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Table 3: Summary of Notation

Notation Definition

I Input domain, subset of Rd
I

⋃∞
N=1 IN

Ai Classes of test functions I→ R
γi Test function norm
Si Class of functions mapping P(I)→ R
‖ · ‖Si Measure network norm
D Map from vectors to empirical measures s.t. D(x1 . . . xn) =

∑n
i=1 δxi

P̂(I)
⋃∞
N=1D(IN )

κ Fixed probability measure over Sd in first layer
ν Signed measure over Sd in first layer
τ Fixed probability measure over Ai in second layer
χ Signed measure over Ai in second layer
Yk,j Orthogonal basis polynomial of degree k and index j on Sd
Pk Legendre polynomial of degree k
gk the kth spherical harmonic of a function g : Sd → R

A. Omitted Proofs
A.1. Proof of Proposition 3.1

Proof:

We remind our notation. Given f : I → R, the empirical extension f̂ : P̂(I) → R is defined as f̂(µ) := f(xµ) where
xµ ∈ D−1(µ) and ‖xµ‖0 = minx∈D−1(µ) ‖x‖0. And for f̄ : P(I)→ R, we say this is a continuous extension of f if f̄ is
continuous in under the Wasserstein metric, and f(x) = f̄(D(x)) for every real, finite-dimensional vector x.

For the forward implication, if f̄ is a continuous extension, then clearly f̄ = f̂ restricted to P̂(I).

Furthermore, continuity of f̄ and compactness of P(I) implies f̄ is uniformly continuous, and therefore f̂ is as well.

For the backward implication, we introduce f̂ε(µ) = supν∈Bε(µ)∩P̂(I) f̂(ν) where the ball Bε(µ) is defined with the

Wasserstein metric. Note that f̂ε is defined over arbitrary probability measures, not just discrete measures. Now, we
introduce f̄(µ) = infε>0 f̂ε(µ), where density of the discrete measures and uniform continuity of f̂ guarantees that f̄ is
well-defined and finite.

Uniform continuity implies if µ ∈ P̂(I) then f̄(µ) = f̂(µ). Consider any y ∈ IM such that µ = D(y), and define a
sequence of vectors yi = (zi, y2, . . . , yM ) where zi → y1 and all zi are distinct from elements of y. Every point yi ∈ IM
has a unique coordinate and therefore f̂(D(yi)) = fM (yi). Because D(yi) ⇀ D(y), continuity implies f̂(D(y)) = fM (y).
Thus, for any y ∈ IM , f̄(D(y)) = fM (y), which implies f̄ is an extension.

Now, suppose we have an arbitrary convergent sequence of probability measures µn ⇀ µ. By the density of discrete
measures, we can define sequences µmn ⇀ µn where µmn ∈ P̂(I). In particular, we may choose these sequences such that
for all n, W1(µmn , µn) ≤ 1

m . Then for any ε > 0,

|f̄(µ)− f̄(µn)| ≤ |f̄(µ)− f̂ε(µ)|+ |f̂ε(µ)− f̂(µnn)|+ |f̂(µnn)− f̂ε(µn)|+ |f̂ε(µn)− f̄(µn)| .

Consider the simultaneous limit as n → ∞ and ε → 0. On the RHS, the first term vanishes by definition, and the
fourth by uniform continuity. For any ν ∈ Bε(µ) ∩ P̂(I), W1(ν, µnn) ≤ W1(ν, µ) + W1(µ, µn) + W1(µn, µ

n
n) → 0

in the limit. So the second term vanishes as well by uniform continuity of f̂ . Similarly, for any ν ∈ Bε(µn) ∩ P̂(I),
W1(ν, µnn) ≤W1(ν, µn) +W1(µn, µ

n
n)→ 0, and the third term vanishes by uniform continuity. This proves continuity of

f̄ .
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A.2. Proof of Proposition 5.1

Proof: We can decompose the generalization error:

E sup
‖f‖S1≤δ

∣∣∣∣∣Eµ∼D`(f∗(µ), f(µ))− 1

n

n∑
i=1

`(f∗(µi), f(µi))

∣∣∣∣∣
≤ 2E sup

‖f‖S1≤δ

∣∣∣∣∣ 1n
n∑
i=1

εi`(f
∗(µi), f(µi))

