Exploration in Approximate Hyper-State Space for Meta Reinforcement Learning

Luisa Zintgraf 1 Leo Feng 2 Cong Lu 1 Maximilian Igl 1 Kristian Hartikainen 1 Katja Hofmann 3 Shimon Whiteson 1

Abstract

To rapidly learn a new task, it is often essential for agents to explore efficiently – especially when performance matters from the first timestep. One way to learn such behaviour is via meta-learning. Many existing methods however rely on dense rewards for meta-training, and can fail catastrophically if the rewards are sparse. Without a suitable reward signal, the need for exploration during meta-training is exacerbated. To address this, we propose HyperX, which uses novel reward bonuses for meta-training to explore in approximate hyper-state space (where hyper-states represent the environment state and the agent’s task belief). We show empirically that HyperX meta-learns better task-exploration and adapts more successfully to new tasks than existing methods.

1. Introduction

In meta-learning, the experience of a machine learning model over multiple learning episodes (which can range from single model updates to entire lifetimes), is used to improve future learning performance (Hospedales et al., 2020), e.g., in terms of data or computational efficiency. This “learning to learn” requires a feedback signal on the meta-level, which quantifies how well the model performs after a learning episode. In meta reinforcement learning (meta-RL), this is often measured by episodic (online or final) return of the agent, or learning improvement. If this feedback signal is not present because the agent has not made sufficient learning progress, meta-learning can fail to solve the task. In this case, the agent faces an exploration challenge at the meta-level: how to find a good meta-learning signal in the first place.

A weakness of existing meta-RL methods is that they often rely on dense rewards or sufficiently small state spaces, such that even with naive exploration during meta-training the agent receives rewards that guide it towards good behaviour. However, we observe empirically (Sec 5) that if the rewards are sparse or if exploratory behaviour is penalised in the short term, existing methods can fail. This is problematic, since defining dense rewards can be tedious and error-prone, and many real-world applications have sparse rewards (e.g., a fail/success criterion). Hence, to make meta-learning practical for such settings, we need methods that can meta-learn even when rewards are sparse.

In this paper we consider this challenge in the context of meta-learning fast online adaptation to tasks from a given distribution. In this setting, the agent aims to maximise expected online return when adapting to an unknown task, which requires it to carefully trade off exploration and exploitation. To make this distinction clear, we call this task-exploration in contrast to meta-exploration, illustrated with an example in Figure 1. Task-exploration refers to the
exploration behaviour we want to meta-learn: when in a new environment, the agent must explore to learn the task. We want this agent to be Bayes-optimal, i.e., to maximise expected online return that it incurs while learning about the environment. Meta-exploration refers to the challenge of exploring across tasks and adaptation behaviours during meta-training. The agent has to (a) explore across individual tasks since the same state can have different values across tasks, and (b) learn about the shared structure between tasks to extract information about how to adapt, i.e., the agent must try out different task-exploration strategies during meta-training to find the Bayes-optimal one. Contrary to the Bayes-optimal task-exploration we want to meta-learn, we do not care about the rewards incurred during meta-exploration, but rather about efficiently gathering the data needed for meta-learning.

The Bayes-optimal policy can in principle be found by solving a Bayesian formulation of the reinforcement learning (RL) problem that considers both the environment state and the agent’s internal belief about the environment, together called hyper-states (Duff & Barto, 2002). This allows the agent to compute how to explore optimally under task uncertainty: it takes information-seeking actions (which can be costly in the short term) if and only if they lead to higher expected long-term returns (by yielding information that can be exploited later). While this computation is intractable for all but the simplest environments, recent work makes significant progress by meta-learning approximately Bayes-optimal behaviour for a given task distribution (Duan et al., 2016; Wang et al., 2016; Ortega et al., 2019; Humplik et al., 2019; Zintgraf et al., 2020; Mikulik et al., 2020).

We propose HyperX (Hyper-State Exploration), a novel method for meta-learning approximately Bayes-optimal exploration strategies when rewards are sparse. Similar to VariBAD (Zintgraf et al., 2020), HyperX simultaneously meta-learns approximate task inference, and trains a policy that conditions on hyper-states, i.e., the environment state and the approximate task belief. To ensure sufficient meta-exploration, HyperX combines two exploration bonuses during meta-training. The first is a novelty bonus on approximate hyper-states using random network distillation (Oshband et al., 2018; Burda et al., 2019b) that encourages the agent to try out different task-exploration strategies, so that it can better find an approximately Bayes-optimal one. However, as this requires accurate task inference which we aim to meta-learn alongside the policy, the beliefs are inaccurate early in training and this bonus is not useful by itself. We therefore use a second exploration bonus to incentivise the agent to gather the data necessary to learn approximate belief inference. This bonus is computed using the discrepancy between the rewards and transitions that the belief model decoder predicts, and the ground-truth rewards and transitions the agent observes. This exploration bonus encourages the agent to visit states where the belief inference is incorrect and more data should be collected.

