
Provable Robustness of Adversarial Training
for Learning Halfspaces with Noise

Difan Zou * 1 Spencer Frei * 2 Quanquan Gu 1

Abstract
We analyze the properties of adversarial train-
ing for learning adversarially robust halfspaces
in the presence of agnostic label noise. Denot-
ing OPTp,r as the best robust classification error
achieved by a halfspace that is robust to perturba-
tions of `p balls of radius r, we show that adversar-
ial training on the standard binary cross-entropy
loss yields adversarially robust halfspaces up
to (robust) classification error Õ(

√
OPT2,r) for

p = 2, and Õ(d1/4
√
OPT∞,r + d1/2OPT∞,r)

when p = ∞. Our results hold for distributions
satisfying anti-concentration properties enjoyed
by log-concave isotropic distributions among oth-
ers. We additionally show that if one instead uses
a nonconvex sigmoidal loss, adversarial training
yields halfspaces with an improved robust clas-
sification error of O(OPT2,r) for p = 2, and
O(d1/4OPT∞,r) when p = ∞. To the best of
our knowledge, this is the first work to show that
adversarial training provably yields robust classi-
fiers in the presence of noise.

1. Introduction
Modern deep learning models are powerful but brittle: stan-
dard stochastic gradient descent (SGD) training of deep
neural networks can lead to remarkable performance as
measured by the classification accuracy on the test set, but
this performance rapidly degrades if the metric is instead
adversarially robust accuracy. This brittleness is most ap-
parent for image classification tasks, where neural networks
trained by gradient descent achieve state-of-the-art classifi-
cation accuracy on a number of benchmark tasks, but where
imperceptible (adversarial) perturbations of an image can
force the neural network to get nearly all of its predictions
incorrect (Szegedy et al., 2014; Goodfellow et al., 2015).
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To formalize the above comment, let us define the ro-
bust error of a classifier. Let D be a distribution over
(x, y) ∈ Rd × {±1}, and let f : Rd → {±1} be a hy-
pothesis classifier. For p ∈ [1,∞] and perturbation radius
r > 0, the `p robust error for radius r is given by

errp,rD (f) = P(x,y)∼D
[
∃x′ : ‖x−x′‖p ≤ r, and y 6= f(x′)

]
(1.1)

The standard accuracy of a classifier f is given by
errD(f) = P(x,y)∼D(y 6= f(x)), and is equivalent to the
robust accuracy at radius r = 0. That SGD produces neural
networks f with high classification accuracy but low robust
accuracy means that errD(f) ≈ 0 but errp,rD (f) ≈ 1, even
when r is an extremely small number.

The vulnerability of SGD-trained neural networks to adver-
sarial examples has led researchers to introduce a number
of methods aimed at improving the robustness of neural net-
works to adversarial examples (Kurakin et al., 2016; Madry
et al., 2018; Tramèr et al., 2018; Zhang et al., 2019; Wang
et al., 2019a;b). One notable approach is known as adversar-
ial training, where the standard SGD algorithm is modified
so that data samples are perturbed x 7→ x + δ with the aim
of increasing the robust accuracy. In the same way that one
minimizes the standard classification error by minimizing a
surrogate loss, adversarial training seeks to minimize

Lp,rD (f) = E(x,y)∼D sup
x′:‖x′−x‖p≤r

`(yf(x′)), (1.2)

where `(·) is some convex surrogate for the 0-1 loss.
Unfortunately, the inner maximization problem is typi-
cally intractable, especially when f comes from a neu-
ral network function class. Indeed, it is often difficult to
calculate any nontrivial upper bound for the robust loss
supx′:‖x−x′‖p≤r `(yf(x′)) for a fixed sample x. A number
of recent works have focused on developing upper bounds
for the robust loss that are computationally tractable, which
enables end-users to certify the robustness of learned classi-
fiers by evaluating the upper bound on test samples (Raghu-
nathan et al., 2018; Wong & Kolter, 2018; Cohen et al.,
2019). Additionally, upper bounds for the robust loss can
then be used as a new objective function to be minimized
as an alternative to the intractable robust loss. This ap-
proach has seen impressive results in improving the ad-
versarial robustness of classifiers, but unfortunately these
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procedures do not come with a provable guarantee that the
learned classifiers will be adversarially robust. To the best
of our knowledge, only two works have been able to show
that the standard gradient-based adversarial training of (1.2)
provably yields classifiers with a guarantee on the robust
(population-level) classification error: Charles et al. (2019)
and Li et al. (2020). Both of these papers considered the hy-
pothesis class of halfspaces x 7→ sign(w>x) and assumed
that the data distribution is linearly separable by a hard mar-
gin γ0 > 0, so that for some w ∈ Rd, yw>x ≥ γ0 > 0
holds almost surely over D.

In this work, we show that adversarial training provably
leads to halfspaces that are approximate minimizers for the
population-level robust classification error. In particular,
adversarial training provably yields classifiers which are
robust even when the data is not linearly separable. Let
us denote the best-possible robust classification error for a
halfspace as

OPTp,r = min
‖w‖q=1

errp,rD (w),

where errp,rD (w) is the robust error induced by the halfspace
classifier. Our main contributions are as follows.

1. We show that adversarial training on the robust surro-
gate loss (1.2) yields halfspaces with `2 robust error
at most Õ(

√
OPT2,r) when ` is a typical convex sur-

rogate loss and D satisfies an anti-concentration prop-
erty enjoyed by log-concave isotropic distributions.
For p = ∞, our guarantee is Õ(d1/4

√
OPT∞,r +

d1/2OPT∞,r).

2. When ` is a nonconvex sigmoidal loss, the
guarantees for adversarial training improves to
O
(
d

1
4−

1
2p ‖w∗‖1/22 OPTp,r

)
for `p perturbations,

where w∗ of norm ‖w∗‖q = 1 (for 1/p + 1/q = 1)
is the optimal model. This implies that adversarial
training achieves O(OPT2,r) robust error for pertur-
bations in the `2 metric, and O(d1/4OPT∞,r) robust
error when p =∞ in the worst case.

To the best of our knowledge, these are the first results that
provide a guarantee that adversarial training will generate
adversarially robust classifiers on noisy data distributions.

1.1. Additional Related Work

Adversarial training and adversarial examples have attracted
significant attention recently due to the explosion of research
in deep learning, but the broader problem of learning de-
cision rules that are robust to perturbations of the data has
appeared in a number of forms. One of the main motivations
for support vector machines is to maximize the margin of

the classifier, which can be understood as a form of robust-
ness to perturbations of the input (Rosenblatt, 1958; Boser
et al., 1992). Robust optimization is a field in its own right
dedicated to the analysis of optimization algorithms that are
robust to perturbations of the algorithms’ inputs (Ben-Tal
et al., 2009).

Following the first paper on adversarial examples in deep
learning (Szegedy et al., 2014), a sequence of works sought
to develop empirical methods for improving the robustness
of neural network classifiers (Goodfellow et al., 2015; Paper-
not et al., 2016). These proposed defenses against adversar-
ial examples were quickly defeated by more sophisticated
attacks (Carlini & Wagner, 2017). This led a number of
authors to develop certifiable defenses against adversarial
attacks, where one can prove that the defense algorithm
will be robust to adversarial perturbations (Wong & Kolter,
2018; Raghunathan et al., 2018). These works typically de-
rive an upper bound for the robust loss that can be computed
exactly and then introduce optimization procedures for min-
imizing the upper bound. This allows for one to certify
whether or not a classifier is provably robust to adversarial
perturbations for a given sample. But since the procedure is
based upon minimizing an upper bound for the desired error,
there is no guarantee that every classifier which is trained
using this procedure will (provably) yield a classifier that
has nontrivial robust classification accuracy.

In terms of provable guarantees for learning adversarially
robust classifiers, adversarial training was shown to yield
provably robust halfspace classifiers by Charles et al. (2019)
and Li et al. (2020) under the assumption that there ex-
ists a robust classifier with perfect accuracy that separates
the data by a large margin. A separate approach for devel-
oping robust classifiers is known as randomized smooth-
ing (Salman et al., 2019; Lécuyer et al., 2019; Cohen et al.,
2019), where one can convert a base classifier into a robust
classifier by smoothing out the predictions of the base clas-
sifier over Gaussian noise perturbations of the input. Nandy
et al. (2021) showed that test-time adaptive batch normal-
ization can lead to certifiably robust classifiers. Gao et al.
(2019) and Zhang et al. (2020) showed that adversarial train-
ing with multilayer neural networks leads to classifiers with
small robust training loss, but were not able to translate these
into guarantees for small test (population-level) robust error.
Montasser et al. (2020) showed that the standard gradient
descent algorithm on the (non-robust) empirical risk using a
convex margin loss yields halfspaces that are robust in the
presence of random classification noise.1 Diakonikolas et al.
(2020a) studied the computational complexity of learning

1Random classification noise (RCN) is a generalization of the
realizable setting, where an underlying halfspace y = sign(w>x)
has labels flipped with probability p. By contrast, in the adver-
sarial label noise setting we consider in this paper, one makes no
assumptions on the relationship between x and y.
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robust halfspaces in the agnostic noise setting.

We wish to emphasize that in this work we are interested in
developing computationally efficient algorithms for learn-
ing adversarially robust halfspaces in the presence of noise.
(Cullina et al., 2018) recently developed a notion of adversar-
ial VC dimension, which allows for a characterization of the
number of samples necessary to learn robust classifiers in
the presence of noise by analyzing the robust empirical risk
minimizer (ERM). However, the non-convexity of the zero-
one loss makes the task of finding a robust ERM a highly
non-trivial task. Indeed, it is known that no polynomial
time algorithm can agnostically learn standard (non-robust)
halfspaces up to risk O(OPTp,0) + ε without distributional
assumptions (Daniely, 2016), although standard VC dimen-
sion arguments show that poly(d, ε−1) samples suffice for
the ERM to achieve OPTp,0 + ε risk. Thus, in order to
develop computationally efficient algorithms that can ro-
bustly learn up to robust risk O(OPTp,r), we must make
assumptions on the distribution.

There are a number of other important questions in adver-
sarial robustness for which a detailed review is beyond the
scope of this paper. We briefly note that some related topics
include understanding the possible tradeoffs between ro-
bust accuracy and non-robust accuracy (Zhang et al., 2019;
Tsipras et al., 2019; Javanmard et al., 2020; Raghunathan
et al., 2020; Yang et al., 2020; Wu et al., 2020); what types
of features robust classifiers depend upon (Ilyas et al., 2019);
and the transferability of robust classifiers (Salman et al.,
2020).

1.2. Notation

We use bold-faced letters to denote vectors. For a scalar
x, we use sgn(x) ∈ {+1,−1} to denote its sign. For p ∈
[1,∞], we denote Bp(x, r) = {x′ : ‖x− x′‖p ≤ r} as the
`p ball of radius r centered at x. We use Sd−1

q to denote the
unit `q sphere. Given two vectors w and v, we use ∠(w,v)
to denote the angle between these two vectors. We use the
indicator function 1(E) to denote 1 on the event E and 0
elsewhere. We use the standard O(·) and Ω(·) notations to
hide universal constants, with Õ(·) and Ω̃(·) additionally
ignoring logarithmic factors. The notation g(x) = Θ(f(x))
denotes a function with growth rate satisfying both g(x) =
O(f(x)) and g(x) = Ω(f(x)).

1.3. Paper Organization

The remainder of the paper is organized as follows. In Sec-
tion 2, we describe our guarantees for adversarial training on
convex loss functions. In Section 3, we show that by using
a nonconvex sigmoidal loss, we can achieve improved guar-
antees for the robust classification accuracy of halfspaces.
We conclude in Section 4.

Algorithm 1 Adversarial Training
1: input: Training dataset S = {(xi, yi)}i=1,...,n, step

size η
2: for k = 0, 1, . . . ,K do
3: for i = 1, . . . , n do
4: δ

(k)
i := argmax‖δ‖p≤r `(yiw

>
k (xi + δ))

5: end for
6: wk+1 = wk − η

n

∑n
i=1 `

′(yiw
>(xi + δ

(k)
i ))yi(xi +

δ
(k)
i )

7: end for
8: output: {wk}k=0,...,K

2. Adversarial Training with Convex
Surrogates

Our first set of results is for the case that the loss func-
tion ` appearing in the definition of the robust loss (1.2)
is a typical decreasing convex surrogates of the zero-one
loss, such as the cross entropy `(z) = log(1 + exp(−z)) or
hinge loss `(z) = max(0, 1 − z). We consider a standard
approach for gradient descent-based adversarial training of
the objective (1.2), which consists of two parts: (1) an inner
maximization, and (2) an outer minimization. For the inner
maximization, we find the optimal perturbation of the input
which maximizes `(yw>(x + δ)) for δ ∈ Bp(0, r). For
more complicated model classes, such as neural networks,
the inner maximization procedure can often be very diffi-
cult to optimize. As such, it is usually difficult to derive
provable guarantees for the robustness of adversarial train-
ing procedures. However, in the linear model class that we
consider, we can solve the inner maximization procedure
exactly. When ` is decreasing, this maximization problem
is equivalent to

arg min
‖δ‖p≤r

yw>(x + δ).

Using calculus we can solve for the exact solution to this
minimization problem. The optimal perturbation is given
by δ∗ = δ∗(w, r, y), with components

δ∗j = −ry · sgn(wj)|wj |q−1/‖w‖q−1
q , (2.1)

where q is the Hölder conjugate to p so that 1/q + 1/p =
1. The ability to solve the inner maximization procedure
exactly means that the only remaining part is to solve the
outer minimization. For this, we use the standard gradient
descent algorithm on the perturbed examples. We note that
we do not differentiate through the samples in the gradient
updates—although the perturbed examples depend on the
weights (via δ∗), we treat these perturbed samples as if they
are independent of w. The update rule is explicitly given in
Algorithm 1.

Our first result is that Algorithm 1 efficiently minimizes the
robust empirical risk.
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Lemma 2.1. Assume ` is convex, decreasing, and 1-
Lipschitz. Let w∗ ∈ Rd be arbitrary. Let p ∈ [1,∞],
and assume that ‖x‖p ≤ 1 a.s. If p ≤ 2, let H = 4,
and if p > 2, let H = 4d. Let ε > 0 and be arbi-
trary. If η ≤ εH−1/4, then for any initialization w0, if
we denote wk as the k-th iterate of Algorithm 1, by taking
K = ε−1η−1‖w0 −w∗‖22, we have there exists a k∗ ≤ K
such that ‖wk∗ −w∗‖22 ≤ ‖w0 −w∗‖22 and

Lp,rS (wk∗) ≤ Lp,rS (w∗) + ε.