∣∣∣∣∣
≤ 2E sup

‖f‖S1≤δ

∣∣∣∣∣ 1n
n∑
i=1

εi`(f
∗(µi), 0)

∣∣∣∣∣+ 2E sup
‖f‖S1≤δ

∣∣∣∣∣ 1n
n∑
i=1

εi(`(f
∗(µi), 0)− `(f∗(µi), f(µi)))

∣∣∣∣∣
≤ 2RGδ√

n
+ 4R2GE sup

‖f‖S1≤δ

∣∣∣∣∣ 1n
n∑
i=1

εif(µi)

∣∣∣∣∣ ,
where the second step uses symmetrization through the Rademacher random variable ε, and the fourth is by assumption
on the loss function `, from the fact that ‖f‖S1 ≤ δ implies ‖f‖∞ ≤ 2R2δ. We decompose the Rademacher complexity
(removing the absolute value by symmetry):

E

[
sup

‖f‖S1≤δ

1

n

n∑
i=1

εif(µi)

]
= E

 sup
χ∈M(A)
‖χ‖TV ≤δ

1

n

n∑
i=1

εi

∫
σ(〈φ, µi〉)χ(dφ)


= δE

[
sup

γ1(φ)≤1

1

n

n∑
i=1

εiσ(〈φ, µi〉)

]

≤ δE

[
sup

γ1(φ)≤1

1

n

n∑
i=1

εi〈φ, µi〉

]
,

where the last step uses the contraction lemma and that σ is 1-Lipschitz.

Now, using the neural network representation of φ:

E

[
sup

‖f‖S1≤δ

1

n

n∑
i=1

εif(µi)

]
≤ δE

[
sup

‖ν‖TV ≤1

1

n

n∑
i=1

εi

∫
Rd

∫
Sd
σ(〈w, x̃i〉)2ν(dw)µi(dxi)

]

≤ δE

[
sup
‖w‖2≤1

1

n

n∑
i=1

εiEµi [σ(〈w, x̃i〉)2]

]

≤ δEµ1,...,µn

[
E

[
sup
‖w‖2≤1

1

n

n∑
i=1

εiσ(〈w, x̃i〉)2

∣∣∣∣∣x1, . . . , xn

]]
,

where the last step uses Jensen’s inequality and Fubini’s theorem. The conditional expectation is itself a Rademacher
complexity, so we may apply the contraction lemma again as the σ(〈w, x̃i〉)2 activation is 2

√
2R-Lipschitz for the domain I

of x̃i. Using the variational definition of the l2 norm we have the bound:

E

[
sup

‖f‖S1≤δ

1

n

n∑
i=1

εif(µi)

]
≤ 4R2δ√

n
.

The high probability bound then follows from McDiarmid’s inequality.
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A.3. Proof of Proposition 5.2

Proof:

We appeal to the following concentration inequality for empirical measures under the Wasserstein metric:

Theorem A.1 (Theorem 1 in (Fournier & Guillin, 2015)) Let µ̂N = 1
N

∑N
j=1 δXj where Xi ∼ µ ∈ P(I) iid. Then

E[W1(µ̂N , µ)] . N−1/d where d > 2 is the dimension of I.

It’s easy to see that any φ ∈ A2 has Lipschitz constant bounded above by 2
√

2R, and therefore supφ∈A2
|〈φ, µ− µ∗〉| ≤

2
√

2RW1(µ, µ∗). Therefore

E

[
sup
φ∈A

1

n

n∑
i=1

εi 〈φ, µi〉

]
≤ E

[
sup
φ∈A

1

n

n∑
i=1

εi 〈φ, µ∗〉

]
+ E

[
sup
φ∈A

1

n

n∑
i=1

εi 〈φ, (µ∗ − µi)〉

]

≤ 2R2E

[∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣
]

+ 2
√

2RE[W1(µi, µ
∗)]

. R(n−1/2 +REN∼Ω[N−1/d]) .

The conclusion then follows from the same Rademacher decomposition as in Proposition 5.1.

�

A.4. Proof of Theorem 4.1

For simplicity, we consider spherical inputs rather than Euclidean inputs, so we consider k(x, y) =∫
Sd σ(〈w, x〉)σ(〈w, y〉)κ(dw) without the x̃ bias terms, and assume x ∈ Sd. Note that the Euclidean inputs may be

seen as a restriction of the spherical inputs to an appropriate spherical cap, see (Bach, 2017a) for details of this construction.