We show empirically that in environments without dense and informative rewards, current state of the art methods either fail to learn, or learn sub-optimal adaptation behaviour. In contrast, we show that HyperX can successfully meta-learn approximately Bayes-optimal strategies on these tasks.

2. Background

Our goal is to meta-learn policies that maximise expected online return, i.e., optimally trade off exploration and exploitation under task uncertainty. We formally define this problem setting below.

2.1. Problem Setting

Task Distribution. We consider a meta-learning setting where we have a distribution $p(M)$ over MDPs. An MDP $M_i \sim p(M)$ is defined by a tuple $M_i = (S, A, R_i, T_i, \gamma, H)$. S is a set of states, A a set of actions, $R(t_{t+1}, s_t, a_t, s_{t+1})$ a reward function, $T(s_{t+1} | s_t, a_t)$ a transition function including the initial state distribution $T_i(s_0)$, γ a discount factor, and H the horizon. Across tasks, the reward and transition functions can vary so we often express $p(M)$ as $p(R, T)$.

Objective. Our objective is to meta-learn a policy that, when deployed in an (unseen) test task drawn from $p(M)$, maximises the online return achieved during task-learning: $\max_{\pi} \mathbb{E}_{p(M)}[J(\pi)]$ where $J(\pi) = \mathbb{E}_{T, R, \pi}[\sum_{t=0}^{H-1} \gamma^t r_t]$. Since the agent does not initially know which MDP it is in, maximising this objective requires a good task-exploration strategy to cope with the initially unknown reward and transition functions, and to exploit task information to adapt in this environment. The more an agent can make use of prior knowledge about p, the better it can perform this trade-off.

Meta-Learning. During meta-training we assume access to a task distribution $p(M)$, from which we sample batches of tasks $M = \{M_i\}_{i=1}^N$ and interact with them to learn good task-exploration strategies. During this phase, we need good meta-exploration, to collect the data necessary for meta-learning. At meta-test time, the agent is evaluated based on the expected return it gets while adapting to new tasks from $p(M)$. This requires good task-exploration strategies.

2.2. Bayesian Reinforcement Learning.

In principle, we can compute the optimal solution to the problem described above by formulating the problem as a Bayes-Adaptive MDP (BAMDP, Duff & Barto (2002)), which is a tuple $M^+ = (S^+, A, R^+, T^+, H^+)$.

Here, $S^+ = S \times B$ is the hyper-state space, consisting of the underlying MDP environment state space S and a belief space B whose elements are beliefs over the MDP.
This belief is typically expressed as a distribution over the reward and transition function \(b_t(R, T) = p(R, T|\tau_t) \), where \(\tau_t = (s_0, a_0, r_1, s_1, \ldots, s_t) \) is the agent’s experience up until the current time step \(t \) in the current task. The transition function is defined as \(T^+(s^{t+1}_t|s^t, a_t, r_t) = \mathbb{E}_{b_t}[T(s_{t+1}|s_t, a_t)] \delta(b_{t+1} = p(R, T|\tau_{t+1})) \) and the reward function as \(R^+(s^t, a_t, s^{t+1}) = \mathbb{E}_{b_{t+1}}[R(s_t, a_t, s_{t+1})] \). \(T^+ \) is the initial hyper-state distribution, and \(H^+ \) is the horizon in the BAMDP.

A policy \(\pi(s^+) \) acting in a BAMDP conditions its actions not only on the environment state \(s \), but also on the belief \(b \). This way, it can take task uncertainty into account when making decisions. The agent’s objective in a BAMDP is to maximise the expected return in an initially unknown environment, while learning, within the horizon \(H^+ \):

\[
J^+(\pi) = \mathbb{E}_{b_0,T^+,\pi} \left[\sum_{t=0}^{H^+-1} \gamma^t R^+(r_{t+1}|s^t, a_t, s^{t+1}) \right].
\] (1)

A policy \(\pi(s_t, b_t) \) that maximises this objective is called Bayes-optimal, as it optimally trades off exploration and exploitation in order to maximise expected cumulative return. For an in-depth introduction to BAMDPs, see Duff & Barto (2002) or Ghavamzadeh et al. (2015).