The proof for the above Lemma can be found in Appendix
B.1. To convert the guarantee for the empirical risk into
one for the population risk, we will utilize an argument
based on robust Rademacher complexity (Yin et al., 2019).
This is possible because Lemma 2.1 shows that the weights
returned by Algorithm 1 stay in a norm-bounded region.

Lemma 2.2 (Population robust loss). Assume that ‖x‖p ≤
1 a.s. and that ` is convex, decreasing, and 1-Lipschitz.
Let w∗ ∈ Rd be such that ‖w∗‖q ≤ ρ for some ρ > 0,
and denote B = `(0) + 2d|1/q−1/2|(1 + r)ρ and B̄ =
2d|1/q−1/2|B. Denote Rp = n−1Eσ

[
‖
∑n
i=1 σixi‖p

]
.

Then for any ε > 0, using the same notation from Lemma
2.1, running Algorithm 1 with w0 = 0 ensures that there
exists k∗ ≤ K = max{1, d1/q−1/2}η−1ε−1ρ2 such that
with probability at least 1− δ,

Lp,rD (wk∗) ≤ Lp,rD (w∗) + ε+ 4B̄ρRp

+ 4B̄
ρr√
n

+ 6B

√
log(2K/δ)

2n

The proof for Lemma 2.2 is in Appendix B.2. We note that
the term Rp is a common complexity term that takes the
form O(1/

√
n) for p = 2 and O(log(d)/

√
n) for p = ∞;

see e.g. Lemmas 26.10 and 26.11 of Shalev-Shwartz &
Ben-David (2014).

Now that we have shown that adversarial training yields
hypotheses which minimize the surrogate robust risk Lp,rD ,
the next step is to show that this minimizes the robust clas-
sification error errp,rD . (Since Lp,rD is only an upper bound
for errp,rD , minimizers for Lp,rD do not necessarily minimize
errp,rD .) Recently, Frei et al. (2020) introduced the notion of
soft margins in order to translate minimizers of surrogate
losses to approximate minimizers for classification error,
and we will use a similar approach here. Let us first define
soft margin functions.

Definition 2.3. Let q ∈ [1,∞]. Let v̄ ∈ Rd satisfy ‖v̄‖q =
1. We say v̄ satisfies the `q soft margin condition with
respect to a function φv̄,q : R → R if for all γ ∈ [0, 1], it
holds that

Ex∼Dx
[
1
(
|v̄>x| ≤ γ

)]
≤ φv̄,q(γ).

The properties of the `q soft margin function for q = 2 for a
variety of distributions were shown by Frei et al. (2020). We
collect some of these in the examples below, but let us first
introduce the following definitions which will be helpful for
understanding the soft margin.

Definition 2.4. For v̄, v̄′ ∈ Rd, denote by pv̄,v̄′(·) the
marginal distribution of x ∼ Dx on the subspace spanned by
v̄ and v̄′. We say Dx satisfies U -anti-concentration if there
is some U > 0 such that for any two vectors v̄, v̄′ satisfying
‖v̄‖2 = ‖v̄′‖2 = 1, we have pv̄,v̄′(z) ≤ U for all z ∈ R2.
We say that Dx satisfies (U ′, R)-anti-anti-concentration if
there exists U ′, R > 0 such that pv̄,v̄′(z) ≥ 1/U ′ for all
z ∈ R2 satisfying ‖z‖2 ≤ R.

Anti-concentration and anti-anti-concentration have recently
been used for deriving guarantees agnostic PAC learning
guarantees for learning halfspaces (Diakonikolas et al.,
2020b;c; Frei et al., 2020). Log-concave isotropic distri-
butions, such as the standard Gaussian in d dimensions or
the uniform distribution over any convex set, satisfy U -anti-
concentration and (U ′, R)-anti-anti-concentration with each
of U , U ′, and R being universal constants independent of
the dimension of the input space. Below, we collect some
of the properties of the `2 soft margin function.

Example 2.5. 1. For any q ∈ [1,∞], if v̄ ∈ Rd satisfies
‖v̄‖q = 1 and |v̄>x| > γ∗ a.s., then φv̄,q(γ) = 0 for
γ < γ∗.

2. If Dx satisfies U -anti-concentration, then φv̄,2(γ) =
O(γ).

3. IfDx satisfies (U ′, R)-anti-anti-concentration, then for
γ ≤ R, φv̄,2(γ) = Ω(γ) holds.

4. Isotropic log-concave distributions (i.e. isotropic dis-
tributions with log-concave probability density func-
tions) satisfy U -anti-concentration and (U ′, R)-anti-
anti-concentration for U,U ′, R = Θ(1).

Proofs for these properties can be found in Appendix B.3.
For q 6= 2, the soft margin function will depend upon the
ratio of the `q to the `2 norm, since we have the identity, for
any v̄ satisfying ‖v̄‖q = 1,

φv̄,q(γ) = P(|v̄>x| ≤ γ)

= P
(

v̄>

‖v̄‖2
≤ γ

‖v̄‖2

)
= φv̄/‖v̄‖2,2(γ/‖v̄‖2). (2.2)

Thus, the `q soft margin function scales with the ratio of
‖v̄‖q/‖v̄‖2. The case q = 1 corresponds to the `∞ pertur-
bation and is of particular interest. By Cauchy–Schwarz,
‖v̄‖1 ≤

√
d‖v̄‖2, and this bound is tight in the worst case

(take v̄ = 1 ∈ Rd). Thus the `1 soft margin has an unavoid-
able dimension dependence in the worst case. We collect
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the above observations, with some additional properties that
we show in Appendix B.3, in the following example.

Example 2.6. 1. If Dx satisfies U -anti-concentration,
and if q ∈ [1, 2], then for any v̄ ∈ Rd with ‖v̄‖q = 1,
φv̄,q(γ) = O(γd

1
q−

1
2 ).

2. If Dx satisfies (U ′, R)-anti-anti-concentration and if
q ∈ [1, 2], then for any v̄ ∈ Rd with ‖v̄‖q = 1, for
γ ≤ Θ(R), it holds that φv̄,q(γ) = Ω(γ).

We now can proceed with relating the minimizer of the
surrogate loss Lp,rD to that of errp,rD by utilizing the soft
margin. The proof for the following Lemma is in Appendix
B.4.

Lemma 2.7. Let p, q ∈ [1,∞] be such that 1/p+ 1/q = 1
and assume ‖x‖p ≤ 1 a.s. Let v̄ := min‖w‖q=1 errp,rD (w),
so that errp,rD (v̄) = OPT. Assume that ‖x‖p ≤ 1 a.s. For
ρ > 0, denote v := ρv̄ as a scaled version of the population
risk minimizer for errp,rD (·). Assume ` is 1-Lipschitz, non-
negative and decreasing. Then we have

Lp,rD (v) ≤ inf
γ>0

{
(`(0) + ρ)OPTp,r

+ `(0)φv̄,q(r + γ) + `(ργ)
}
. (2.3)

Thus, if `(0) > 0,

errp,rD (v) ≤ [`(0)]−1 inf
γ>0

{
(`(0) + ρ)OPTp,r

+ `(0)φv̄,q(r + γ) + `(ργ)
}
.

Using Lemmas 2.7 and 2.2, we can derive the following
guarantee for the robust classification error for classifiers
learned using adversarial training.

Theorem 2.8. Suppose ` ≥ 0 is convex, decreasing, and
1-Lipschitz. Let p ∈ [1,∞] and q ∈ [1,∞] satisfy
1/p + 1/q = 1. Denote H = 4 if p ≤ 2 and H = 4d
if p > 2. Let ε > 0 be arbitrary, and fix η ≤ εH−1/4.
For any γ > 0, running Algorithm 1 with w0 = 0 for
K = max{1, d

2
q−1}ε−1η−1`−2(1/ε)γ−2 iterations, with

probability at least 1− δ, there exists k∗ ≤ K such that

errp,rD (wk∗) ≤
(
1 + [`(0)]−1 · `−1(1/ε) · γ−1

)
OPTp,r

+ φv̄,q(r + γ) + [`(0)]−1ε+ 4[`(0)]−1B̄γ−1`−1(1/ε)Rp

+ [`(0)]−1

[
4B̄γ−1`−1(1/ε)r√

n
+ 6B

√
log(2K/δ)

n

]
,

where B = `(0) + 2d|2−q|/2(1 + r)γ−1`−1(ε), Rp =
n−1E

σi
i.i.d.∼ Unif(±1)

[‖
∑n
i=1 σixi‖p], and B̄ = 2d|2−q|/2B.

Proof. The result follows by using Lemmas 2.2 and 2.7
with the choice of ρ = γ−1`−1(1/ε).

In order to realize the right-hand-side of the above bound
for the robust classification error, we will need to analyze
the properties of the soft margin function φv̄,q and then
optimize over γ. We will do so in the following corollaries.
We start by considering hard margin distributions.
Corollary 2.9 (Hard margin). Let p ≥ 2 and q ∈ [1, 2] be
such that 1/p+1/q = 1. Assume ‖x‖p ≤ 1 a.s. Suppose v∗

is such that ‖v∗‖q = 1 and for some γ0 ∈ [0, 1], |〈v∗,x〉| ≥
γ0, and errp,rD (v∗) = min‖w‖q=1 errp,rD (w) = OPTp,r.
Suppose we consider the perturbation radius r = (1− ν)γ0

for some ν ∈ (0, 1). Consider the cross entropy loss for
simplicity, and let η ≤ OPTp,rH

−1/4, where H = 4
if p ≤ 2 and H = 4d if p > 2. Then the adversarial
training in Algorithm 1 started from w0 = 0 finds clas-
sifiers satisfying errp,rD (wk) = Õ(ν−1γ−1

0 OPTp,r) within
K = Õ(η−1d

2
p−1γ−2

0 ν−2OPT−1
p,r) iterations provided n =

Ω̃(γ−4
0 ν−2OPT−2

p,r).

Proof. We sketch the proof here and leave the detailed cal-
culations for Appendix B.5. By the definition of soft mar-
gin, φv̄∗,q(γ0) = 0, and so if we choose γ = νγ0 and
ε = OPTp,r in Theorem 2.8, we get a bound for the ro-
bust classification error of the form Õ(ν−1γ−1

0 OPTp,r) +

Õ(1) ·Rp + Õ(1/
√
n) by using the fact that `−1(1//ε) =

O(log(1//ε)) for the cross entropy loss. Standard arguments
in Rademacher complexity show that Rp = Õ(1/

√
n), com-

pleting the proof.

The above corollary shows that if the best classifier sepa-
rates the samples with a hard margin of γ0 (including when
it makes incorrect predictions), then adversarial training will
produce a classifier that has robust classification error within
a constant factor of the best-possible robust classification
error. This can be seen as a generalization of the results
of Charles et al. (2019) and Li et al. (2020) from distribu-
tions that can achieve perfect robust classification accuracy
(with a hard margin) to ones where significant label noise
can be present.

Our next result is for the class of distributions satisfying the
anti-concentration properties described in Definition 2.4.
Corollary 2.10 (Anti-concentration distributions). Let p ∈
[2,∞] and assume ‖x‖p ≤ 1 a.s. Suppose Dx satisfies
U -anti-concentration and (U ′, R)-anti-anti-concentration
for U,U ′, R = Θ(1). Consider the cross entropy loss for
simplicity, and let η ≤ OPTp,rH

−1/4, where H = 4 if
p ≤ 2 and H = 4d if p > 2. Then for perturbations
satisfying r ≤ R, the adversarial training in Algorithm 1
started from w0 = 0 finds classifiers satisfying

errp,rD (wk) = Õ
(
d

1
4−

1
2p

√
OPTp,r + d

1
2−

1
pOPTp,r

)
,

within K = Õ(η−1d
3
2p−

3
4OPT−3

p,r) iterations provided n =

Ω̃(d1−2pOPT−2
p,r).
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Proof. We again sketch the proof here and leave the de-
tailed calculations for Appendix B.5. Example 2.6 shows
that φv̄∗,q(a) = O(ad

1
q−

1
2 ) = O(ad

1
2−

1
p ). Anti-anti-

concentration can be shown to imply that r = O(OPTp,r),
and thus φv̄∗,q(γ + r) = O(γd

1
2−

1
p ) + O(d

1
2−

1
pOPTp,r).

The first term is of the same order as γ−1OPTp,r when
γ = OPT1/2

p,r d
1
2p−

1
4 , and results in a term of the form

Õ(d
1
4−

1
2p

√
OPTp,r). The other terms following using an

argument similar to that of Corollary 2.9.

The above shows that adversarial training yields approxi-
mate minimizers for the robust classification accuracy for
halfspaces over distributions satisfying anti-concentration
assumptions. In particular, this result holds for any log-
concave isotropic distribution, such as the standard Gaussian
or the uniform distribution over a convex set.
Remark 2.11. We note that although the guarantees in this
section are for (full-batch) gradient descent-based adversar-
ial training, nearly identical guarantees can be also derived
for online SGD-based adversarial training. We give the
details on this extension in Appendix C.

3. Adversarial Training with Nonconvex
Sigmoidal Loss

We now show that if instead of using a typical convex loss
function we use a particular nonconvex sigmoidal loss, we
can improve our guarantees for the robust classification error
when using adversarial training. We note that the approach
of using nonconvex loss functions to derive improved guar-
antees for learning halfspaces with agnostic label noise was
first used by Diakonikolas et al. (2020c). Our results in
this section will rely upon the following assumption on the
distribution Dx.
Assumption 3.1. 1. Dx is mean zero and isotropic, i.e.

its covariance matrix is the identity.

2. Dx satisfies U -anti-concentration and (U ′, R)-anti-
anti-concentration, where U,U ′, R = Θ(1).

The loss function we consider is defined by

`(z) = e−z/σ · 1(z > 0) + (2− ez/σ) · 1(z ≤ 0), (3.1)

where σ > 0 is a scalar factor to be specified later. In addi-
tion to using the loss function (3.1), we additionally scale
the weight vector, so that the surrogate loss we consider in
this section is is

Lp,rD (w) = E(x,y)∼D

[
sup

x′∈Bp(x,r)

`

(
yw>x′

‖w‖q

)]
The adversarial training algorithm that we consider for the
loss function (3.1) is a variant of Algorithm 1, where we in-
troduce a projection step to normalize the weights after each

Algorithm 2 Projected Stochastic Adversarial Training
(PSAT(p, r))

1: input: initial model parameter w1 with ‖w1‖q = 1,
learning rate η, perturbation limit r.