A.4.1. SPHERICAL HARMONICS AND KERNEL NORM BACKGROUND

We’ll use ' to denote equality up to universal constants. To understand functions in A2, we require the following details of
spherical harmonics (Efthimiou & Frye, 2014).

A basis on Sd is given by the orthogonal polynomials Yk,j , where k ≥ 0 and 1 ≤ j ≤ N(d, k) where

N(d, k) ' k + d

k

Γ(k + d− 1)

Γ(d)Γ(k)

' k + d

k

(k + d)k+d−3/2

dd−1/2kk−1/2

The Legendre polynomials Pk(t) act on one dimensional real inputs and satisfy the addition formula

N(d,k)∑
j=1

Yk,j(x)Yk,j(y) = N(d, k)Pk(〈x, y〉)

Finally, given a function g : Sd → R, the kth spherical harmonic of g is the degree k component of g in the orthogonal basis,
equivalently written as

gk(x) =

∫
Sd
g(y)Pk(〈x, y〉)κ(dy)
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We also require several calculations on functions with bounded functional norm and projections (Bach, 2017a), where we
remind that we’re using the activation σ(x)2. For g ∈ A2 or g(x) = σ(〈w, x〉)2 for any w ∈ Sd, we have that g2k = 0 for
all k ≥ 2.

For g ∈ A2, the norm of each harmonic satisfies ‖gk‖22 = λ2
kN(d, k), and the kernel norm can be calculated explicitly as

γ2(g)2 =

∞∑
k=0,λk 6=0

λ−2
k ‖gk‖

2
L2

We have that λ1 ' d−1, λk = 0 for k ≥ 3 and k even, and for k ≥ 3 and k odd:

λk ' ±
dd/2+1/2kk/2−3/2

(d+ k)k/2+d/2+1
(6)

A.4.2. SEPARATION OF S1 AND S2

Let g(x) = σ(〈x,w〉)2 for an arbitrary w ∈ Sd, we have that ‖gk‖22 = λ2
kN(d, k). Define g̃ = g −

∑d2−1
i=0 gi.

The following lemmas capture that g̃ has high correlation with g and exponentially small correlation with functions in A2.

Lemma A.2 The correlation lower bound 〈g, g̃〉 & d−21/2 holds.

Proof:

Note that

〈g, g̃〉 =
∑
k=d2

‖gk‖22 =
∑
k=d2

λ2
kN(d, k) (7)

We can calculate, because k + d ≤ 2k:

λ2
kN(d, k) ' dd+1kk−3

(d+ k)k+d+2
· k + d

k

(k + d)k+d−3/2

dd−1/2kk−1/2

' d3/2k−7/2(k + d)−7/2

& d3/2k−7

And therefore

〈g, g̃〉 &
∞∑

k=d2

d3/2k−7 ≥ d3/2

∫ ∞
d2

k−7dk ' d3/2(d2)−6

which yields the desired lower bound.

�

Lemma A.3 The value of the optimization problem

max
φ

〈φ, g̃〉L2

s.t. γ2(φ)2 ≤ δ2

is upper bounded by δ · d1/2−d/3
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Proof: By orthogonality we may assume φk = αkg̃k = αkgk, where αk = 0 for k < d2. Then the problem is equivalently

min
α

−
∞∑

k=d2

αk‖gk‖22

s.t.
∞∑

k=d2

α2
kλ
−2
k ‖gk‖

2
2 ≤ δ2

Taking λ as a Lagrangian multiplier yields the optimality condition αk = (2λ)−1λ2
k.