The belief inference and planning in belief space is generally intractable, but we can meta-learn an approximate inference procedure (Ortega et al., 2019; Mikulik et al., 2020). Existing methods meta-learn to maintain a belief either implicitly within the workings of recurrent networks (RL\(^2\), Duan et al. (2016); Wang et al. (2016)), or explicitly by meta-learning a posterior using privileged (Humplik et al., 2019) or unsupervised (VariBAD, Zintgraf et al. (2020)) information. In this paper we use VariBAD, because it explicitly expresses the belief as a single latent vector, which we need in order to compute the exploration bonus.

2.3. VariBAD

VariBAD (Zintgraf et al., 2020) jointly trains a policy \(\pi_{\psi}(s_t, b_t) \), and a variational auto-encoder (VAE, Kingma & Welling (2014)) for approximate belief inference. The VAE consists of an encoder \(q_{\phi}(m|\tau_t) \) to compute an approximate belief \(b_t \), and reward and transition decoders \(p(r_{t+1}|s_t, a_t, m_t) \) and \(p(s_{t+1}|s_t, a_t, m_t) \) with \(m \sim b_t \) which are used only during meta-training. The objective is

\[
\mathcal{L}(\phi, \theta, \psi) = \mathbb{E}_{p(M)} \left[J(\psi) + \sum_{t=0}^{H^+} ELBO_t(\phi, \theta) \right]
\] (2)

where

\[
ELBO_t = \mathbb{E}_{p(M)} \left[q_{\phi}(m|\tau_t) \log p_{\theta}(\tau_{t+1}|m) - KL(q_{\phi}(m|\tau_t)||q_{\phi}(m|\tau_{t-1})) \right],
\] (3)

with prior \(q_{\phi}(m) = N(0, I) \). The objective jointly maximises an RL loss \(J \) (with the agent conditioned on state \(s_t \) and approximate belief \(b_t \) represented by the mean and variance of the VAE’s latent distribution) and an evidence lower bound (ELBO) on the environment model, that consists of a reconstruction term for the trajectory and a KL divergence to the previous posterior. Like Zintgraf et al. (2020), we do not backpropagate the RL loss through the encoder (hence \(J \) does not depend on the encoder parameters \(\phi \)).

3. Method: HyperX

Meta-learning good task-adaptation behaviour requires the agent to, during meta-training, gather the data necessary to learn good task-exploration strategies. If the environment rewards are sparse, they might however not provide enough signal for an agent to learn something if it follows naive exploration during meta-training. In that case, existing methods can fail and special attention needs to be paid to meta-exploration. The agent needs to explore the state space sufficiently during meta-training, which is complicated by the fact that the same state can have different values across tasks. A good meta-exploration strategy also ensures that the agent tries out diverse task-exploration strategies which allow it to find an approximately Bayes-optimal one.

To address the meta-exploration problem, we propose HyperX (Hyper-State-Exploration), a method to meta-learn approximately Bayes-optimal behaviour even when rewards are not dense. The two key ideas behind HyperX are:

1. We can incentivise the agent to try out different task-exploration strategies during meta-training by rewarding novel hyper-states. By exploring the joint space of beliefs and states (i.e., hyper-states), the agent simultaneously (a) explores the state space, while distinguishing between visitation counts in different tasks due to changing beliefs, and (b) tries out different task-exploration strategies because these lead to different beliefs (even in the same state). To achieve this, we add an exploration bonus \(s^{\text{hyper}}(s^+) \) that rewards visiting novel hyper-states.

2. For the novelty bonus on hyper-states to be meaningful, the beliefs needs to be meaningful. However since the inference procedure is meta-learned alongside the policy, they do not capture task information early in training. We therefore additionally incentivise the agent to explore states where beliefs are inaccurate, by using the VAE reconstruction error of the current rewards and transitions given the current belief as a reward bonus, \(s^{\text{error}}(s_t, r_t) \). Since the belief is conditioned on the history including the most recent reward \(r_t \) and state \(s_t \), and the VAE is trained to predict rewards and states given beliefs, this bonus tends to zero over training.
In the following, we describe how to compute these bonuses.

Hyper-State Exploration. To compute exploration bonuses on the hyper-states, we use random network distillation (see Appendix A.1) given its empirical successes in standard RL problems (Osband et al., 2017; 2018; Burda et al., 2019b) and theoretical justifications for deep networks (Pearce et al., 2020; Ciosek et al., 2020). To compute a reward bonus, a predictor network f is trained to predict the outputs of a fixed, randomly initialised prior network $g(s^+)$, on all hyper-states s^+ visited by the agent so far in meta-training. The mismatch between those predictions is low for frequently visited hyper-states and high for novel hyper-states. Formally we define the reward bonus for a hyper-state $s^+_t = (s_t, b_t)$ as

$$r_{\text{hyper}}(s^+_t) = ||f(s^+_t) - g(s^+_t)||^2. \tag{4}$$

We parameterise the predictor network f with ω and train it alongside the policy and VAE.