2: for k = 1, . . . ,K do
3: Query data (xk, yk) from data distribution D

4: δk := argmax‖δ‖p≤r `

(
ykw

>
k (xk+δ)
‖wk‖q

)
5: Update ŵk+1 ← wk − η∇`

(
ykw

>
k (xk+δk)
‖wk‖q

)
6: Project wk+1 ← arg minw:‖w‖q=1 ‖ŵk+1 −w‖2
7: end for
8: output: w1,w2, . . . ,wK

gradient update. We additionally use the online stochastic
gradient descent algorithm as opposed to full-batch gradient
descent. For this reason we call the algorithm we use for
learning halfspaces that are robust to `p perturbations of
radius r by the name PSAT(p, r), which we describe in Al-
gorithm 2. We note that when p =∞ or p = 2 (i.e., q = 1
or q = 2, resp.), the projection can be done efficiently in
O(d) (Duchi et al., 2008) or O(1) time respectively.

In the below theorem we describe our guarantees for the
robust classification error of halfspaces learned using Algo-
rithm 2.
Theorem 3.2. Suppose the data distribution D satis-
fies Assumption 3.1. Let σ = r and w∗ =
arg min‖w‖q=1 errp,rD (w) be the optimal model such that
errp,rD (w∗) = OPTp,r. If errD(w∗) = O(rd2/p−1) and
r = O

(
d

3
2p−

3
4
)
, then running the adversarial training algo-

rithm PSAT(p, r) forK = O
(
d‖w1−w∗‖22δ−2r−4d

1
2−

1
p
)

iterations, with probability at least 1 − δ, there exists a
k∗ ≤ K such that

errp,rD (wk∗) = O
(
d

1
4−

1
2p · ‖w∗‖1/22 · OPTp,r

)
.

We note that the robust classification error achieved by adver-
sarial training depends on the `2 norm of the optimizer w∗,
which satisfies d1/2−1/p ≤ ‖w∗‖2 ≤ 1 since ‖w∗‖q = 1
(where 1/p + 1/q = 1). The strongest guarantees arise
when ‖w∗‖2 = d1/2−1/p, which results in a robust classi-
fication error guarantee of O(OPTp,r), while in the worst
case ‖w∗‖2 = 1 and the guarantee is O(d

1
4−

1
2pOPTp,r)

robust error. Note that for `2 perturbations, ‖w∗‖2 = 1 and
so our guarantee is always O(OPT2,r).

In the remainder of this section we will prove Theorem
3.2. A key quantity in our proof is the inner product
w∗>∇Lp,rD (w), where w∗ is the optimal robust halfspace
classifier.2 To get an idea for why this quantity is impor-
tant, consider the gradient flow approach to minimizing

2Here we slightly abuse the notation since in fact the gradient
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‖w(t)−w∗‖22,

d‖w(t)−w∗‖22
dt

= −〈w(t)−w∗,∇Lp,rD (w(t)) (3.2)

If we denote h(w,x) = w>x/‖w‖q, then we have the
identity

∇Lp,rD (w) = E(x,y) [`′ (yh(w,x + δ)) y∇wh(w,x + δ)] ,

where

∇wh(w,x + δ) =

(
I− w̄w>

‖w‖qq

)
x + δ

‖w‖q
, (3.3)

where we denote the vector w̄ as having components w̄j =
|wj |q−1sgn(wj). Then we have w>∇wh(w,x + δ) = 0
since w>w̄ = ‖w‖qq. In particular, substituting this into
(3.2), we get

d‖w(t)−w∗‖22
dt

= w∗>∇Lp,rD (w(t)). (3.4)

This implies that the more negative the quantity
w∗>∇Lp,rD (w(t)) is, the faster the iterates of gradient flow
will converge to w∗.

The key, then, is to derive bounds on the quantity

w∗>∇Lp,rD (w)

= w∗>E(x,y) [`′ (yh(w,x + δ)) y∇wh(w,x + δ)] ,

where w is an arbitrary vector which we will take to be
the iterates of Algorithm 2. The challenge here is that the
prescence of agnostic label noise means there are no a priori
relationships between x and y, making it unclear how to deal
with the appearance of both of these terms in the expectation.
To get around this, we will use a similar high-level idea as
did Diakonikolas et al. (2020c), in which we swap the label
y with the prediction of the optimal solution w∗. Then
the inner product w∗>∇Lp,rD (w) can be upper bounded
only using the information of w, w∗, the distribution of
x, and the classification error errD(w∗). The details of
this calculation become more complicated since adversarial
training introduces perturbations that also depend on the
label: the optimal perturbation for w is −ryw̄/‖w‖q−1

q .
This requires additional attention in the proof. Finally, since
we consider general `p perturbations, the normalization by
norms with p 6= 2 introduces additional complications.

Let us begin with some basic calculations. We first give
some general calculations which will be frequently used in
the subsequent analyses. Let h(w,x) = w>x/‖w‖q be the
prediction of the normalized classifier and denote the event

S = {(x, y) : y = sgn(w∗>x)}, (3.5)

∇Lp,r
D (w) is defined by ∇Lp,r

D (w) = E(x,y)∼D[∇`(yw>(x +
δ)/‖w‖q)], where the gradient is only taken over w and we do
not differentiate through the perturbation δ.

as the data which can be correctly classified by w∗ without
perturbation. We have

∇wL
p,r
D (w)

= E(x,y)∼D
[
`′(yh(w,x + δ))y∇wh(w,x + δ)1(S)

]
+ E(x,y)∼D

[
`′(yh(w,x + δ))y∇wh(w,x + δ)1(Sc)

]
.

Note δ = −ryw̄/‖w‖q−1
q is the optimal `p adversarial

perturbation corresponding to the model parameter w and
sample (x, y). A routine calculation shows that yh(w,x +
δ) = yw>x/‖w‖q − r. Then it follows that

yh(w,x + δ) =

{
sgn(w∗>x) · w>x

‖w‖q − r (x, y) ∈ S,
−sgn(w∗>x) · w>x

‖w‖q − r (x, y) ∈ Sc,

where for the data (x, y) ∈ S we use sgn(w∗>x) to re-
place the label y while for the data (x, y) ∈ Sc we use
−sgn(w∗>x) to replace y. Define

gS(w∗,w;x) = `′(sgn(w∗>x) ·w>x/‖w‖q − r),
gSc(w

∗,w;x) = `′(−sgn(w∗>x) ·w>x/‖w‖q − r),
g(w∗,w;x) = gS(w∗,w;x) + gSc(w

∗,w;x).

Then the gradient ∇wL
p,r
D (w) can be rewritten as

∇wL
p,r
D (w)

= E
[
gS(w∗,w;x)sgn(w∗>x)∇wh(w,x + δ)1(S)

]
− E

[
gSc(w

∗,w;x)sgn(w∗>x)∇wh(w,x + δ)1(Sc)
]

= E
[
gS(w∗,w;x)sgn(w∗>x)∇wh(w,x + δ)

]
− E

[
g(w∗,w;x)sgn(w∗>x)∇wh(w,x + δ)1(Sc)

]
.

Then using (3.3) and the fact that δ = −ryw̄/‖w‖q−1
q , it

can be shown that

w∗>∇Lp,rD (w)

= E
[
gS(w∗,w;x)sgn(w∗>x)w∗>∇wh(w,x + δ)

]
− E

[
g(w∗,w;x)sgn(w∗>x)w∗>∇wh(w,x + δ)1(Sc)

]
,

(3.6)

where we have defined the quantity w̃ = w∗/‖w‖q −
(w̄>w∗)w/‖w‖q+1

q . This decomposition allows for the la-
bel to only play a role through the indicator function 1(Sc).

With this notation in order, we can begin with our proof.
The first step is to show that the key quantity (3.6) is more
negative when w is far from w∗ and when the non-robust
classification error of the best robust classifier is small.

Lemma 3.3. Let p ∈ [2,∞] and q ∈ [1, 2] be such that
1/p + 1/q = 1 and w∗ = arg min‖w‖q=1 L

p,r
D (w) be

the optimal model parameter that achieves minimum `p
robust error and errD(w∗) be the clean error achieved by
w∗. Suppose the data distribution D satisfies Assumption
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3.1. For any w of `q norm 1, let w̃ = w∗ − (w̄>w∗)w,
θ(w) = ∠(w,w∗) and θ′(w) = ∠(−w, w̃). Let σ =
r. If r ≤ R‖w‖2 sin3/2(θ′(w))/(100U), errD(w∗) ≤
(214R4‖w‖)−1U ′2r sin2(θ′(w)) and

sin(θ(w)) ≥ max

{
4r

R‖w‖2
,

100r
√
U/U ′

R‖w‖2 sin1/2(θ′(w))

}
,

hold, then it holds that

w∗>∇Lp,rD (w) ≤ −R
2‖w̃‖2 · sin θ′(w) · e−1

2‖w‖2

The proof for Lemma 3.3 can be found in Appendix D.1.
Lemma 3.3 shows that w∗>∇Lp,rD (w) is more negative
when the angle θ(w) is large, which intuitively means that
the distance ‖w − w∗‖22 to the optimal robust classifier
will decrease until we reach a point where the angle θ(w)
becomes small (recall the intuition from gradient flow given
in (3.4)). We formalize this into the following lemma, which
shows that Algorithm 2 leads to a halfspace that is close to
the optimal robust classifier.
Lemma 3.4. Let δ ∈ (0, 1) be arbitrary. Then if r =

O(d
3
2p−

3
4 ), set η = O

(
δr3d

1
2p−

1
4
)

and run Algorithm
PSAT(p, r) for K = O

(
d‖w1 − w∗‖22δ−2r−4d1/2−1/p

)
iterations, with probability at least 1 − δ, there exists a
k∗ ≤ K such that

sin(θ(wk∗)) ≤

 O
(
rd

1
4
− 1

2p

‖wk∗‖
1/2
2

)
‖wk∗‖2 ≥ ‖w∗‖2,

O
(

r
‖wk∗‖2

)
‖wk∗‖2 < ‖w∗‖2.

The proof for Lemma 3.4 can be found in Appendix D.2.
We can now proceed to complete the proof of Theorem 3.2
based on Lemma 3.4 by showing small θ(wk∗) suffices to
ensure small robust classification error errp,rD (wk∗). The
completed proof of Theorem 3.2 can be found in Appendix
D.3 and we sketch the crucial part as follows.

Proof of Theorem 3.2. Before characterizing the robust
classification error errp,rD (wk∗), we first investigate the op-
timal robust error OPTp,r = errp,rD (w∗) and see how it
relates to the perturbation radius r. In particular,

OPTp,r = E(x,y)∼D

[
1

(
y

w∗>

‖w∗‖q
(x + δ) ≤ 0

)]
= E(x,y)∼D

[
1(yw∗>x ≤ r)

]
,

where we use the fact that ‖w∗‖q = 1 in the second equality.
Note that the robust error consists of two disjoint parts of
data: (1) the data satisfies |w∗>x| ≤ r; and (2) the data
satisfies |w∗>x| > r and yw∗>x < 0. Therefore, we can
get lower and upper bounds on OPTp,r,

OPTp,r ≥ Ex∼Dx
[
1(|w∗>x| ≤ r)

]
OPTp,r ≤ Ex∼Dx

[
1(|w∗>x| ≤ r)

]
+ errD(w∗). (3.7)

By Assumption 3.1, we have the data distribution
Dx satisfies U -anti-concentration and (U ′, R) anti-anti-
concentration with U,R being constants. Therefore, it
follows that Ex∼Dx

[
1(|w∗>x| ≤ r)

]
= Θ(r‖w∗‖−1

2 )

since we have r‖w‖−1
2 = O(d

3
2p−

3
4 ‖w‖−1

2 ) ≤ R. Be-
sides, note that we also have errD(w∗) = O(rd2/p−1) ≤
O(r‖w∗‖−1

2 ) due to our assumption. Therefore, it is clear
that OPTp,r = Θ(r‖w∗‖−1

2 ).

An argument similar to that used for (3.7) leads to the bound

errp,rD (wk∗) ≤ Ex∼Dx
[
1(|w>k∗x| ≤ r)

]
+ errD(w∗)

= O(r‖wk∗‖−1
2 ) + errD(wk∗). (3.8)

We proceed by sketching how we bound each of these
two terms. For O(r‖wk∗‖−1

2 ), we only need to charac-
terize the `2 norm of wk∗ . In fact by Lemma 3.4, we
can show that under the assumption that r = O(d

3
2p−

3
4 )

it holds that ‖wk∗‖2 = Ω(‖w∗‖2) (see Appendix D.3 for
more details), which further implies that O(r‖wk∗‖−1

2 ) =
O(r‖w∗‖−1

2 ) = O(OPTp,r).

The next step is to characterize errD(wk∗). We can do so
by comparing it with the classification error of w∗,

errD(wk∗) ≤ errD(w∗) + |errD(wk∗)− errD(w∗)|
≤ 2errD(w∗) + Ex∼Dx [1(w>k∗x 6= w∗>x)]

≤ O(r‖w∗‖−1
2 ) + Θ(θ(wk∗)), (3.9)

where the last inequality is due to the fact thatDx is isotropic
(see Appendix D.3 for more details). Then by Lemma 3.4 it
is clear that

θ(wk∗) = O

(
rd

1
4−

1
2p

‖wk∗‖1/22

)
= O

(
rd

1
4−

1
2p

‖w∗‖1/22

)
(3.10)

since we have shown that ‖wk∗‖2 = Ω(‖w∗‖2). Conse-
quently, combining (3.10) and (3.9) and further substituting
into (3.8), we get that errp,rD (wk∗) is at most

O

(
rd

1
4−

1
2p

‖w∗‖1/22

)
= O

(
d

1
4−

1
2p · ‖w∗‖1/22 · OPTp,r

)
since OPTp,r = Θ(r‖w∗‖−1

2 ). This completes the proof.

4. Conclusion and Future Work
In this work we analyzed the properties of adversarial train-
ing for learning halfspaces with noise. We provided the first
guarantee that adversarial training provably leads to robust
classifiers when the data distribution has label noise. In
particular, we established that adversarial training leads to
approximate minimizers for the robust classification error
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under `p perturbations for many distributions. For typi-
cal convex loss functions like the cross entropy or hinge
loss, we showed that adversarial training can achieve ro-
bust classification error Õ

(√
OPT2,r

)
when p = 2 and

Õ
(
d1/4

√
OPT∞,r + d1/2OPT∞,r

)
for `∞ when p = ∞

for distributions satisfying anti-concentration properties. We
showed that the robust classification error guarantees can be
improved if we instead use a nonconvex sigmoidal loss, with
guarantees of O(OPT2,r) for p = 2 and O(d1/4OPT∞,r)
for p = ∞ in the worst case. For future work, we are
keen on understanding whether or not adversarial training
provably leads to robust classifiers for more complicated
function classes than halfspaces.
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Figure 1. Experimental evidence for a separation between the robust risk when using convex vs. non-convex losses. The distribution is the
one used for the non-robust risk lower bound in Diakonikolas et al. over Gaussian marginals in two dimensions. (a) Sigmoid loss achieves
smaller robust risk. (b), (c) Decision boundaries resulting from `2 adversarial training with different losses (r = 0.1). The dashed orange
line is the best halfspace. Using the sigmoid loss improves alignment with the optimal halfspace.