Plugging this into the constraint and introducing notation S yields

(2λ)−2S := (2λ)−2
∞∑

k=d2

λ2
k‖gk‖22 ≤ δ2

Then the objective (returned to a maximum) obeys the bound

∑
k=d2

(2λ)−1λ2
k‖gk‖22 = (2λ)−1S

≤ δ
√
S

So it remains to calculate S. Plugging in the value of ‖gk‖22 gives

S =

∞∑
k=d2

λ4
kN(d, k)

We can give the form of each term, using that k ≥ d2:

λ4
kN(d, k) . d3/2k−7 dd+1kk−3

(d+ k)k+d+2

. d3/2k−7 d
d+1kk−3

kk+d+2

. d5/2k−12

(
d

k

)d
. d5/2k−12

(
d

k1/2
· 1

k1/2

)d
. d5/2k−12k−d/2

For sufficiently large d, we may ignore the lower terms and reduce the exponential term to k−d/3, then:

S .
∞∑

k=d2

k−d/3 '
∫ ∞
d2

k−d/3 ' d−1(d2)1−d/3

The bound follows.
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�

Let h = g − g0 − g2, and define f1(µ) = d−1σ(〈h, µ〉), remembering that we’re using the regular ReLU for the measure
network activation.

Lemma A.4 ‖f1‖S1 . 1.

Proof: It suffices to bound γ1(h), remembering that our test functions are defined using networks with the squared ReLU
activation. Clearly γ1(g) ≤ 1 as it itself a single neuron. For the other terms, we can write the harmonics explicitly, using
the fact that P0(t) = 1 and P2(t) = (d+1)t2−1

d . Starting with the constant term g0:

g0(x) =

∫
Sd
g(y)κ(dy)

=

∫
Sd
σ(〈w, y〉)2κ(dy)

=

∫
Sd
σ(y1)2κ(dy)

=
1

2(d+ 1)

Note that σ(z)2 + σ(−z)2 = z2, so we can represent a constant function as a neural network via:

d+1∑
i=1

σ(〈ei, x〉)2 + σ(〈−ei, x〉)2 =

d+1∑
i=1

〈ei, x〉2

= ‖x‖2 = 1

So we have γ1(g0) ≤ 1.

The second spherical harmonic is given as:

g2(x) = N(d, 2)

∫
Sd
g(y)

(d+ 1)〈x, y〉2 − 1

d
κ(dy)

=
N(d, 2)

d

(
(d+ 1)

∫
Sd
g(y)〈x, y〉2κ(dy)−

∫
Sd
g(y)κ(dy)

)

We can represent the constant term as above, and the first integral as

∫
Sd
σ(〈w, y〉)2〈x, y〉2κ(dy) =

∫
Sd
σ(〈w, y〉)2(σ(〈x, y〉)2 + σ(〈x,−y〉)2)κ(dy)

=

∫
Sd
σ(〈x, y〉)2(σ(〈w, y〉)2 + σ(〈w,−y〉)2)κ(dy)

=

∫
Sd
σ(〈x, y〉)2〈w, y〉2κ(dy)

This last line is a convex neural network representation using the squared ReLU activation, and thus we have
γ1

(∫
Sd g(y)〈x, y〉2κ(dy)

)
≤
∫
Sd〈w, y〉

2κ(dy) = 1
d+1 .

Thus, γ1(g2) ≤ N(d,2)
d (1 + 1) . d. And all together, γ1(h) ≤ γ1(g) + γ1(g0) + γ(g2) . d.
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So by homogeniety the bound on ‖f‖S1 follows.

�

Our choice of f1 induces a separation between S1 and S2.

Theorem A.5 We have that ‖f1‖S1 . 1, and

inf
‖f‖S2≤δ

‖f − f1‖∞ & |d−11 − d−d/3δ| (8)

Proof:

Because we’ve subtracted out the 0th and 2nd harmonics, and all other even harmonics are zero, g̃ and h are odd functions.

Consider the signed measure ν(dx) := 2g̃(x)
‖g̃‖L1

κ(dx), with Jordan decomposition ν = ν+ − ν− with the positive measures

ν+(dx) := 2σ(g̃(x))
‖g̃‖L1

κ(dx) and ν−(dx) := 2σ(−g̃(x))
‖g̃‖L1

κ(dx).