Approximate Hyper-State Exploration. To meta-learn an (approximately) Bayes-optimal policy, we need access to the belief over tasks at every timestep t during which the policy interacts with the environment. To this end, we use VariBAD (Zintgraf et al., 2020), because it provides a belief representation using a single vector. VariBAD trains an inference procedure using a VAE alongside the policy to obtain approximate beliefs, which are represented by the mean and variance of a latent Gaussian distribution.

At the beginning of meta-training, the beliefs do not sufficiently capture task information. If the policy does not explore and always gets a sparse reward which is uninformative w.r.t. the task, we fail to meta-learn to perform belief inference. The policy should therefore seek states where the VAE is not yet trained well. As a proxy for this, we use the VAE reconstruction error for the reward and states at the current timestep as a reward bonus:

$$r_{\text{error}}(r_t, s_t) = -\mathbb{E}_{q_{\theta}(m | \tau_t)} \left[\log p_\theta(r_t | s_{t-1}, \alpha_{t-1}, s_t, m)
ight] + \log p_\theta(s_t | s_{t-1}, \alpha_{t-1}, m) \tag{5}.$$

Since r_t and s_t were observed in τ_t, the encoder q has all data to encode the information needed by the decoder p to predict the current reward and state transition. Early in training, these predictions are inaccurate in states where the rewards/transitions differ a lot across tasks. Therefore this exploration bonus incentivises the agent to visit states that provide crucial training data for the VAE. In practice, this reward bonus is computed using one Monte Carlo sample from q. If only one aspect (reward or transitions) change across tasks, VariBAD only learns the respective decoder, and so we only use the respective reward bonus.

Algorithm 1 HyperX Pseudo-Code

Input: Distribution over MDPs $p(M)$

Initialise: Encoder q_ϕ, decoder p_θ, policy π_ψ, RND predictor network f_ω, buffer $B = \{s_0, b_0\}$

for $k = 1, \ldots, K$ **do**

Sample environments $M = \{M_i\}_{i=1}^N$ where $M_i \sim p$

for $M_i \in M$ **do**

Reset $s_0, b_0, 0$

for $t = 0, \ldots, T - 1$ **do**

Choose action: $a_t = \pi_\psi(s_t, b_t)$

Step environment: $s_{t+1}, r_{t+1} = M_i.\text{step}(a_t)$

Update belief: $b_{t+1} = g_\phi(s_{t+1}, a_t, r_{t+1}, h_t)$

Compute exploration bonuses:

$$r_{\text{hyper}}(s^+_{t+1}) \text{ using Eq (4)}$$

$$r_{\text{error}}(r_{t+1}, s_{t+1}) \text{ using Eq (5)}$$

Add data to buffer:

$$B.\text{add}(s_{t+1}, b_{t+1}, a_t, r_{t+1}, r_{\text{hyper}}(s^+_{t+1}), r_{\text{error}}(r_{t+1}, s_{t+1}))$$

end for

end for

Update VAE, policy, and RND predictor network:

$$\phi, \theta \leftarrow (\phi, \theta) + \alpha_{\phi, \theta} \nabla_{(\phi, \theta)} \sum_{t=0}^{T-1} \text{ELBO}(\psi, \phi)$$

$$\psi \leftarrow \psi + \alpha_\psi \nabla_\psi \mathcal{F}(\psi) \text{ using Eq (6)}$$

$$\omega \leftarrow \omega - \alpha_\omega \nabla_\omega \mathbb{E}_{s^+ \sim B} \left[||f_\omega(s^+) - g(s^+)||^2_2 \right]$$

end for

Meta-Training Objective. Putting these bonuses together, the new objective for the agent is

$$\mathcal{J}^+(\psi) = \mathbb{E}_{b_0, T \sim \pi_\psi} \left[\sum_{t=0}^{T-1} \gamma^t R^+(r_{t+1} | s^+_t, a_t, s^+_t)
ight. \left. + \lambda_h r_{\text{hyper}}(s^+_{t+1}) + \lambda_e r_{\text{error}}(r_{t+1}, s_{t+1}) \right]. \tag{6}$$

While in principle these bonuses tend towards zero during meta-training, we anneal their weights (λ_h, λ_e) over time. This prevents the policy to keep meta-exploring at meta-test time and ensure that it maximises only the expected online return. Algorithm 1 shows pseudo-code for HyperX. Implementation details are given in Appendix C.