A. Experiments
We have run experiments to compare the population robust error of the models trained using nonconvex sigmoid and convex
cross-entropy loss. In our experiments, the synthetic data are generated according the data distribution constructed in the
lower bound of Diakonikolas et al. (2020c). The results are displayed in Figure A, where a remarkable difference in the
robust classification error when using sigmoid vs. the cross-entropy loss can be observed. In particular, Figure 1(a) shows
that the nonconvex sigmoid loss yields smaller robust error comparing to the convex cross-entropy loss. Figures 1(b)-1(c)
show that using the sigmoid loss can lead to a linear model that is closer to the optimal halfspace.

B. Proofs for Typical Convex Losses
B.1. Proof of Lemma 2.1

Proof of Lemma 2.1. Throughout this proof we assume ` is convex and L-Lipschitz. Following the notation of Algorithm 1,
denote

δ
(k)
i := argmax

‖δ‖p≤r
`(yiw

>
k (xi + δ)).

Note that δ(k)
i = δ

(k)
i (wk, yi,xi) depends on wk. To analyze the convergence of gradient descent on the robust risk, we

introduce a reference vector w∗ ∈ Rd, and consider the decomposition

‖wk −w∗‖22 − ‖wk+1 −w∗‖22 = 2η

〈
1

n

n∑
i=1

`′
(
yiw

>
k (xi + δ

(k)
i )
)
yi(xk + δ

(k)
i ),wk −w∗

〉

− η2
∥∥∥ 1

n

n∑
i=1

`′
(
yiw

>(xi + δ
(k)
i )
)
yi(xi + δ

(k)
i )
∥∥∥2

2
.

For the first term, note that for every (xi, yi) ∈ S and k ∈ N,

`′
(
yiw

>
k (xi + δ

(k)
i )
)
(w>k (xi + δ

(k)
i )−w∗>(xi + δ

(k)
i ))

≥ `
(
yiw

>
k (xi + δ

(k)
i )
)
− `
(
yiw

∗>(xi + δ
(k)
i )
)

≥ `
(
yiw

>
k (xi + δ

(k)
i )
)
− sup
‖δ‖p≤r

`
(
yiw

∗>(xi + δ)
)
,
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where the first line follows by convexity of `. This allows for us to bound

1

n

n∑
i=1

`′
(
yiw

>
k (xi + δ

(k)
i )
)
yi(wk −w∗)>(xk + δ

(k)
i )

≥ 1

n

n∑
i=1

[
`
(
yiw

>
k (xi + δ

(k)
i )
)
− sup
‖δ‖≤r

`
(
yiw

∗>(xi + δ)
)]

= Lp,rS (wk)− Lp,rS (w∗). (B.1)

For the gradient upper bound, under the assumption that ` is L-Lipschitz,∥∥∥ 1

n

n∑
i=1

`′
(
yiw

>(xi + δ
(k)
i )
)
yi(xi + δ

(k)
i )
∥∥∥2

2
≤ 1

n

n∑
i=1

‖`′
(
yiw

>(xi + δ
(k)
i )
)
yi(xi + δ

(k)
i )‖22

≤ 1

n

n∑
i=1

L2‖xi + δ
(k)
i ‖

2
2

≤ 2L2 1

n

n∑
i=1

(‖xi‖22 + ‖δ(k)
i ‖

2
2)

≤ 2L2 sup
x∼Dx

‖x‖22 + 2L2 sup
‖δ‖p≤r

‖δ‖22

≤ 2L2 sup
x∼Dx

‖x‖2p ·
‖x‖22
‖x‖2p

+ 2L2 sup
‖δ‖p≤r

‖δ‖2p ·
‖δ‖22
‖δ‖2p

≤

{
2L2(1 + r), p ≤ 2,

2L2(d+ rd), p > 2.

In the first inequality, we use Jensen’s inequality. In the second we use that ` is L-Lipschitz. The third inequality follows by
Young’s inequality. In the last, we use that ‖x‖p ≤ 1 and that p 7→ ‖x‖p is a decreasing function for fixed x, together with
the bound ‖x‖2/‖x‖∞ ≤

√
d. Assuming without loss of generality that r ≤ 1, this shows that∥∥∥ 1

n

n∑
i=1

`′
(
yiw

>(xi + δ
(k)
i )
)
yi(xi + δ

(k)
i )
∥∥∥2

2
≤ H :=

{
4L2, p ≤ 2,

4L2d, p > 2.
(B.2)

Putting (B.1) and (B.2) together, we have for η ≤ εH/4,

‖wk −w∗‖22 − ‖wk+1 −w∗‖22 ≥ 2η(Lp,rS (wk)− Lp,rS (w∗))− η2H ≥ 2η(Lp,rS (wk)− Lp,rS (w∗)− ε/2). (B.3)

We can use the above to bound the number of iterations until we reach a point with Lp,rS (wk) ≤ Lp,rS (w∗) + ε. Let K be the
number of iterations until we reach such a point, so that for k = 1, . . . ,K, it holds that Lp,rS (wk) > Lp,rS (w∗) + ε. Then
(B.3) implies that for each of k = 1, . . . ,K,

‖wk −w∗‖22 − ‖wk+1 −w∗‖22 ≥ ηε.

In particular, at every such iteration, ‖wk − w∗‖22 decreases by at least ηε. There can only be ‖w0 − w∗‖22/(ηε) such
iterations. This shows that there exists some k∗ ≤ K = ‖w0 −w∗‖22η−1ε−1 for which Lp,rS (wk) ≤ Lp,rS (w∗) + ε, and
this k∗ satisfies ‖wk∗ −w∗‖2 ≤ ‖w0 −w∗‖2.

B.2. Proof of Lemma 2.2

Proof of Lemma 2.2. We will follow the proof of Theorem 2 in Yin et al. (2019). Note that we have ‖wk∗−w∗‖2 ≤ ‖wk∗‖2.
Therefore, we have ‖wk∗‖2 ≤ 2‖w∗‖2. Therefore we have

‖wk∗‖q ≤ ‖wk∗‖2 ·max{1, d1/q−1/2} ≤ 2‖w∗‖2 ·max{1, d1/q−1/2} ≤ 2‖w∗‖qd|1/q−1/2| ≤ 2d|1/q−1/2|ρ.
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Then let ρ′ = 2d|1/q−1/2|ρ, we define the following function class F ⊆ RX×{±1},

F :=

{
min

x′∈Bp(x,r)
y〈w,x′〉 : ‖w‖q ≤ ρ

}
=
{
y〈w,x〉 − r‖w‖q : ‖w‖q ≤ ρ′

}
.

Since ` is decreasing and 1-Lipschitz, `(yf(x)) ≤ `(0) + ‖w‖q‖x‖p + r‖w‖q ≤ `(0) + (1 + r)ρ′ := B holds for any
f ∈ F . Thus, by Yin et al. (2019, Corollary 1), we know that with probability at least 1− δ, for arbitrary k∗ < K it holds
that

Lp,rD (wk∗) ≤ Lp,rS (wk∗) + 2BR(F) + 3B

√
log(2/δ)

2n
.

We now want to apply Lemma 2.1. Note that the iteration complexity K depends on the `2 norm of w∗. Using Hölder’s
inequality, ‖w∗‖2 ≤ max{1, d

1
q−

1
2 }‖w‖q ≤ max{1, d

1
q−

1
2 }ρ. Thus, by taking K = η−1ε−1 max{1, d

2
q−1}ρ2, we have

the inequality

Lp,rS (w∗k) ≤ Lp,rS (w∗) + ε+ 2BR(F) + 3B

√
log(2/δ)

2n
.

Applying Yin et al. (2019, Corollary 1) once more to w∗ ∈ F , we get

Lp,rD (wk∗) ≤ Lp,rD (w∗) + ε+ 4BR(F) + 6B

√
log(2/δ)

2n
(B.4)

Moreover, applying union bound for all possible k∗ < K, we can get with probability at least 1− δ,

Lp,rD (wk∗) ≤ Lp,rD (w∗) + ε+ 4BR(F) + 6B

√
log(2K/δ)

2n
(B.5)

Therefore, then rest effort will be made to prove the upper bound of the Rademacher complexity. Based on the definition of
Rademacher complexity, we have

R(F) =
1

n
Eσ
[

sup
‖w‖q≤ρ′

n∑
i=1

σi
(
yiw

>xi − r‖w‖q
)]

=
1

n
Eσ
[

sup
‖w‖q≤ρ′

w>u− v‖w‖q
]
,

where σi is i.i.d. Rademacher random variable, u =
∑n
i=1 σiyixi and v = r

∑n
i=1 σi. Then we have

sup
‖w‖q≤ρ′

w>u− v‖w‖q ≤ sup
‖w‖q≤ρ′

‖w‖q(‖u‖p − v) ≤ ρ′|‖u‖p − v|.

Therefore, we have

R(F) ≤ ρ′

n
Eσ
[
|‖u‖p − v|

]
≤ ρ′

n

[
Eσ[‖u‖p] + Eσ[|v|]

]
=
ρ′

n

[
Eσ
[∥∥∥∥ n∑

i=1

σiyixi

∥∥∥∥
p

]
+
rρ′

n
Eσ
[∣∣∣∣ n∑

i=1

σi

∣∣∣∣]]

=
ρ′

n
Eσ
[∥∥∥∥ n∑

i=1

σixi

∥∥∥∥
p

]
+
ρ′r√
n

:= ρ′Rp +
ρ′r√
n
.

Plugging the above inequality into (B.5) completes the proof.
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B.3. Proofs for Example 2.5 and Example 2.6

We first show the properties given in Example 2.5. Part 1 follows by Frei et al. (2020). For Part 2, that φv̄,2(γ) = O(γ)
follows by Frei et al. (2020). For Part 3, to show that (U ′, R)-anti-anti-concentration implies φv̄,2(γ) = Ω(γ), we first note
that if Dx satisfies (U ′, R) anti-anti-concentration defined in terms of projections onto two dimensional subspaces, then
it also satisfies (U ′,Θ(R)) anti-anti-concentration onto projections defined in terms of projections onto one dimensional
subspaces, since we have the set of inclusions

{z = (z1, z2) : |zi| ≤ R/2, i = 1, 2} ⊂ {z : ‖z‖ ≤ R} ⊂ {z = (z1, z2) : |zi| ≤ R, i = 1, 2}.

Therefore, denoting pv(·) as the marginal density of Dx onto the subspace spanned by v ∈ Rd, we have for γ ≤ Θ(R),

φv̄,2(γ) = P(|v̄>x| ≤ γ)

=

∫
pv̄(z1)1(|z1| ≤ γ)dz1

≥ 2γ

U ′
.

This shows that φv̄,2(γ) = Ω(γ) when γ ≤ Θ(R). Finally, Part 4 of Example 2.5 follows by Balcan & Zhang (2017,
Theorem 11), using the fact that the marginals of any log-concave distribution are again log-concave (Lovász & Vempala,
2007, Theorem 5.1).

We now show the properties of Example 2.6. For the first part, the general case of q ∈ (1, 2] follows by Hölder’s inequality,
since we can write

‖v‖q =

 q∑
j=1

|vj |q
1/q

≤ ‖(1, · · · , 1)‖1/q2/(2−q) · ‖(|v1|q, . . . , |vd|q)‖1/q2/q = d
1
q−

1
2 ‖v‖2.

For the second, we use Example 2.5 and (2.2) to get that

φv̄,q(γ) = φv̄/‖v̄‖(γ/‖v̄‖2) = Ω(γ/‖v̄‖2) = Ω(γ).

In the last equality, we have used that ‖v‖2 ≤ ‖v‖q .

B.4. Proof of Lemma 2.7

Proof of Lemma 2.7. We use an argument similar to that used by Frei et al. (2020) for learning halfspaces with noise. We
write the surrogate risk as a sum of three terms,

Lp,rD (v) = E(x,y)

[
sup

x′∈Bp(x,r)

`(yv>x′)

]

≤ E

[
sup

x′∈Bp(x,r)

`(yv>x′)1
(
yv̄>x′ ≤ 0

)]
+ E

[
sup

x′∈Bp(x,r)

`(yv>x′)1
(
0 < yv̄>x′ ≤ γ

)]

+ E

[
sup

x′∈Bp(x,r)

`(yv>x′)1
(
yv̄>x′ > γ

)]
.

For the first term, we use that ` is L-Lipschitz and decreasing together with Hölder’s inequality to get

E

[
sup

x′∈Bp(x,r)

`(yv>x′)1(yv̄>x′ ≤ 0)

]
≤ E

[
sup

x′∈Bp(x,r)

(`(0) + L|v>x′|)1(yv̄>x′ ≤ 0)

]

≤ E

[
sup

x′∈Bp(x,r)

(`(0) + L‖v‖q‖x′‖p)1(yv̄>x′ ≤ 0)

]

≤ (`(0) + Lρ)E

[
sup

x′∈Bp(x,r)

1(yv̄>x′ ≤ 0)

]
= (`(0) + Lρ)OPTp,r.
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In the last inequality we use that ‖x‖p ≤ 1 a.s.

For the second term, we first notice that since |〈v̄,x〉| ≤ |〈v̄,x− x′〉|+ |〈v̄,x′〉|, we have the inclusion

{|〈v̄,x′〉| ∈ (0, γ]} ⊂ {|〈v̄,x〉| ≤ |〈v̄,x− x′〉|+ γ}.

Therefore, we can bound

E

[
sup

x′∈Bp(x,r)

`(yv>x′)1
(
0 < yv̄>x′ ≤ γ

)]
≤ `(0)E

[
sup

x′∈Bp(x,r)

1
(
0 < yv̄>x′ ≤ γ

)]

≤ `(0)E

[
sup

x′∈Bp(x,r)

1(|〈v̄,x〉| ≤ |〈v̄,x− x′〉|+ γ)

]

≤ `(0)E

[
sup

x′∈Bp(x,r)

1(|〈v̄,x〉| ≤ ‖v̄‖q‖x− x′‖p + γ)

]

≤ `(0)E

[
sup

x′∈Bp(x,r)

1(|〈v̄,x〉| ≤ r + γ)

]
≤ `(0)E [1(|〈v̄,x〉| ≤ r + γ)]

≤ `(0)φv̄,q(r + γ).

where we have used that ` is decreasing in the first inequality and Definition 2.3 in the second. Finally, for the last term, we
can use that ` is decreasing to get

E

[
sup

x′∈Bp(x,r)

`(yv>x′)1
(
yv̄>x′ > γ

)]
= E

[
sup

x′∈Bp(x,r)

`(yρv̄>x′)1
(
yρv̄>x′ > ργ

)]

≤ E

[
sup

x′∈Bp(x,r)

`(ργ)

]
= `(ργ).

