimension of the RND networks. Performance
is stable for learning rates 10�3�10�6 (possibly because
we use the Adam optimiser), but we found that the best
frequency (freq) at which the RND network is updated to
be environment dependent. Performance is sensitive to the
scaling factor (wsi in the table) for the initial prior network
weights. We used a scaling factor of 10 in our experiments,
and found that too small or too large scaling factors can hurt
performance. An interesting direction for future work is to
find more principled ways to guide the choice of the hyper-
parameters that are particularly sensitive to the exploration
and across environments.

RND dimout = 32 (default 128) 737
RND dimout = 256 (default 128) 812
RND depth = 1 (default 2) 794
RND depth = 3 (default 2) 814
RND batchsize = 32 (default 128) 856
RND batchsize = 256 (default 128) 867
RND lr = 1e� 2 (default 1e� 4) 108
RND lr = 1e� 3 (default 1e� 4) 883
RND lr = 1e� 5 (default 1e� 4) 845
RND lr = 1e� 6 (default 1e� 4) 766
RND wsi = 1 (default 10) 597
RND wsi = 5 (default 10) 766
RND wsi = 15 (default 10) 533

Table 4. Additional Sparse CheetahDir Results, for different RND
hyperparameter settings (averaged over three seeds). wsi stands
for weight scale initialisation of the fixed random prior network.



Exploration in Approximate Hyper-State Space
Tr

ea
su

re
G

rid
W

or
ld

C
he

et
ah

D
ir

A
nt

G
oa

l
Po

in
tR

ob
ot

M
L1

-R
ea

ch
M

L1
-P

us
h

M
l1

-P
ic

k-
Pl

ac
e

m
ax

ro
llo

ut
s

pe
r

ta
sk

1
1

1
6

3
2

2
2

po
lic

y
st

at
e

em
be

dd
in

g
di

m
N

on
e

32
32

64
64

64
64

64
po

lic
y

la
te

nt
em

be
dd

in
g

di
m

N
on

e
32

32
64

64
64

64
64

no
rm

st
at

e
fo

r
po

lic
y

Fa
ls

e
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
no

rm
la

te
nt

fo
r

po
lic

y
Fa

ls
e

Tr
ue

Fa
ls

e
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
no

rm
re

w
fo

r
po

lic
y

Tr
ue

Tr
ue

Tr
ue

Fa
ls

e
Tr

ue
Tr

ue
Tr

ue
Tr

ue
no

rm
ac

tio
ns

pr
e

sa
m

pl
in

g
Fa

ls
e

Fa
ls

e
Fa

ls
e

Tr
ue

Tr
ue

Fa
ls

e
Fa

ls
e

Fa
ls

e
no

rm
ac

tio
ns

po
st

sa
m

pl
in

g
Tr

ue
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Tr

ue
no

rm
re

w
cl

ip
pa

ra
m

10
0

N
aN

N
aN

10
00

00
10

00
00

10
00

00
10

00
00

10
00

00
po

lic
y

la
ye

rs
[1

28
,1

28
]

[6
4]

[1
28

,1
28

]
[1

28
,1

28
,1

28
]

[1
28

,1
28

,1
28

]
[1

28
,1

28
]

[1
28

,1
28

]
[1

28
,1

28
]

po
lic

y
ac

tiv
at

io
n

fu
nc

tio
n

ta
nh

ta
nh

ta
nh

ta
nh

ta
nh

ta
nh

ta
nh

ta
nh

po
lic

y
in

iti
al

is
at

io
n

or
th

og
on

al
no

rm
c

no
rm

c
no

rm
c

no
rm

c
no

rm
c

no
rm

c
no

rm
c

po
lic

y
an

ne
al

lr
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
po

lic
y

pp
o

pp
o

pp
o

pp
o

pp
o

pp
o

pp
o

pp
o

po
lic

y
op

tim
is

er
ad

am
ad

am
ad

am
ad

am
ad

am
ad

am
ad

am
ad

am
pp

o
nu

m
ep

oc
hs

2
8

2
2

2
2

2
2

pp
o

nu
m

m
in

ib
at

ch
8

4
4

8
8

8
8

8
pp

o
cl

ip
pa

ra
m

0.
05

0.
05

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

lr
po

lic
y

0.
00

07
0.