4. Related Work

Exploration Bonuses. Deep RL has been successful on many tasks, and naive exploration via sampling from a stochastic policy is often sufficient if rewards are dense. For hard exploration tasks this performs poorly, and a variety of more sophisticated exploration methods have been proposed. Many of these reward novel states, often using count-based approaches to measure novelty (Strehl & Littman, 2008; Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017). A prominent method is Random Network Distillation (RND) for state-space exploration in RL (Osband et al., 2017; 2018; Burda et al., 2019b; Ciosek et al., 2020). We
use it for hyper-states in this paper. We further use an exploration bonus based on the VAE reconstruction error of rewards and transitions. Prediction errors of environment dynamics are used to explore the MDP state space, by, e.g., Achiam & Sastry (2016); Burda et al. (2019a); Pathak et al. (2017); Schmidhuber (1991); Stadie et al. (2015).

Meta-Learning Task-Exploration. Meta-learning how to adapt quickly to a new tasks often includes learning efficient task-exploration, i.e., how to explore an unknown environment. We distinguish few-episode learning where the agent has several episodes for exploration and maximises final episodic return, and online adaptation where performance counts from the first timestep in a new environment, and the agent has to carefully trade off exploration and exploitation.

A popular approach to few-episode learning is gradient-based meta-learning. Here the agent collects data, then performs a gradient update, and is evaluated afterwards. Examples are MAML (Finn et al., 2017) and follow-up work addressing task-exploration (Rothfuss et al., 2019; Stadie et al., 2018); learning separate exploration and exploitation policies (Gurumurthy et al., 2019; Liu et al., 2020; Zhang et al., 2020); or doing task-exploration based on sampling (Gupta et al., 2018) where in particular PEARL (Rakelly et al., 2019) exhibits behaviour akin to posterior sampling. Few-episode learning methods maximise episodic return, and can often not be Bayes-optimal by design.

In this paper we consider the online adaptation setting where we instead want to maximise online return. While computing the exact solution – the Bayes-optimal policy – is infeasible for all but the simplest environments, approximate solutions can be meta-learned (Ortega et al., 2019; Mikulik et al., 2020). When using recurrent policies that receive rewards and actions as inputs in addition to the states (Duan et al., 2016; Wang et al., 2016), learning how to explore happens within the policy network’s dynamics, and can be seen as implicitly maintaining a task belief. Humplik et al. (2019) and Zintgraf et al. (2020) develop methods that represent this belief explicitly, by meta-learning to perform inference either using privileged task information during training (Humplik et al., 2019), or by meta-learning to perform inference in an unsupervised way (Zintgraf et al., 2020). To the best of our knowledge, all existing meta-learning methods for online adaptation rely on myopic exploration during meta-training. As we observe empirically (Sec 5), this can cause them to break down if rewards are too sparse.

Meta-Exploration. Two recent works also study the problem of exploration during meta-training, albeit for few-episode learning. This setting can be more forgiving when it comes to the task-exploration behaviour since the agent has multiple rollouts to collect data, and is reset to the starting position afterwards. Still, similar considerations about meta-exploration apply. Zhang et al. (2020) propose MetaCURE, which meta-learns a separate exploration policy that is intrinsically motivated by an exploration bonus that rewards information gain. Liu et al. (2020) propose DREAM, where a separate exploration policy is trained to collect data from which a task embedding (pre-trained via supervision with privileged information) can be recovered. These methods can, in principle, still suffer from poor meta-exploration if rewards are so sparse that there is no signal to begin with, and information gain / task embedding recovery cannot be measured. We empirically compare to MetaCURE and find that this is indeed true (Sec 5.3). On the challenging sparse ML1 Meta-World tasks (Yu et al., 2019), HyperX outperforms MetaCURE by a large margin even though MetaCURE receives more time to explore (Appendix B.1).

If available, privileged information can be used during meta-training to guide exploration, such as expert trajectories (Dorffman & Tamar, 2020), dense rewards for meta-training but not testing (Rakelly et al., 2019), or ground-truth task IDs / descriptions (Liu et al., 2020; Kamienny et al., 2020). HyperX works well even if such information is not available.

Exploration in POMDPs. Meta-exploration is related to exploration when learning in partially observable MDPs (POMDPs, Cassandra et al. (1994)), of which BAMDPs are a special case. This topic is mostly studied on small environments. Similar to our work, Cai et al. (2009) incentivize exploration in under-explored regions of belief space. However, they use two separate policies for exploration and exploitation and rely on Bayesian learning to update them, restricting this to small discrete state spaces. Several authors (Poupart & Vlassis, 2008; Ross et al., 2008; Doshi et al., 2008; Ross et al., 2011) explore model-based Bayesian reinforcement learning in partially observable domains. By relying on approximate value iteration to solve the planning problem, they are also restricted to small environments. To our knowledge, only Yordanov (2019) provides some initial results on a simple environment using Random Network Distillation. They propose various ways to deal with the non-stationarity of the latent embedding such as using a random recurrent network that aggregates past trajectories.