To see the final claim, note that we can write the event defining errp,rD (v) as{
sup

x′∈Bp(x,r)

sign(〈v,x〉) 6= y)

}
=

{
sup

x′∈Bp(x,r)

y〈v,x′〉 < 0

}

=

{
sup

x′∈Bp(x,r)

`(y〈v,x′〉) > `(0)

}
.

The final equality follows since ` is decreasing. This proves (2.3). For the final claim of the Lemma, by Markov’s inequality,

errp,rD (v) = P(x,y)

(
sup

x′∈Bp(x,r)

y〈v,x′〉 < 0
)

= P(x,y)

(
sup

x′∈Bp(x,r)

`(y〈v,x′〉) > `(0)
)

≤ [`(0)]−1E(x,y)

[
sup

x′∈Bp(x,r)

`(y〈v,x′〉)
]

= [`(0)]−1Lp,rD (v).

B.5. Proofs of Corollaries

Proof of Corollary 2.9. First, let us note that `(0) = log 2 ≈ 0.693 and `−1(1/ε) ∈ [log(1/(2ε)), log(2/ε)] for the cross
entropy loss. Additionally, by standard arguments from Rademacher complexity (see, e.g., Kakade et al. (2009), Theorem
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1),

Rp =
1

n
E
σi

i.i.d.∼ Unif(±1)

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
p

=

O
(

p√
n

)
, p ∈ [2,∞),

O
(

log d√
n

)
= Õ

(
1√
n

)
, p =∞,

. (B.6)

By the definition of hard margin, the soft margin function satisfies φv̄,q(γ) = 0 for γ < γ0. Thus applying Theorem 2.8
with r = (1− ν)γ0 and γ = νγ0, we get

errp,rD (w∗k) ≤ O(log(1/ε)γ−1
0 ν−1OPTp,r) + Õ

(
γ−1

0 ν−1B log(1/ε)
√

log(1/δ)√
n

)
+ ε, (B.7)

where the Õ(·) in the second term hides the possible logarithmic dependence on d when p = ∞. Now set ε = OPTp,r
and let n = Ω̃(γ−2

0 ν−2B2
√

log(1/δ) log2(1/OPTp,r)OPT
−2
p,r). Since B = `(0) + (1 + r)γ−1`−1(ε) = Õ(γ−1), this

completes the proof.

Proof of Corollary 2.10. Denote q as the Hölder conjugate to p, so 1/p+ 1/q = 1. Since the inclusion {|〈w∗,x〉| ≤ r} ⊂
{y〈w,x〉 ≤ r} holds, we have

φw,q(r) ≤ P(y〈w,x〉 ≤ r) = errp,rD (w).

Therefore φw,q(r) ≤ errp,rD (w). If Dx satisfies (U ′, R)-anti-anti-concentration, then φw,q(r) = Ω(r) for any q ∈ [1, 2]
by Example 2.6 since r ≤ R. This shows that r = O(errp,rD (w)) holds for any w satisfying ‖w‖q = 1, and hence
r = O(OPTp,r) holds. When q is the Hölder conjugate to p, q satisfies 1/q = 1− 1/p. Thus, by Example 2.6,

φv̄,q(γ + r) ≤ O
(
(γ + r)d

1
2−

1
p
)
≤ O(γd

1
2−

1
p ) +O(d

1
2−

1
pOPTp,r). (B.8)

By Theorem 2.8, the robust classification error errp,rD (wk∗) for weights wk∗ found by Algorithm 1 is at most

O(log(1/ε)γ−1OPTp,r) + φv̄,q(r + γ) +O

(
γ−1B log(1/ε)

√
log(1/δ)√

n

)
+O(Bγ−1 log(1/ε)Rp) + ε.

Let now ε = OPTp,r and choose γ = OPT1/2
p,r d

1
2p−

1
4 so that γ−1OPTp,r and γd

1
2−

1
p (coming from eq. B.8) are of the

same order. This results in

errp,rD (wk∗) ≤ O(d
1
4−

1
2pOPT1/2

p,r log(1/OPTp,r))+O(d
1
2−

1
pOPTp,r)+Õ

(
d

1
4−

1
2pBrOPT−1/2

p,r log(1/OPT)
√
n

)
. (B.9)

Taking n = Ω̃(d
1
2−

1
pB2r2OPT−1

p,r), and using the fact that B = O(rγ−1`−1(ε)) = Õ(d
1
4−

1
2pOPT−1/2

p,r ) completes the
proof.

C. Guarantees of SGD for Convex Losses
Our results for SGD will rely upon the assumption that `(z) is M -smooth, i.e. `′′(z) ≤M . This allows for us to deal with
unbounded Lipschitz activations and also get high-probability guarantees for the output of SGD. In particular, we derive the
robust guarantee of the output of SGD in the following theorem.

Theorem C.1. Assume ` is convex, decreasing, L-Lipschitz, and M -smooth. Let p ∈ [1,∞], and assume that ‖x‖p ≤ 1 a.s.
If p ≤ 2, let H = 4L2, and if p > 2, let H = 4L2d. Let ε > 0 and be arbitrary. If η ≤ εH−1/4, then for any initialization
w1, if we denote wk as the k-th iterate of online-SGD based adversarial training and S = {xk}k=1,...,K be all observed
data, by taking K = 2ε−1η−1‖w1 −w∗‖22, we have,

min
k≤K

errp,rD (wk) ≤ [`′(0)]−2 ·
(

32MLp,rD (w∗) + 16Mε+

[
16M

(
`(0) + Lρ(1 + r)

)
+ 4L2

]
· log(2/δ)

K

)
.

For simplicity we treat M , `(0), [`′(0)]−1, and L as constants. Then we can set ε = O(1/K) and Theorem C.1 implies that

min
k≤K

errp,rD (wk) = O(Lp,rD (w∗)) + Õ(ρ/K).
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Further note that w∗ is arbitrary. Then similar to Lemma 2.7, let v̄ = min‖w‖q=1 errp,rD (w), we can define w∗ = ρv̄, which
satisfies

Lp,rD (w∗)) ≤ (`(0) + ρ)OPTp,r + `(0)φv̄,q(r + γ) + `(ργ)

for arbitrary γ ≥ 0. Then similar to Theorem 2.8, set ρ = γ−1`−1(1/ε), we get

min
k≤K

errp,rD (wk) ≤ C ·
[(
`(0) + γ−1`−1(1/ε)

)
· OPTp,r + `(0)φv̄,q(r + γ) + ε

]
+ Õ

(
γ−1`−1(1/ε)/K

)
for some absolute constant C. Then it can be seen that the first term (in the first bracket) is nearly identical to the first three
terms of the bound in Theorem 2.8 up to some constant factors. Then Corollaries 2.9 and 2.10 also hold, implying that
the output of online-SGD adversarial training enjoys the same robustness guarantee as that of full-batch gradient descent
adversarial training.

C.1. Proof of Theorem C.1

We first provide the convergence guarantee of SGD in the following lemma.

Lemma C.2. Assume ` is convex, decreasing, and L-Lipschitz. Let w∗ ∈ Rd be arbitrary. Let p ∈ [1,∞], and assume that
‖x‖p ≤ 1 a.s. If p ≤ 2, let H = 4L2, and if p > 2, let H = 4L2d. Let ε > 0 and be arbitrary. If η ≤ εH−1/4, then for any
initialization w1, if we denote wk as the k-th iterate of Algorithm 1 and S = {xk}k=1,...,K be all observed data, by taking
K = 2ε−1η−1‖w1 −w∗‖22, we have

1

K

K∑
k=1

Lp,rk (wk) ≤ Lp,rS (w∗) + ε.

Proof. Following the notation of Algorithm 1, denote

δk := argmax
‖δ‖p≤r

`(ykw
>
k (xk + δ)).

Note that δk = δk(wk, yk,xk) depends on wk. To analyze the convergence of gradient descent on the robust risk, we
introduce a reference vector w∗ ∈ Rd, and consider the decomposition

‖wk −w∗‖22 − ‖wk+1 −w∗‖22 = 2η〈`′
(
ykw

>
k (xk + δk)

)
yk(xk + δk),wk −w∗〉

− η2
∥∥`′(ykw>(xk + δk)

)
yk(xk + δk)

∥∥2

2
.

For the first term, note that for every (xk, yk) ∈ S and k ∈ N,

`′
(
ykw

>
k (xk + δk)

)
(w>k (xk + δk)−w∗>(xk + δk))

≥ `
(
ykw

>
k (xk + δk)

)
− `
(
ykw

∗>(xk + δk)
)

≥ `
(
ykw

>
k (xk + δk)

)
− sup
‖δ‖p≤r

`
(
ykw

∗>(xk + δ)
)
,

where the first line follows by convexity of `. This allows for us to bound

`′
(
ykw

>
k (xk + δk)

)
yk(wk −w∗)>(xk + δk)

≥ `
(
ykw

>
k (xk + δk)

)
− sup
‖δ‖≤r

`
(
ykw

∗>(xk + δ)
)

= Lp,rk (wk)− Lp,rk (w∗). (C.1)
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For the gradient upper bound, under the assumption that ` is L-Lipschitz,∥∥`′(ykw>(xk + δk)
)
yk(xk + δk)

∥∥2

2
≤ ‖`′

(
ykw

>(xk + δk)
)
yk(xk + δk)‖22

≤ L2‖xk + δk‖22
≤ 2L2(‖xk‖22 + ‖δk‖22)

≤ 2L2 sup
x∼Dx

‖x‖22 + 2L2 sup
‖δ‖p≤r

‖δ‖22

≤ 2L2 sup
x∼Dx

‖x‖2p ·
‖x‖22
‖x‖2p

+ 2L2 sup
‖δ‖p≤r

‖δ‖2p ·
‖δ‖22
‖δ‖2p

≤

{
2L2(1 + r), p ≤ 2,

2L2(d+ rd), p > 2.

In the first inequality, we use Jensen’s inequality. In the second we use that ` is L-Lipschitz. The third inequality follows by
Young’s inequality. In the last, we use that ‖x‖p ≤ 1 and that p 7→ ‖x‖p is a decreasing function for fixed x, together with
the bound ‖x‖2/‖x‖∞ ≤

√
d. Assuming without loss of generality that r ≤ 1, this shows that

∥∥`′(ykw>(xk + δk)
)
yk(xk + δk)

∥∥2

2
≤ H :=

{
4L2, p ≤ 2,

4L2d, p > 2.
(C.2)

Putting (C.1) and (C.2) together, we have for η ≤ εH/4,

‖wk −w∗‖22 − ‖wk+1 −w∗‖22 ≥ 2η(Lp,rk (wk)− Lp,rk (w∗)− η2H ≥ 2η(Lp,rk (wk)− Lp,rk (w∗)− ε/2). (C.3)

Telescoping the above sum over k, we get

1

K

K∑
k=1

Lp,rk (wk) ≤ 1

K

K∑
k=1

Lp,rk (w∗) +
‖w1 −w∗‖22

ηK
+ ε/2 = Lp,rS (w∗) +

‖w1 −w∗‖22
ηK

+ ε/2.

Taking K = 2ε−1η−1‖w1 −w∗‖22, we are able to show that

1

K

K∑
k=1

Lp,rk (wk) ≤ Lp,rS (w∗) + ε. (C.4)

This completes the proof.

Later we will give the following lemma which shows that the empirical robust risk Lp,rS (w∗) can be upper bounded by
O(Lp,rD (w∗)) + Õ(1/K).
Lemma C.3. Suppose ‖w∗‖q ≤ ρ and ‖x‖p ≤ 1, then for any δ ∈ (0, 1) we have with probability at least 1− δ,

Lp,rS (w∗) ≤ 2Lp,rD (w∗) +

(
`(0) + Lρ(1 + r)

)
log(1/δ)

K

Proof. We will use Lemma A.5 in Frei et al. (2020) to prove Lemma C.3. In particular, we only need to calculate the upper
bound `(yw∗>(x + δ)) is upper for any x and y satisfying ‖x‖p ≤ 1. In fact, we can get

`(yw∗>(x + δ)) ≤ `(0) + L|w∗>(x + δ)| ≤ `(0) + L(‖w∗‖q‖x‖p + r‖w∗‖q) ≤ `(0) + Lρ(1 + r).

where the first inequality is due to `(·) is L-Lipschitz, the second inequality is by Holder’s inequality, and the last inequality
is due to ‖x‖p ≤ 1 and ‖w∗‖q ≤ ρ. Then by Lemma A.5 in Frei et al. (2020), we can get that with probability at least 1− δ,

Lp,rS (w∗) ≤ 2Lp,rD (w∗) +

[
`(0) + Lρ(1 + r)

]
log(1/δ)

K
.

This completes the proof.
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Then we will use similar approach in Frei et al. (2020) to get a high-probability guarantees for the output of SGD. In
particular, we will use the following lemma to show that

{[
`′(ykw

>
k (xk + δk))

]2}
concentrates at rate O(1/K) for any

fixed stochastic gradient descent iterates {wk}.
Lemma C.4 (Lemma A.4 in Frei et al. (2020)). Under the same assumption in Lemma C.2, then for any δ ∈ (0, 1), with
probability at least 1− δ,

1

K

K∑
k=1

E(x,y)∼D

[[
`′(yw>k x− r‖wk‖q)

]2] ≤ 4

K

K∑
k=1

[
`′(ykw

>
k (xk + δk))

]2
+

4L2 log(1/δ)

K
,

Here we slightly modify the original version of Lemma A.4 in Frei et al. (2020) by introducing the adversarial examples. In
particular, we use the fact that δk is the optimal perturbation with respect to the data (x, y) and the model wk (see (2.1)).
Therefore, we have ykw>k δk = −r‖wk‖q and thus

E(xk,yk)∼D

[[
`′(ykw

>
k (xk + δk))

]2]
= E(xk,yk)∼D

[[
`′(ykw

>
k xk − r‖wk‖q)

]2]
= E(x,y)∼D

[[
`′(yw>k x− r‖wk‖q)

]2]
.

Then Lemma A.4 in Frei et al. (2020) is applicable since it only requires the Lipschitzness of `(·) and the fact that{[
`′(ykw

>
k (xk + δk))

]2 − E(x,y)∼D

[[
`′(yw>k x− r‖wk‖q)

]2]}
is a martingale difference sequence.

With this, we can show that for any smooth loss function `(·), we are able to get a high-probability bound on the robust error
mink≤K errp,rD (wk).