00
07

0.
00

07
0.

00
03

0.
00

07
0.

00
07

0.
00

07
0.

00
07

nu
m

pr
oc

es
se

s
16

16
16

16
16

8
8

8
po

lic
y

nu
m

st
ep

s
15

0
50

20
0

12
00

60
0

60
0

60
0

60
0

po
lic

y
ep

s
1e

-0
8

1e
-0

5
1e

-0
8

1e
-0

8
1e

-0
8

1e
-0

8
1e

-0
8

1e
-0

8
po

lic
y

va
lu

e
lo

ss
co

ef
0.

5
0.

5
0.

5
0.

5
0.

5
0.

5
0.

5
0.

5
po

lic
y

en
tro

py
co

ef
0.

00
1

0.
1

0.
00

01
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

po
lic

y
ga

m
m

a
0.

97
0.

98
0.

97
0.

99
0.

99
0.

97
0.

97
0.

97
po

lic
y

us
e

ga
e

Tr
ue

Tr
ue

Tr
ue

Tr
ue

Tr
ue

Tr
ue

Tr
ue

Tr
ue

po
lic

y
ta

u
0.

9
0.

95
0.

9
0.

9
0.

9
0.

9
0.

9
0.

9
us

e
pr

op
er

tim
e

lim
its

Tr
ue

Fa
ls

e
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
va

e
sq

ua
sh

ta
rg

et
s

Tr
ue

N
aN

N
aN

Tr
ue

Tr
ue

N
aN

N
aN

N
aN

lr
va

e
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
0.

00
1

0.
00

1
si

ze
va

e
bu

ff
er

10
00

0
10

00
00

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

pr
ec

ol
le

ct
le

n
10

0
50

00
50

0
50

00
0

50
00

50
00

50
00

50
00

va
e

ba
tc

h
nu

m
tra

js
15

25
10

10
10

10
10

10
tb

pt
t

st
ep

si
ze

N
on

e
N

on
e

N
on

e
50

50
N

on
e

N
on

e
N

on
e

va
e

su
bs

am
pl

e
el

bo
s

N
on

e
N

on
e

N
on

e
50

50
50

50
50

va
e

su
bs

am
pl

e
de

co
de

s
N

on
e

N
on

e
N

on
e

N
on

e
50

50
50

50
va

e
av

g
el

bo
te

rm
s

Tr
ue

Fa
ls

e
Tr

ue
Tr

ue
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
va

e
av

g
re

co
ns

tru
ct

io
n

te
rm

s
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e



Exploration in Approximate Hyper-State Space
Tr

ea
su

re
G

rid
W

or
ld

C
he

et
ah

D
ir

A
nt

G
oa

l
Po

in
tR

ob
ot

M
L1

-R
ea

ch
M

L1
-P

us
h

M
l1

-P
ic

k-
Pl

ac
e

nu
m

va
e

up
da

te
s

1
1

1
10

3
1

1
3

pr
et

ra
in

le
n

0
0

0
0

0
0

0
0

kl
w

ei
gh

t
1.

0
0.

1
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
ac

tio
n

em
be

dd
in

g
si

ze
16

0
16

16
16

16
16

16
st

at
e

em
be

dd
in

g
si

ze
32

32
32

32
32

32
32

32
re

w
ar

d
em

be
dd

in
g

si
ze

16
8

16
16

16
16

16
16

en
co

de
r

la
ye

rs
be

fo
re

gr
u

[]
[]

[]
[]

[]
[]

[]
[]

en
co

de
r

gr
u

hi
dd

en
si

ze
12

8
12

8
12

8
12

8
12

8
12

8
12

8
12

8
en

co
de

r
la

ye
rs

af
te

r
gr

u
[]

[]
[]

[]
[]

[]
[]