5. Empirical Results

We present four experiments that illustrate how and why HyperX helps agents meta-learn good online adaptation strategies (Sec 5.1-5.3), and results on sparse Mujoco AntGoal to demonstrate that HyperX scales well (Sec 5.4).

Many standard meta-RL benchmarks do not require much exploration, in the sense that there is no room for improvement via better exploration, such as the 2D navigation PointRobot (Appendix B.2), Meta-World ML1 even with sparse rewards (Appendix B.1), or the otherwise challenging dense AntGoal environment (Appendix B.5).
5.1. Treasure Mountain

We consider our earlier example (Fig 1), where the agent’s task is to find a treasure hidden in tall grass. There are two good task-exploration strategies: (s1) search the grass until the treasure is found, or (s2) climb the mountain, spot the treasure, and go there directly. The latter strategy has higher expected return, but is harder to meta-learn since (a) climbing the mountain is discouraged by negative rewards and (b) the agent must meta-learn to interpret and remember the treasure location it sees from the mountain.

We implement this as follows (details in Appendix C.1.1): the treasure can be anywhere along a circle. The agent gets a sparse reward when it reaches the treasure, and a time penalty otherwise. Within the circle is the mountain, represented by a smaller circle. Walking on it incurs a higher time penalty. The agent’s observation is 4D: its \(x-y\) position, and the treasure’s \(x-y\) coordinates, which are only visible from the mountain top. The agent starts at the bottom of the circle and has one rollout of 100 steps to find the treasure.

Figure 2 shows the learning curves of VariBAD (which uses no exploration bonuses for meta-training) and HyperX, with HyperX performing significantly better. Figures 2A-2C show the behaviour of HyperX at different times during training. At the beginning (2A), it explores along the circle (but does not stop at the treasure and explores further) and its performance increases. Then, it discovers the mountain top: because the VAE reconstruction error \(r_{\text{error}}\) is high there, it initially just stays there (2B). Performance drops since the penalty for climbing the mountain is slightly higher than the time penalty the agent gets otherwise. Finally, at the end of training (2C) it learns the optimal strategy s2 (consistently across all 10 seeds). Inspection of the rollouts show that VariBAD and other methods for online adaptation (RL\(^2\) (Duan et al., 2016; Wang et al., 2016) and Belief Learning (Humplik et al., 2019)) always only meta-learn the inferior task-exploration strategy s1 (see Appendix B.3).

When using only \(r_{\text{hyper}}\), the agent only learns the inferior strategy s1: early in training, hyper-states are meaningless and the agent stops exploring the mountain top. When using only \(r_{\text{error}}\), the agent learns the superior strategy s2 around 70% of the time. For learning curves see Appendix B.3.

This experiment shows that HyperX tries out different task-exploration strategies during meta-training, and can therefore meta-learn a superior exploration strategy even when it is expensive in the short term, but pays off in the longer run.

5.2. Multi-Stage Gridworld

Next, we consider a partially observable multi-stage gridworld which illustrates how, without the appropriate exploration bonuses on hyper-states, existing methods can converge prematurely to a local optimum.

The gridworld is illustrated in Figure 3: three rooms are connected by narrow corridors, and three (initially unknown) goals (G1-G3) are placed in corners of rooms: The goals pro-
vide increasing rewards, i.e. \(r_1 = 1, r_2 = 10 \) and \(r_3 = 100 \), but are only sequentially unlocked; G2 (\(r_2 \)) is only available after G1 has been reached; G3 (\(r_3 \)) is only available after G2 has been reached. The environment is partially observable (Poupart & Vlassis, 2008; Cai et al., 2009) as the agent only observes its position in the environment and not which goals are unlocked. If the agent is not on an (available) goal it gets \(r = -0.1 \). G1 and G3 are always in the middle room, G2 always in an outer room on the same side as G1. The agent starts in the center of the middle room and has \(H = 50 \) steps. The best strategy is to search the first room for G1, then search the appropriate room for G2, and then return to the middle room to find G3.

Figure 4 compares VariBAD, VariBAD with state-novelty bonus, and HyperX. VariBAD learns to reach G1 and remains there, effectively receiving only \(r_1 \) at every timestep. VariBAD+\(r(s) \) learns to find G2 and stay there, but fails to find G3. Only HyperX solves the problem (see behaviour in Figure 3). Methods which use a purely state-based exploration bonus such as VariBAD+\(r(s) \) are unable to find G3 in the middle room as those states \(s \) (not hyper-states \((s, h) \)) appear already sufficiently explored. In contrast, a novelty bonus on the hyper-state \(r(s, h) \) like in HyperX leads to a high novelty bonus in the middle room once G2 is found because the belief changes.