Now we are ready to complete the proof of Theorem C.1.

Proof of Theorem C.1. Since `(·) is M -smooth, we have [`′(z)]2 ≤ 4M`(z) for all z ∈ R. Then applying Lemma C.4, we
have with probability at least 1− δ/2,

1

K

K∑
k=1

E(x,y)∼D

[[
`′(yw>k x− r‖wk‖q)

]2] ≤ 4

K

K∑
k=1

[
`′(ykw

>
k (xk + δk))

]2
+

4L2 log(2/δ)

K

≤ 16M

K

K∑
k=1

Lp,rk (wk) +
4L2 log(2/δ)

K
.

Further applying Lemma C.2 gives

1

K

K∑
k=1

E(x,y)∼D

[[
`′(yw>k x− r‖wk‖q)

]2] ≤ 16MLp,rS (w∗) + 16Mε+
4L2 log(2/δ)

K
(C.5)

where w∗ ∈ Rd and ε ∈ (0, 1) are arbitrary.

Since `(·) is convex and decreasing, it is easy to verify that [`′(z)]2 is decreasing. Applying Markov’s inequality gives

errp,rD (w) = P[yw>x− r‖w‖q ≤ 0] = P
[[
`′(yw>x− r‖w‖q)

]2 ≥ [`′(0)]2
]
≤ [`′(0)]−2 · E

[[
`′(yw>x− r‖w‖q)

]2]
.

Therefore, substituting the above inequality into C.5 gives

1

K

K∑
k=1

errp,rD (wk) ≤ [`′(0)]−2

K

K∑
k=1

E
[[
`′(yw>x− r‖w‖q)

]2]
≤ [`′(0)]−2 ·

(
16MLp,rS (w∗) + 16Mε+

4L2 log(2/δ)

K

)
. (C.6)

Moreover, by Lemma C.3 we have with probability at least 1− δ/2,

Lp,rS (w∗) ≤ 2Lp,rD (w∗) +

(
`(0) + Lρ(1 + r)

)
log(2/δ)

K
.
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Substituting the above inequality into (C.6) and using the fact that mink≤K errp,rD (wk) ≤ K−1
∑K
k=1 errp,rD (wk), we have

with probability 1− δ that

min
k≤K

errp,rD (wk) ≤ [`′(0)]−2 ·
(

32MLp,rD (w∗) +
16M

(
`(0) + Lρ(1 + r)

)
log(1/δ)

K
+ 16Mε+

4L2 log(1/δ)

K

)
which completes the proof.

D. Proofs for Nonconvex Sigmoidal Loss
We first restate some general calculations which will be frequently used in the subsequent analysis. Let h(w,x) =
w>x/‖w‖q be the prediction of the model and S = {(x, y) : y = sgn(w∗>x)} be the set of data which can be correctly
classified by w∗ without perturbation, we have

∇wL
p,r
D (w) = E(x,y)∼D

[
`′(yh(w,x + δ)) · y · ∇wh(w,x + δ)

]
= E(x,y)∼D

[
`′(yh(w,x + δ)) · y · ∇wh(w,x + δ) · (1(S) + 1(Sc))

]
.

Moreover, note that δ is the optimal `p adversarial perturbation corresponding to the model parameter w, it can be calculated
that yh(w,x + δ) = yw>x/‖w‖q − r. Then it follows that

yh(w,x + δ) =

{
sgn(w∗>x) · w>x

‖w‖q − r x ∈ S
−sgn(w∗>x) · w>x

‖w‖q − r x ∈ Sc

Let gS(w∗,w;x) = `′(sgn(w∗>x) · w>x/‖w‖q − r) and gSc(w∗,w;x) = `′(−sgn(w∗>x) · w>x/‖w‖q − r), the
gradient ∇wL

p,r
D (w) can be rewritten as

∇wL
p,r
D (w) = E(x,y)∼D

[
`′(yh(w,x + δ)) · sgn(w∗>x) · ∇wh(w,x + δ) · 1S(x)

]
− E(x,y)∼D

[
`′(yh(w,x + δ)) · sgn(w∗>x) · ∇wh(w,x + δ) · 1(Sc)

]
= E(x,y)∼D

[
gS(w∗,w;x) · ∇wh(w,x + δ) · 1S(x)

]
− E(x,y)∼D

[
gSc(w

∗,w;x) · sgn(w∗>x) · ∇wh(w,x + δ) · 1(Sc)
]

= E(x,y)∼D
[
gS(w∗,w;x) · ∇wh(w,x + δ)

]
− E(x,y)∼D

[(
gS(w∗,w;x) + gSc(w

∗,w;x)
)
· sgn(w∗>x) · ∇wh(w,x + δ) · 1(Sc)

]
Then it follows that

w∗>∇Lp,rD (w) = E(x,y)∼D
[
gS(w∗,w;x) · sgn(w∗>x) ·w∗>∇wh(w,x + δ)

]︸ ︷︷ ︸
I1

− E(x,y)∼D
[(
gSc(w

∗,w;x) + gSc(w
∗,w;x)

)
· sgn(w∗>x) ·w∗>∇wh(w,x + δ) · 1(Sc)

]︸ ︷︷ ︸
I2

(D.1)

Note that

∇wh(w,x + δ) =

(
I− w̄w>

‖w‖qq

)
x + δ

‖w‖q
, (D.2)

where w̄j = |wj |q−1sgn(wj). Therefore, it holds that

w∗>∇wh(w,x + δ) =
w∗>(x + δ)

‖w‖q
− w>(x + δ) · w̄>w∗

‖w‖q+1
q

.
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Consider the optimal adversarial perturbation for the classifier w, we have δ = −ryw̄/‖w‖q−1
q . Thus it follows that

w∗>∇wh(w,x + δ) =
w∗>x

‖w‖q
− ryw∗>w̄

‖w‖qq
− (w>x/‖w‖q − ry) · w̄>w∗

‖w‖qq

=
w∗>x

‖w‖q
− w>x · w̄>w∗

‖w‖q+1
q

:= w̃>x, (D.3)

where w̃ = w∗/‖w‖q − (w̄>w∗)w/‖w‖q+1
q .

D.1. Proof of Lemma 3.3

Proof of Lemma 3.3. We will focus on the 2-dimensional space spanned by the vectors w and w∗ (or w̃ since these three
vectors lie in the same 2-dimensional space). Without loss of generality, we assume w = ‖w‖2e2. We further define the set
G := {x : sgn(w∗>x) = sgn(w̃>x)}, which is marked as the shaded region in Figure 3. According to (D.1), the entire
proof will be decomposed into three parts: upper bounding I1, upper bounding |I2|, and combining these two bounds to get
the desired results. In the remaining proof we will the short-hand notations θ and θ′ to denote θ(w) and θ′(w) respectively.

Without loss of generality, we consider the case that ∠(w,w∗) ∈ (0, π/2) and the case of ∠(w,w∗) ∈ (0, π/2) follows
similarly by conducting the transformation w← −w.

Upper bounding I1. Note that within the set G, we have sgn(w∗>x) = sgn(w̃>x) thus I1 can be decomposed as follows
accordingly,

I1 = E(x,y)∼D
[
gS(w∗,w;x) · |w̃>x| · IG(x))

]︸ ︷︷ ︸
I3

−E(x,y)∼D
[
gS(w∗,w;x) · |w̃>x| · IGc(x))

]︸ ︷︷ ︸
I4

. (D.4)

where

gS(w∗,w;x) = `′(sgn(w∗>x) ·w>x− r) = −e
−|sgn(w∗>x)·w>x−r|/σ

σ
= −e

−|sgn(w∗>x)·l‖w‖2 sinφ−r|/σ

σ
, (D.5)

where the first equality is due to the assumption that ‖w‖q = 1 and the last inequality is due to the fact that w = ‖w‖2e2 so
that w>x = l‖w‖2 sinφ.

Let x̄ = (l cosφ, l sinφ) be the projection of x onto the space spanned by w and w∗. Then under Assumption 3.1 we know
that the distribution Dx is isotropic, which implies that the probability density function of x̄, denoted by p(x̄), can be written
as p(x̄) = p(l)/(2π), where p(l) is the probability density function with respect to the length of x̄. Then based on the
formula of gS(w∗,w;x) derived in (D.5) and the fact that w̃>x = ‖w̃‖2 sin(θ′ − φ), we have the following regarding I3,

I3 = − 1

σ

∫ ∞
0

(∫ θ′

−θ
p(x̄)l2‖w̃‖2| sin(θ′ − φ)|e−|l‖w‖2 sinφ−r|/σdldφ

+

∫ π+θ′

π−θ
p(x̄)l2‖w̃‖2| sin(θ′ − φ)|e−|l‖w‖2 sinφ+r|/σdldφ

)
= −‖w̃‖2

πσ

∫ ∞
0

p(l)l2dl

∫ θ′

−θ
| sin(θ′ − φ)|e−|l‖w‖2 sinφ−r|/σdφ︸ ︷︷ ︸

I5

, (D.6)

where the equality holds since sin(π + φ) = − sinφ and | sin(θ − φ)| = | sin(θ − φ− π)| for all φ. Note that when φ ≤ 0,
we have

sin(θ′ − φ)

cosφ
=

sin θ′ cosφ− sinφ cos θ′

cosφ
≥ sin θ′,

where the last inequality holds since sinφ cos θ′ ≤ 0 for all φ ∈ (−π/2, 0) and θ′ ∈ (0, π/2). Therefore, we have the
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following lower bound on the term I5,

I5 ≥
∫ 0

−θ
sin(θ′ − φ)e−|l‖w‖2 sinφ−r|/σdφ

≥ sin θ′
∫ 0

−θ
cosφe(l‖w‖2 sinφ−r)/σdφ

=
sin θ′ · σe−r/σ

l‖w‖2
·
(
1− e−l‖w‖2 sin θ/σ

)
,

where in the second inequality we use the fact that l‖w‖2 sinφ ≤ 0 for all φ ∈ (−θ, 0). Plugging the above bound of I3
into (D.6) gives the following upper bound on I3,

I3 ≤ −
‖w̃‖2 · sin θ′ · e−r/σ

π‖w‖2
·
∫ ∞

0

p(l)l(1− e−l‖w‖2 sin θ/σ)dl

≤ −2U ′‖w̃‖2 · sin θ′ · e−r/σ

‖w‖2UR
·
∫ R

0

l2(1− e−R‖w‖2 sin θ/σ)dl

= −2U ′R2‖w̃‖2 · sin θ′ · e−r/σ

3‖w‖2
· (1− e−R‖w‖2 sin θ/σ), (D.7)

where for the second inequality we use the fact that the function f(x) = (1− e−ax)/x is strictly decreasing with respect
to x for any a ≥ 0 so that we have 1− e−l sin θ/σ ≥ l(1− e−R sin θ/σ)/R for any l ∈ (0, R], besides we also use the fact
that Dx is (U ′, R)-anti-anti-concentration so that p(x̄) = p(l)/(2π) ≥ U ′. Then we will focus on lower bounding I4. Let
θmin = min{θ, θ′, π/3}, we have

|I4| =
‖w̃‖2
πσ

∫ ∞
0

p(l)l2dl

∫ π−θ

θ′
| sin(φ− θ′)|e−|l‖w‖2 sinφ−r|/σdφ

≤ ‖w̃‖2
πσ

∫ ∞
0

p(l)l2dl

∫ π−θmin

θmin

e−|l‖w‖2 sinφ−r|/σdφ

=
2‖w̃‖2
πσ

∫ ∞
0

p(l)l2dl

∫ π/2

θmin

e−|l‖w‖2 sinφ−r|/σdφ︸ ︷︷ ︸
I6

, (D.8)

where and the inequality follows from the fact that | sin(φ− θ′)| ≤ 1 and sin(φ) = sin(π − φ). Note that I6 can be further
upper bounded as follows,

I6 =

∫ π/3

θmin

e−|l‖w‖2 sinφ−r|/σdφ+

∫ π/2

π/3

e−|l‖w‖2 sinφ−r|/σdφ

≤ 2

∫ π/3

θmin

cosφe−|l‖w‖2 sinφ−r|/σdφ︸ ︷︷ ︸
I7

+

∫ π/2

π/3

e−|l‖w‖2 sinφ−r|/σdφ︸ ︷︷ ︸
I8

,

where the inequality holds due to the fact that 2 cosφ ≥ 1 when φ ∈ [θmin, π/3]. Regarding I7, we will consider three
cases: (1) l ≤ r/(sin(π/3)‖w‖2), (2) r/(sin(π/3)‖w‖2) ≤ l ≤ r/(sin(θmin)‖w‖2) and (3) l ≥ r/(sin(θmin)‖w‖2).

1. Regarding the first case l ≤ r/(sin(π/3)‖w‖2), it holds that

I7 ≤ 2

∫ sin(π/3)

sin(θmin)

e(l‖w‖2z−r)/σdφ =
2σe−r/σ

l‖w‖2
·
(
el‖w‖2 sin(π/3)/σ − el‖w‖2 sin(θmin)/σ

)
≤ 2σ

l‖w‖2
.
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2. Regarding the second case r/(sin(π/3)‖w‖2) ≤ l ≤ r/(sin(θmin)‖w‖2), we have

I7 ≤ 2

∫ r/(l‖w‖2)

sin(θmin)

e(l‖w‖2z−r)/σdφ+ 2

∫ 1

r/(l‖w‖2)

e(r−l‖w‖2z)/σdφ

=
2σ

l‖w‖2
·
(
2− e(l‖w‖2 sin(θmin)−r)/σ − e(r−l‖w‖2)σ

)
≤ 4σ

l‖w‖2
.