[]
la

te
nt

di
m

25
10

5
5

5
5

5
5

de
co

de
re

w
ar

d
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
no

rm
al

is
e

re
w

ta
rg

et
s

Tr
ue

N
aN

N
aN

Fa
ls

e
Fa

ls
e

Tr
ue

Tr
ue

Tr
ue

re
w

lo
ss

co
ef

f
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
in

pu
t

pr
ev

st
at

e
Tr

ue
Fa

ls
e

Tr
ue

Tr
ue

Tr
ue

Tr
ue

Tr
ue

Tr
ue

in
pu

t
ac

tio
n

Tr
ue

Fa
ls

e
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
re

w
ar

d
de

co
de

r
la

ye
rs

[6
4,

32
]

[6
4,

64
]

[6
4,

32
]

[6
4,

32
]

[6
4,

32
]

[6
4,

32
]

[6
4,

32
]

[1
28

,6
4,

32
]

de
co

de
st

at
e

Tr
ue

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Tr
ue

st
at

e
lo

ss
co

ef
f

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

st
at

e
de

co
de

r
la

ye
rs

[6
4,

32
]

[3
2,

32
]

[6
4,

32
]

[6
4,

32
]

[6
4,

32
]

[1
28

,6
4,

32
]

[6
4,

32
]

[1
28

,6
4,

32
]

rll
os

s
th

ro
ug

h
en

co
de

r
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
in

tri
ns

ic
re

w
no

rm
al

is
e

re
w

ar
ds

Tr
ue

Tr
ue

Tr
ue

Tr
ue

Tr
ue

Tr
ue

Tr
ue

Tr
ue

in
tri

ns
ic

re
w

cl
ip

re
w

ar
ds

N
on

e
10

.0
N

on
e

10
.0

N
on

e
10

.0
10

.0
10

.0
rp

f
w

ei
gh

t
hy

pe
rs

ta
te

1.
0

10
.0

1.
0

5.
0

0.
1

1.
0

1.
0

1.
0

in
tri

ns
ic

re
w

an
ne

al
w

ei
gh

t
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
in

tri
ns

ic
re

w
fo

r
va

e
lo

ss
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
Tr

ue
in

tri
ns

ic
w

ei
gh

t
va

e
lo

ss
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
1.

0
lr

rp
f

0.
00

01
0.

00
01

0.
00

01
0.

00
01

0.
00

01
0.

00
01

0.
00

01
0.

00
01

rp
f

ba
tc

h
si

ze
12

8
12

8
12

8
12

8
12

8
12

8
12

8
12

8
rp

f
up

da
te

fr
eq

ue
nc

y
1

1
1

3
1

1
1

50
si

ze
rp

f
bu

ff
er

10
00

0
10

00
00

00
10

00
0

10
00

00
00

10
00

0
10

00
0

10
00

0
10

00
0

rp
f

ou
tp

ut
di

m
12

8
12

8
12

8
12

8
12

8
12

8
12

8
12

8
la

ye
rs

rp
f

pr
io

r
[2

56
,2

56
]

[2
56

,2
56

]
[2

56
,2

56
]

[2
56

,2
56

]
[2

56
,2

56
]

[2
56

,2
56

]
[2

56
,2

56
]

[2
56

,2
56

]
la

ye
rs

rp
f

pr
ed

ic
to

r
[2

56
,2

56
]

[2
56

,2
56

]
[2

56
,2

56
]

[2
56

,2
56

]
[2

56
,2

56
]

[2
56

,2
56

]
[2

56
,2

56
]

[2
56

,2
56

]
rp

f
us

e
or

th
og

on
al

in
it

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

rp
f

no
rm

in
pu

ts
Fa

ls
e

N
aN

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

Fa
ls

e
Fa

ls
e

rp
f

in
it

w
ei

gh
t

sc
al

e
10

.0
10

.0
10

.0
10

.0
10

.0
10

.0
10

.0
10

.0
st

at
e

ex
pl

id
x

N
on

e
N

on
e

[1
7]

[0
,1

]
N

on
e

N
on

e
N

on
e

N
on

e