These results show that without the right exploration bonuses during meta-training, the agent can prematurely converge to a suboptimal solution. Additionally, we see that that HyperX can handle this degree of partial observability.

5.3. Sparse HalfCheetahDir

To demonstrate the effect of the different exploration bonuses, we consider the following example for which we can compute exact beliefs. The environment is based on the HalfCheetah-Dir MuJoCo environment, which is commonly used in meta-RL (e.g., Finn et al., 2017; Rakelly et al., 2019). The prior distribution \(p(M) \) is uniform over the two tasks “walk forward” and “walk backward”. In the dense version the agent is rewarded according to its (1D) velocity in the correct direction. We consider a sparse version without resets: the agent only receives the dense reward once it walks sufficiently far away from its starting position, outside an interval \([-5, 5]\) (and a control penalty otherwise), and has 200 environment steps to adapt. This makes it much more difficult to find the optimal adaptation strategy, which is to walk far enough in one direction to infer the task, and then around in case the direction was wrong.

Without dense rewards, existing meta-learning algorithms fail to learn this strategy, as is the case for RL\(^2\) (Duan et al., 2016; Wang et al., 2016), PEARL (Rakelly et al., 2019), ProMP (Rothfuss et al., 2019), E-MAML\(^1\) (Stadie et al., 2018) and VariBAD (Zintgraf et al., 2020), as shown in Table 1. HyperX in contrast successfully meta-learns the correct task-adaptation strategy. For all baselines, we used the available open source code.

Exploration in Exact Hyper-State Space

To investigate how the exploration bonuses in HyperX help solve this task, we first assume that we have access to the true hyper-state \(s^t_i = (s_i, b_i) \), including the true belief which we define as

\[
\text{Belief Oracle} + r_{\text{error}} \\quad \text{HyperX, } r_{\text{error}} \text{ only} \quad -0.7 \\
\text{HyperX, } r_{\text{hyper}} \text{ only} \quad 462 \\
\text{RL}^2 + r_{\text{state}} \quad 463 \\
\text{RL}^2 + r_{\text{hyper}} \quad 477 \\
\text{Humplik et al. } + r_{\text{hyper}} \quad 840 \\
\text{Humplik et al. } + r_{\text{hyper}} + r_{\text{error}} \quad 850 \\
\text{VariBAD } + r_{\text{metaCURE}} \quad -0.3 \\
\text{VariBAD } + r_{\text{metaCURE}} + r_{\text{state}} \quad 548 \\
\text{VariBAD } + r_{\text{metaCURE}} + r_{\text{hyper}} \quad 811 \\
\]

Table 1. HalfCheetahDir Meta-Test Performance. (a) HyperX successfully solves this task, while existing meta-learning methods fail. (b) Not even an agent with access to the correct belief is able to solve this task without appropriate exploration bonus. (c) Both exploration bonuses are necessary to succeed, but different realisations with similar effects (e.g., metaCURE) work as well. The bonuses can be used with other methods, if they provide an approximate belief (for \(r_{\text{hyper}} \)) and a way of measuring how good the inference is (for \(r_{\text{error}} \)).

\(^1\)E-MAML/ProMP/PEARL are not designed to adapt within a single episode, so we do the gradient update (E-MAML/ProMP)/posterior sampling (PEARL) after half an episode.
follows. The prior belief is $b_0 = [0.5, 0.5]$ and it can be up-dated to the posterior belief $b = [1, 0]$ (left) or $b = [0, 1]$ (right) once the agent observes a single reward outside of the interval $[-5, 5]$. Since we can manually compute this belief, we can train a Belief Oracle using standard reinforcement learning, by conditioning the policy on the exact hyper-state. Table 1b shows the performance of the Belief Oracle, with and without reward bonuses. Without the bonus, even this Belief Oracle does not learn the correct behaviour for this seemingly simple task. When adding the exploration bonus $r_{\text{hyper}}(s^+)$ on the hyper-state, the policy learns approximately Bayes-optimal behaviour.

Figure 5 shows how the bonuses incentivise the agent to explore, with the red gradient in the background visualising the reward bonus (darker meaning more bonus). When the agent walks outside the sparse-reward interval and updates its belief, the reward bonus in the opposite direction becomes high since it has not yet visited that area with the updated belief very often. Table 1b shows that a policy trained with a reward bonus only on the state, $r(s)$, performs worse. The reason is that the agent is not incentivised to explore states to the far right after its belief has changed. Inspection of the learned policies shows that agents trained with a state exploration bonus do go outside the interval, and just return to and stay in the sparse-reward zone if the direction was wrong (see Appendix B.4).