3. Regarding the third case l ≥ r/(sin(θmin)‖w‖2), we have

I7 ≤ 2

∫ 1

sin(θmin)

e(r−l‖w‖2z)/σdφ ≤ 2σer/σ

l‖w‖2
· e−l sin(θmin)‖w‖2/σ

For I8, it is easy to see that

e−|l‖w‖2 sinφ−r|/σ ≤
{

1 l ≤ r/(sin(π/3)‖w‖2)
e−(l‖w‖2 sinφ−r)/σ l > r/(sin(π/3)‖w‖2),

≤
{

1 l ≤ r/(sin(π/3)‖w‖2)
e−(l‖w‖2 sin(φ/2)−r)/σ l > r/(sin(π/3)‖w‖2),

which implies that if l ≤ r/(sin(π/3)‖w‖2),

I8 =

∫ π/2

π/3

e−|l‖w‖2 sinφ−r|/σdφ ≤ π/6

and if l ≥ r/(sin(π/3)‖w‖2)

I8 ≤
∫ π/2

π/3

e−(l‖w‖2 sin(φ/2)−r)/σdφ

≤ 2

∫ π/2

π/3

cos(φ/2)e−(l‖w‖2 sin(φ/2)−r)/σdφ

≤ 4

∫ sin(π/4)

sin(π/6)

e−(l‖w‖2z−r)/σdz

≤ 4σer/σ

l‖w‖2
· e−l‖w‖2 sin(π/6)/σ

Combining the above results, define θ̄min = min{θmin, π/6} = min{θ, θ′, π/6}, we have the following bounds on I6,

I6 ≤


2σ

l‖w‖2 + π
6 l ≤ r/(sin(π/3)‖w‖2)

8σer/σ

l‖w‖2 r/(sin(π/3)‖w‖2) ≤ l ≤ r/(sin(θmin)‖w‖2)
6σer/σ

l‖w‖2 · e
−l sin(θ̄min)‖w‖2/σ l ≥ r/(sin(θmin)‖w‖2)

Plugging this bound into (D.8), we have

|I4| ≤ ‖w̃‖2 ·
(∫ r/(sin(π/3)‖w‖2)

0

(
4l

π‖w‖2
+
l2

3σ

)
p(l)dl +

∫ r/(sin(θmin)‖w‖2)

r/(sin(π/3)‖w‖2)

16ler/σ

π‖w‖2
p(l)dl

+

∫ ∞
r/(sin(θmin)‖w‖2)

12ler/σ

π‖w‖2
e−l sin(θ̄min)‖w‖2/σp(l)dl

)
≤ ‖w̃‖2 ·

(∫ r/(sin(π/3)‖w‖2)

0

(
4l

π‖w‖2
+
l2

3σ

)
p(l)dl +

∫ r/(sin(θmin)‖w‖2)

0

16ler/σ

π‖w‖2
p(l)dl

+

∫ ∞
0

12ler/σ

π‖w‖2
e−l sin(θ̄min)‖w‖2/σp(l)dl

)
.
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Note that
∫∞

0
xe−axdx = 1/a2 for any a ≥ 0. Additionally, by Assumption 3.1 we have p(l) ≤ 2πU since Dx is

U -anti-concentration. Then we can get that

|I4| ≤ U‖w̃‖2 ·
(

8r2

sin2(π/3)‖w‖32
+

2πr3

3 sin3(π/3)σ‖w‖32
+

32r2er/σ

sin2(θmin)‖w‖32
+

24σ2er/σ

sin2(θ̄min)‖w‖32

)
≤ U‖w̃‖2er/σ ·

4r3/σ + 40r2 + 24σ2

sin2(θ̄min)‖w‖32
.

where in the last inequality we use the fact that θmin ≤ θ̄min. Plugging the above inequality and (D.7) into (D.4), we obtain

I1 = I3 − I4 ≤ −
2U ′R2‖w̃‖2 · sin θ′ · e−r/σ

3‖w‖2
· (1− e−R‖w‖2 sin θ/σ) + U‖w̃‖2er/σ ·

4r3/σ + 40r2 + 24σ2

sin2(θ̄min)‖w‖32
.

Then set σ = r, we have

I1 ≤ −
2U ′R2‖w̃‖2 · sin θ′ · e−1

3‖w‖2
· (1− e−R‖w‖2 sin θ/r) +

68er2U‖w̃‖2
sin2(θ̄min)‖w‖32

.

Then we have if

sin(θ̄min) ≥ max

{
4r

R‖w‖2
,

100r
√
U/U ′

R‖w‖2 sin1/2(θ′)

}
, (D.9)

it holds that

I1 ≤ −
3U ′R2‖w̃‖2 · sin θ′ · e−1

5‖w‖2
.

Moreover, note that θ̄min = min{θ, θ′, π/6}, thus if the perturbation level satisfies

r ≤ min

{
R‖w‖2

8
,
R‖w‖2 sin1/2(θ′)

200U
,
R‖w‖2 sin(θ′)

4
,
R‖w‖2 sin3/2(θ′)

100U

}
= O

(
R‖w‖2 sin3/2(θ′)

)
,

the condition (D.9) is equivalent to

sin(θ) ≥ max

{
4r

R‖w‖2
,

100r
√
U/U ′

R‖w‖2 sin1/2(θ′)

}
,

Upper bounding |I2|. In the sequel we will focus on bounding the term I2. By Cauchy-Sharwtz inequality, we have

|I2| ≤
√√√√Ex

[(
gS(w∗,w;x) + gSc(w

∗,w;x)
)2 · (w̃>x)2

]︸ ︷︷ ︸
I9

·
√
Ex[1(S)].

Similarly, let x̄ = (l cosφ, l sinφ) be the projection of x onto the 2-dimensional space spanned by w∗ and w, we have
w̃>x ≤ l‖w̃‖2. This implies that

I9 ≤
‖w̃‖22
2πσ2

∫ ∞
0

p(l)l3dl

∫ π

−π

(
e−|l‖w‖2 sinφ+r|/σ + e−|l‖w‖2 sinφ−r|/σ

)2

dφ

≤ ‖w̃‖
2
2

πσ2

∫ ∞
0

p(l)l3dl

∫ π

−π
e−2|l‖w‖2 sinφ+r|/σ + e−2|l‖w‖2 sinφ−r|/σdφ

=
4‖w̃‖22
πσ2

∫ ∞
0

p(l)l3dl

∫ π/2

−π/2
e−2|l‖w‖2 sinφ+r|/σdφ︸ ︷︷ ︸

I10



Provable Robustness of Adversarial Training for Learning Halfspaces with Noise

where the second inequality is based on the Young’s inequality. Then we have

I10 =

∫ −π/3
−π/2

e−2|l‖w‖2 sinφ+r|/σdφ+

∫ π/3

−π/3
e−2|l‖w‖2 sinφ+r|/σdφ+

∫ π/2

π/3

e−2|l‖w‖2 sinφ+r|/σdφ

≤ 2

∫ π/2

π/3

e−2|l‖w‖2 sinφ−r|/σdφ+

∫ π/3

−π/3
e−2|l‖w‖2 sinφ+r|/σdφ

≤ 2

∫ π/2

π/3

e−2|l‖w‖2 sinφ−r|/σdφ+ 2

∫ π/3

−π/3
e−2|l‖w‖2 sinφ+r|/σ cosφdφ, (D.10)

where the inequality follows from the fact that |l‖w‖2 sin(−φ) + r| ≤ |l‖w‖2 sinφ+ r| holds for any φ ∈ [0, π/2], and
the second inequality holds since 2 cosφ ≥ 1 for any φ ∈ [−π/3, π/3]. Note that the first term on the R.H.S. of (D.10) is
similar to I8, thus we have∫ π/2

π/3

e−2|l‖w‖2 sinφ−r|/σdφ ≤

{
π/6 l ≤ r/(sin(π/3)‖w‖2)
2σe2r/σ

l‖w‖2 l ≥ r/(sin(π/3)‖w‖2)
(D.11)

Regarding the second term on the R.H.S. of (D.10), we have∫ π/3

−π/3
e−2|l‖w‖2 sinφ+r|/σ cosφdφ ≤

∫ 1

−1

e−2|l‖w‖2z+r|/σdz.

If l‖w‖2 ≤ r, it holds that∫ 1

−1

e−2|l‖w‖2z+r|/σdz =

∫ 1

−1

e−2(l‖w‖2z+r)/σdz =
σ

2l‖w‖2

(
e−2(r−l‖w‖2)/σ − e−2(r+l‖w‖2)/σ

)
≤ σ

2l‖w‖2
. (D.12)

If l‖w‖2 > r we have∫ 1

−1

e−2|l‖w‖2z+r|/σdz =

∫ −r/(l‖w‖2)

−1

e2(l‖w‖2z+r)/σdz +

∫ 1

−r/(l‖w‖2)

e−2(l‖w‖2z+r)/σdz

=
σ

2l‖w‖2

(
2− e−2(l‖w‖−r)/σ − e−2(l‖w‖+r)/σ

)
≤ σ

l‖w‖2
. (D.13)

Combining the above results we can immediately get
∫ π/3
−π/3 e

−2|l‖w‖2 sinφ+r|/σ cosφdφ ≤ σ/(l‖w‖2), which yields the
following upper bound on I10 by combining with (D.11),

I10 ≤

{
π/3 + 2σ

l‖w‖2 l ≤ r/(sin(π/3)‖w‖2)
6σe2r/σ

l‖w‖2 l ≥ r/(sin(π/3)‖w‖2)

Set σ = r, we have

I10 ≤
σ

l‖w‖2
·
(

π

3 sin(π/3)
+ 2

)
≤ 6σe2r/σ

l‖w‖2
.

This further implies the following upper bound on I9,

I9 ≤
4‖w̃‖22
πσ2

∫ ∞
0

6σe2r/σp(l)l2

‖w‖2
dl =

48e2‖w̃‖22
πσ‖w‖2

.

where the equality is due to the fact that the covariance matrix of x is identity. Note that Ex[1(S)] = errD(w∗). Then it
holds that

I2 ≤
7e‖w̃‖2
√
π‖w‖1/22

·
√

errD(w∗)

σ
.
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Figure 2. Illustration of θ and θ′.

Combining the upper bound of I1 and lower bound of I2. Consequently, we have if the angle θ satisfies

sin θ ≥ max

{
4r

R‖w‖2
,

100Ur

R‖w‖2 sin1/2(θ′)

}
,

w∗>∇Lp,rD (w) can be lower bounded by

w∗>∇Lp,rD (w) = I1 + I2 ≤ I1 + |I2| = −
3U ′R2‖w̃‖2 · sin θ′ · e−1

5‖w‖2
+

7e‖w̃‖2
√
π‖w‖1/22

·
√

errD(w∗)

σ
,

which further leads to

w∗>∇Lp,rD (w) ≤ −U
′R2‖w̃‖2 · sin θ′ · e−1

2‖w‖2

if we have

errD(w∗) ≤ U ′2σ sin2 θ′

214‖w‖2R4
=
U ′2r sin2 θ′

214‖w‖2R4
.

This completes the proof

D.2. Proof for Lemma 3.4

We will decompose the entire proof into two parts: (1) proving a lower bound of the angle θ′(w); and (2) establishing a
general convergence guarantee for Algorithm 2.

In terms of the first part, we summarize the lower bound of θ′(w) in the following lemma.

Lemma D.1. Let θ = ∠(w,w∗) and θ′ = ∠(−w, w̃), we have sin θ′ ≥
√

2/2 if ‖w‖2 < ‖w∗‖2 and sin θ′ ≥
1

10‖w‖2d1/2−1/p if ‖w‖2 ≥ ‖w∗‖2.

Proof of Lemma D.1. Without loss of generality we consider the case that θ ∈ (0, π/2), if θ ∈ (π/2, π) we can simply
apply w→ −w. In particular, let v = −w and ṽ = w∗ − (v̄w∗)v, it is easy to see that

−〈w,w∗ − (w̄>w∗)w〉 = 〈v,w∗ − (v̄>w∗)v〉,

implying that sin(∠(−v, ṽ)) = sin(∠(−w,w∗)). Recall that w̃ = w∗− (w̄>w∗)w. First note that if we have w̄>w∗ ≤ 0,
it is easy to see that −w>w̃ = −w∗>w + (w̄>w∗)‖w‖22 ≤ 0 since we have θ < π/2, which implies that θ′ ≥ π/2. In
the sequel we will focus on the case of w̄>w∗ ≥ 0. Note that we have ‖w‖q = ‖w∗‖q = 1, which yields w̄>w∗ ≤ 1.
Therefore, as shown in Figure 2, it is clear that

θ′ = ∠(−w, w̃) = ∠(−w,w∗ −w) + ∠(w∗ −w, w̃) ≥ ∠(−w,w∗ −w) := θ̃′.
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By Sine formula, it is easy to see if ‖w‖2 ≤ ‖w∗‖2, we have ∠(−w,w∗−w) ≥ ∠(−w∗,w∗−w) and thus ∠(−w,w∗−
w) ≥ (π − θ)/2 ≥ π/4, which completes the proof of the first case.

If ‖w‖2 ≤ ‖w∗‖2, we define w′ = ‖w‖2w∗/‖w∗‖2, as displayed in Figure 2, which clearly satisfies ‖w′‖2 = ‖w‖2 ≥
‖w∗‖2. Then we will upper bound the length of w̃′ = w∗ −w. By triangle inequality, it holds that

‖w̃′‖2 = ‖w −w∗‖2 = ‖w −w′ + w′ −w∗‖2 ≤ ‖w −w′‖2 + ‖w′ −w∗‖2. (D.14)

Note that w and w′ have the same length and ∠(w,w′) = θ, we have

‖w −w′‖2 ≤ ‖w‖2θ. (D.15)

Additionally, note that w′ and w∗ are parallel and ‖w∗‖q = 1, we have

w∗ = w′/‖w′‖q,

and

‖w′ −w∗‖2
‖w′‖2

=
‖w′ −w∗‖q
‖w′‖q

= (1− 1/‖w′‖q). (D.16)

Plugging (D.15) and (D.16) into (D.14) yields

‖w̃′‖2 ≤ ‖w −w′‖2 + ‖w′ −w∗‖2

‖w‖2θ + ‖w′‖2 ·
(

1− 1

‖w′‖q

)
≤ ‖w‖2 ·

(
θ + 1− 1

‖w′‖q

)
,

where in the last inequality we use the fact that ‖w′‖2 = ‖w‖2. Then note that ‖w∗‖2 = ‖w‖2/‖w′‖q, by Sine formula,
we have

sin θ′ ≥ θ̃′ =
sin θ‖w∗‖2
‖w̃′‖2

≥ sin θ/‖w‖q
θ + 1− 1/‖w′‖q

=
sin θ

(θ + 1)‖w′‖q − 1
.

Note that ‖w‖q = 1, by triangle inequality we have

‖w′‖q ≤ ‖w‖q + ‖w −w′‖q ≤ 1 + ‖w −w′‖2d1/q−1/2 ≤ 1 + ‖w‖2θd1/q−1/2.

This further implies that

(θ + 1)‖w′‖q − 1 ≤ θ(1 + ‖w‖2d1/q−1/2) + ‖w‖2d1/q−1/2θ2 ≤ (1 + π/2)θ(1 + ‖w‖2d1/q−1/2),

where the last inequality holds since θ ≤ π/2 ≤ 2. Then note that sin θ/θ ≥ 2/π for any θ ∈ (0, π/2), we have

sin θ′ ≥ sin θ

(θ + 1)‖w′‖q − 1
≥ 1

5(1 + ‖w‖2d1/q−1/2)
≥ 1

10‖w‖2d1/q−1/2
,

where the last inequality holds since ‖w‖2 ≥ d1/2−1/q. Note that this bound also holds for other cases, we are able to
complete the proof.

Then we provide the following lemma that gives the convergence guarantee of Algorithm 2 if for an arbitrary set G ∈ Sd−1
q

we have sufficiently negative w∗>∇Lp,rD (w) for any w ∈ G.

Lemma D.2. Let G be a non-empty subset of Sd−1
q . Assume r ≤ 1 and w∗>∇Lp,rD (w) ≤ −ε for any w ∈ G, then set

η = εδσ2d−1/32 and K = 64d‖w1 −w∗‖22δ−2σ−2ε−2, with probability at least 1− δ, running Algorithm PSAT(p, r) for
K iterations can find a model wk∗ with k∗ ≤ K such that wk∗ ∈ Gc.
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Proof of Lemma D.2. We focus on the quantity ‖wk − w∗‖22. In particular, note that the `q ball is a convex set and the
gradient ∇`

(
ykw

>
k (xi + δ

(k)
i )/‖wk‖q) is orthogonal to wk, we must have ŵk+1 stays outside the unit `q ball since

‖wk‖q = 1. This further implies that wk+1 is also the projection of ŵk+1 onto the unit `q ball. Then we have

‖wk+1 −w∗‖22 ≤ ‖ŵk+1 −w∗‖22

= ‖wk −w∗‖22 − 2η

〈
wk −w∗,∇`

(
ykw

>
k (xk + δk)

‖wk‖q

)〉
+ η2

∥∥∥∥∇`(ykw>k (xk + δk)

‖wk‖q

)∥∥∥∥2

2

= ‖wt −w∗‖22 + 2ηw∗>∇`
(
ykw

>
k (xk + δk)

‖wk‖q

)
+ η2

∥∥∥∥∇`(ykw>k (xk + δk)

‖wk‖q

)∥∥∥∥2

2

,

where in the second equality we use the fact that the gradient ∇`
(
ykw

>
k (xk + δk)/‖wk‖q

)
is orthogonal to wk. Then

taking expectation over (xk, yk) conditioned on wk, we have

E
[
‖wk+1 −w∗‖22|wk] = ‖wk −w∗‖22 + 2ηw∗>∇Lp,rD (wk) + η2E

[∥∥∥∥∇`(ykw>k (xk + δk)

‖wk‖q

)∥∥∥∥2

2

∣∣∣∣wk

]
. (D.17)

Recall that

∇`
(
yw>(x + δ)

‖w‖q

)
= `′(yh(w,x + δ)) · y · ∇wh(w,x + δ)

=
e−|yw

>x/‖w‖q−r|/σ

σ
· y ·

(
I− w̄w>

‖w‖qq

)
x + δ

‖w‖q
.

If ‖w‖q = 1, we have∥∥∥∥∇`(yw>(x + δ)

‖w‖q

)∥∥∥∥
2

≤
∥∥(I− w̄w>)(x + δ)

∥∥
2

σ
≤ 2‖x + δ‖2

σ
≤ 2(‖x‖2 + ‖δ‖2)

σ
,

where the first inequality is due to e−|yw
>x/‖w‖q−r|/ ≤ 1 and the second inequality is due to ‖w̄w>‖2 = |w̄>w| = 1.

Since p ≥ 2, we have ‖δ‖2 ≤ d1/2−1/pr. Thus it holds that∥∥∥∥∇`(yw>(x + δ)

‖w‖q

)∥∥∥∥
2

≤ 2(‖x‖2 + d1/2−1/pr)

σ
.

Further note that the covariance matrix of x is the identity matrix, based on Young’s inequality and the assumption that
r ≤ 1, we have

E
[∥∥∥∥∇`(ykw>k (xk + δk)

‖wk‖q

)∥∥∥∥2

2

∣∣∣∣wk

]
≤ 8

σ2
Ex∈D[‖x‖22 + d1−2/pr2] =

8

σ2
(d+ d1−2/pr2) ≤ 16d

σ2
.

Plugging the above inequality into (D.17) gives

E
[
‖wk+1 −w∗‖22|wk] ≤ ‖wk −w∗‖22 + 2ηw∗>∇Lp,rD (wk) +

16η2d

σ2
. (D.18)

Note that if wk ∈ G we have w∗>∇Lp,rD (wk) ≤ −ε. Then we can denote Ek as the event that ws ∈ G for all s ≤ k, which
further leads to Lp,rD (wk) · 1(Ek) ≤ −ε1(Ek). Thus multiply by 1(Ek) on both sides of (D.18) gives us

E
[
‖wk+1 −w∗‖22 · 1(Ek)|wk] ≤ ‖wk −w∗‖22 · 1(Ek)− ηε · 1(Ek) +

16η2d

σ2
.

Note that Ek+1 ⊆ Ek, we have 1(Ek+1) ≤ 1(Ek), which implies that

E
[
‖wk+1 −w∗‖22 · 1(Ek+1)|wk] ≤ ‖wk −w∗‖22 · 1(Ek)− ηε · 1(Ek) +

16η2d

σ2
.
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Therefore, taking a total expectation and applying summation from k = 0 to k = K − 1, we can get

E
[
‖wK −w∗‖22 · 1(EK)] ≤ ‖w1 −w∗‖22 · 1(EK)− ηε ·

K∑
s=1

E[1(EK)] +
16Kη2d

σ2
.

Dividing by K on both sides and rearranging terms, we obtain

1

K

K∑
s=1

E[1(Ek)] ≤ 1

ε
·
(
‖w1 −w∗‖22

Kη
+

16ηd

σ2

)
.

Then we can set

η =
εδσ2

32d
, and K =

64d‖w1 −w∗‖22
σ2δ2ε2

such that

1

K

K∑
s=1

E[1(EK)] ≤ δ.

Then by Markov inequality we have with probability at least 1− δ,

1

K

K∑
s=1

1(EK) < 1.

Therefore we immediately have 1(EK) < 1 since {1(Ek)}k=1,...,K is non-increasing, which implying that there exists a
k∗ ≤ K such that wk∗ ∈ Gc.

Proof of Lemma 3.4. By Lemma D.1 we can get

sin(θ′(w)) ≥

{
1

10‖w‖2d1/p−1/2 ‖w‖2 ≥ ‖w∗‖2
√

2
2 ‖w‖2 < ‖w∗‖2

Note that we have

r = O(d
3
2p−

3
4 ) ≤ O

(
‖w‖2 sin3/2(θ′(w))

)
and

errD(w∗) = O(rd2/p−1) ≤ O
(
r‖w‖−1

2 sin2(θ′(w))
)

since ‖w‖2 ≤ 1. Therefore all conditions in Lemma 3.3 can be satisfied and its argument can be applied. In particular, we
have if

sin(θ(w)) ≥

 max
{

4r
R‖w‖2 ,

400Urd1/(2p)−1/4

R‖w‖1/22

}
, ‖w‖2 ≥ ‖w∗‖2

max
{

4r
R‖w‖2 ,

200
√

2Ur
R‖w‖2

}
‖w‖2 < ‖w∗‖2.

we have the following upper bound on the inner product w∗>∇Lp,rD (w)

w∗>∇Lp,rD (w) ≤ −U
′R2‖w̃‖2 sin(θ(w)′)e−1

2‖w‖2
= −U

′R2e−1‖w∗‖2 sin(θ(w))

2‖w‖2
,

where the equality is by Sine rule. Then by Lemma D.2 we can set the step size as η = O
(
δr3d

1
2p−

1
4
)
, then with probability

at least 1− δ, the algorithm PSAT(p, r) can find a model wk∗ such that

sin(θ(wk∗)) ≤

 max
{

4r
R‖w‖2 ,

400Urd1/(2p)−1/4

R‖w‖1/22

}
, ‖w‖2 ≥ ‖w∗‖2

max
{

4r
R‖w‖2 ,

200
√

2Ur
R‖w‖2

}
‖w‖2 < ‖w∗‖2.

(D.19)

within K = O
(
d‖w1 −w∗‖22δ−2r−4d

1
2−

1
p
)

iterations.
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Figure 3. Illustration of the set G and Gc.

D.3. Proof of Theorem 3.2

Proof of Theorem 3.2. We are going to show that the condition (D.19) can imply the desired bound on errp,rD (wk∗). Note
that the optimal robust error can be written as

OPTp,r = E(x,y)∼D
[
1(yw∗>x ≤ r)

]
.

Note that the robust error consists of two classes of data: (1) the data satisfies |w∗>x| ≤ r; and (2) the data satisfies
|w∗>x| > r and yw∗>x < 0. Therefore, we can get lower and upper bounds on the optimal robust error OPTp,r as follows,

OPTp,r ≥ Ex∼Dx
[
1(|w∗>x| ≤ r)

]
OPTp,r ≤ Ex∼Dx

[
1(|w∗>x| ≤ r)

]
+ errD(w∗). (D.20)

By Assumption 3.1, we have the data distribution Dx satisfies U -anti-concentration and (U ′, R) anti-anti-concentration with
U,R being constants. Therefore, it follows that Ex∼Dx

[
1(|w∗>x| ≤ r)

]
= Θ(r‖w∗‖−1

2 ) since we have r = O(d
3
2p−

3
4 ) ≤

Rd1/p−1/2. Besides, note that we also have errD(w∗) = O(rd2/p−1) ≤ O(r‖w∗‖−1
2 ) due to our assumption. Therefore, it

is clear that OPTp,r = Θ(r‖w∗‖−1
2 ). Moreover, regarding wk∗ we can similarly get that

errp,rD (wk∗) ≤ Ex∼Dx
[
1(|w>k∗x| ≤ r)

]
+ errD(wk∗). (D.21)

Clearly due to Assumption 3.1 we have Ex∼Dx
[
1(|w>k∗x| ≤ r)

]
= Θ(r‖wk∗‖−1

2 ). Additionally, we have the following
regarding |errD(wk∗)− errD(w∗)|,

|errD(wk∗)− errD(w∗)| = E[|1(yw>k∗x ≤ 0)− 1(yw∗>x ≤ 0)|]
= E[|[1(yw>k∗x ≤ 0)− 1(yw∗>x ≤ 0)] · [1(yw∗>x ≤ 0) + 1(yw∗>x ≥ 0)]|]
≤ E[|[1(yw>k∗x ≤ 0)− 1(yw∗>x ≤ 0)] · 1(yw∗>x ≤ 0)|]

+ E[|[1(yw>k∗x ≤ 0)− 1(yw∗>x ≤ 0)] · 1(yw∗>x ≥ 0)|]. (D.22)

where the we use the triangle inequality in the last line. Moreover, note that

E[|[1(yw>k∗x ≤ 0)− 1(yw∗>x ≤ 0)] · 1(yw∗>x ≤ 0)|] ≤ E[1(yw∗>x ≤ 0)] = errD(w∗), (D.23)

and

E[|[1(yw>k∗x ≤ 0)− 1(yw∗>x ≤ 0)] · 1(yw∗>x ≥ 0)|] = E[1(yw>k∗x ≤ 0) · 1(yw∗>x ≥ 0)]

= E[1(sgn(w>k∗x) 6= sgn(w>k∗x))]. (D.24)

By Claim 3.4 in Diakonikolas et al. (2020c) we have

E[1(sgn(w>k∗x) 6= sgn(w∗>x))] = Θ(∠(wk∗ ,w
∗)) = O(θ∗) = O(rd1/(2p)−1/4‖wk∗‖−1/2

2 ). (D.25)
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Using (D.25) and combining the bounds in (D.23) and (D.24), the following holds by (D.22)

errD(wk∗) ≤ errD(w∗) + |errD(wk∗)− errD(w∗)| = O(rd1/(2p)−1/4‖wk∗‖−1/2
2 ), (D.26)

where the first inequality is due to triangle inequality and in the equality we use the fact that errD(w∗) = O(rd2/p−1) and
‖wk∗‖2 ≥ d1/p−1/2.

Therefore, it remains to lower bound the norm of ‖wk∗‖2. Note that we only need to consider the case that ‖wk∗‖2 < ‖w∗‖2
since otherwise we can directly use ‖w∗‖2 as a lower bound of ‖wk∗‖2.

When ‖wk∗‖2 < ‖w∗‖2, by (D.19) we can get that θ = Θ(r‖wk∗‖−1
2 ). Then we define w′ = wk∗‖w∗‖2/‖wk∗‖2. Then

we can see that w′ and wk∗ are parallel, which implies that

‖w′‖2
‖wk∗‖2

=
‖w′‖q
‖wk∗‖q

= ‖w′‖q,

where the second equality is due to ‖wk∗‖q = 1. Note that ‖w∗‖q = 1, by triangle inequality we have

‖w′‖q ≤ ‖w∗‖q + ‖w∗ −w′‖q ≤ 1 + ‖w∗ −w′‖2d1/p−1/2 ≤ 1 + ‖w∗‖2θd1/p−1/2,

where the second inequality holds since ‖z‖q ≤ ‖z‖2d1/2−1/p (where we use the fact that 1/p + 1/q = 1) and the last
inequality is due to ‖w∗‖2 = ‖w′‖2. Consequently, we can get

‖wk∗‖2 =
‖w′‖2
‖w′‖q

≥ ‖w∗‖2
1 + ‖w∗‖2θd1/2−1/p

. (D.27)

Note that we have θ∗ = Θ(r‖wk∗‖−1
2 ), we immediately have θ = O(r‖wk∗‖−1

2 ). Note that the perturbation level satisfies
r = O(d

3
2p−

3
4 ) ≤ c · d1/2−1/p for some sufficiently small constant c, we can get θd1/p−1/2 ≤ 0.5‖wk∗‖−1

2 . Plugging this
into (D.27) and use the fact that gives

‖wk∗‖2 ≥
‖w∗‖2

1 + 0.5‖w∗‖2/‖wk∗‖2
,

which implies that ‖wk∗‖2 ≥ 0.5‖w∗‖2. Plugging this into (D.26) further gives

errD(wk∗) = O(rd1/(2p)−1/4‖w∗‖−1/2
2 ).

Note that we also have Ex∼Dx
[
1(|w>k∗x| ≤ r)

]
= Θ(r‖wk∗‖−1

2 ) = Θ(r‖w∗‖−1
2 ). Combining these two bounds into

(D.21) we can get the robust error for wk∗ as follows,

errp,rD (wk∗) ≤ Ex∼Dx
[
1(|w>k∗x| ≤ r)

]
+ errD(wk∗) = O(rd1/(2p)−1/4‖w∗‖−1/2

2 )

where we use the fact that ‖w∗‖2 ≥ d1/p−1/2. Applying the fact that OPTp,r = Θ(r‖w∗‖−1
2 ) further gives

errp,rD (wk∗) = O
(
d1/(2p)−1/4‖wk∗‖1/22 OPTp,r

)
which completes the proof.