HyperX: Exploration in Approximate Hyper-State Space. Above we assumed access to the true belief b_t. When meta-learning how to perform approximate belief inference alongside the policy however, these beliefs change over time and are initially inaccurate. As Table 1c (top) shows, using only the hyper-state exploration bonus r_{hyper}, which worked well for the Belief Oracle, performs sub-optimally. This is because early in training the belief inference is inaccurate, and the hyper-state bonus is meaningless: the agent prematurely and wrongly assumes it has sufficiently explored. Only when adding the error reward bonus r_{error} as well to incentivise the agent to explore areas where the belief inference makes mistakes, can we meta-learn approximately Bayes-optimal behaviour for this task. Using only the error reward bonus r_{error} performs poorly as well.

Different meta-learners. While we build HyperX on VariBAD, the same exploration bonuses can be used for other meta-learning methods that provide (a) a belief representation, and (b) a measure of how good the belief inference is. One such method is the work by Humplik et al. (2019) who train a belief model using the ground-truth task description. This makes meta-learning inference easier, and the exploration bonus r_{error} may not be necessary: for sparse HalfCheetahDir, using only the hyper-state bonus (r_{hyper}) is sufficient, as shown in Table 1c (middle). This result is not directly comparable to HyperX since it uses privileged information, whereas HyperX meta-learns inference in an unsupervised way. For the method RL2, the RNN hidden state can be used as a belief proxy to compute the hyper-state bonus. The second exploration bonus (r_{error}) however, cannot be estimated because the hidden state is only used implicitly by the agent. As Table 1c shows, an exploration bonus on the state (r_{state}) or on the hyper-state (r_{hyper}) for RL2 is not sufficient to solve the task.

Comparison to MetaCURE. Recently Zhang et al. (2020) proposed MetaCURE for meta-exploration. They use information gain as an intrinsic reward, defined as the difference between the prediction errors (of states/rewards) given the agent’s current experience or given the ground-truth task. For the sparse HalfCheetahDir task this is high when the agent first steps over the interval bound. Even though MetaCure is defined for episodic task-adaptation, we can use its bonus in the online adaptation setting as well. Compared to HyperX it requires training two additional prediction networks, and it relies on privileged task information during meta-training to do so. Table 1c shows that this exploration bonus alone is not sufficient to solve the task – it only incentivises the agent to go to the interval boundary. Adding a hyper-state bonus is required to solve the task.
Overall our empirical results show that HyperX can meta-learn excellent adaptation behaviour on challenging sparse reward tasks where existing methods fail. We also evaluated HyperX on sparse environments used in the literature, like sparse PointRobot (Rakelly et al., 2019), and sparse Meta-World ML1 (Yu et al., 2019). However, in both cases, VariBAD can already solve these tasks (Appendix B.1-B.2).

6. Conclusion

The Meta-Exploration Problem. This paper showed that existing meta-learning methods can fail if the environment rewards are not densely informative with respect to the task, and myopic exploration during meta-training is insufficient. We highlighted that in this case, special attention needs to be paid to meta-exploration. This applies to many different problem settings, but we focused on online adaptation where the agent aims to maximise expected online return. Here, task-exploration is particularly challenging since the agent has to trade off exploration and exploitation.

Our Solution: HyperX. We proposed HyperX, which uses two exploration bonuses to incentivise the agent to explore in approximate hyper-state space during meta-training. This way, it collects the data necessary to learn approximate belief inference (incentivised by r_{error}), and tries out different task-exploration strategies during meta-training (incentivised by r_{hyper}). We demonstrated empirically how meta-learning without explicit meta-exploration can fail and why, and showed that HyperX can solve these tasks.

Software and Data

Our source code can be found at https://github.com/lmzintgraf/hyperx.

Acknowledgements

We thank Wendelin Böhm, Tabish Rashid, Matt Smith, Jelena Luketina, Sebastian Schulze, and Joost van Amersfoort for helpful discussions and feedback. We also thank the anonymous reviewers for their feedback and suggestions that helped improve our paper. Luisa Zintgraf is supported by the 2017 Microsoft Research PhD Scholarship Program, and the 2020 Microsoft Research EMEA PhD Award. Maximilian Igl and Cong Lu are supported by the UK EPSRC CDT in Autonomous Intelligent Machines and Systems. Kristian Hartikainen is funded by the EPSRC. This work was supported by a generous equipment grant from NVIDIA, and enabled in part by computing resources provided by Compute Canada. This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 637713).
References