Note that from the oddness of g̃ and symmetry of κ:

TV (ν−) =
2

‖g̃‖L1

∫
Sd
σ(−g̃(x))κ(dx)

=
2

‖g̃‖L1

∫
Sd
σ(g̃(−x))κ(dx)

=
2

‖g̃‖L1

∫
Sd
σ(g̃(x))κ(dx)

= TV (ν+)

Because TV (ν+) + TV (ν−) = TV (ν) = 2, we conclude ν+ and ν− are both probability measures. We’ll use these
measures to separate f and f1. By Lipschitz continuity of σ:

|f(ν+)− f(ν−)| =
∣∣∣∣∫

Sd
σ(〈φ, ν+〉)− σ(〈φ, ν−〉)χ(dφ)

∣∣∣∣
≤
∫
Sd
|σ(〈φ, ν + ν−〉)− σ(〈φ, ν−〉)|χ(dφ)

≤ sup
γ2(φ)≤1

|〈φ, ν〉|‖f‖S2

≤ 2

‖g̃‖L1

sup
γ2(φ)≤1

|〈φ, g̃〉|‖f‖S2

.
2

‖g̃‖L1

d1/2−d/3δ

where in the last line we use Lemma A.3.

Concerning the function f1, we first use oddness again to notice:

〈h, ν−〉 =
2

‖g̃‖L1

∫
Sd
h(x)σ(−g̃(x))κ(dx)

=
2

‖g̃‖L1

∫
Sd
h(x)σ(g̃(−x))κ(dx)

=
2

‖g̃‖L1

∫
Sd
h(−x)σ(g̃(x))κ(dx)

= −〈h, ν+〉
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So 〈h, ν〉 = 〈h, ν+ − ν−〉 = 2〈h, ν+〉, and therefore from Lemma A.2 with α = 2,

d−21/2 . 〈g, g̃〉 = 〈h, g̃〉

=
‖g̃‖L1

2
〈h, ν〉

= ‖g̃‖L1
〈h, ν+〉

So 〈h, ν+〉 & d−21/2

‖g̃‖L1
, and we conclude

|f1(ν+)− f1(ν−)| = d−1|σ(〈h, ν+〉)− σ(〈h, ν−〉)|
= d−1σ(〈h, ν+〉)

&
d−23/2

‖g̃‖L1

Now, suppose ‖f − f1‖∞ ≤ ε. Then

d−23/2

‖g̃‖L1

. |f1(ν+)− f1(ν−)|

≤ |f1(ν+)− f(ν+)|+ |f(ν+)− f(ν−)|+ |f(ν−)− f1(ν−)|

. ε+
2

‖g̃‖L1

d1/2−d/3δ + ε

So for sufficiently large d, we have |d
−23/2−d1/2−d/3δ|

‖g̃‖L1
. ε. Finally, note by Jensen’s inequality and spherical harmonic

orthogonality that ‖g̃‖L1
≤ ‖g̃‖L2

≤ ‖g‖L2
. d−1/2.

�

A.4.3. SEPARATION OF S2 AND S3

In order to instantiate the class S3, we must fix τ , the base probability measure over test functions in A2. Consider
some probability distribution ζ over the square-summable sequences l2(R+) such that for c ∈ supp(ζ),

∑∞
k=0 c

2
k = 1.

Furthermore, we will make the simplyfing assumption that c0 = 0. For each k let κk be uniform over SN(d,k)−1, and note
that N(d, 1) = d+ 1 so κ = κ1.

Then we sample φ ∼ τ as φ =
∑∞
k=1

∑N(d,k)
j=0 λkckαkjYkj where c ∼ ζ and αk ∼ κk. Observe that

γ2(φ)2 =

∞∑
k=1,λk 6=0

N(d,k)∑
j=1

λ−2
k λ2

kc
2
kα

2
kj = 1

so τ indeed samples functions from A2.

We define f2(µ) = σ(〈g, µ〉) where g = λ1Y1,1. Clearly γ2(g)2 = λ−2
1 λ2

1‖Y1,1‖2L2
= 1, so ‖f2‖S2 ≤ 1.

Theorem A.6 We have that ‖f2‖S2 ≤ 1, and

inf
‖f‖S3≤δ

‖f − f2‖∞ & d−2δ−5/d (9)

Proof: Consider the function h(x) =
∑N(d,1)
j=1 β1,jY1,j and probability measure µ∗β(dx) = h(x)+‖h‖∞

‖h+‖h‖∞‖L1
κ(dx). Observe

that
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f2(µ∗β) =
λ1

‖h+ ‖h‖∞‖L1

σ(〈e1, β〉)

For a function f ∈ S3 with density q with respect to τ , we have:

f(µ∗β) =

∫
A2

σ(〈φ, µ∗β〉)q(φ)τ(dφ)

=
λ1

‖h+ ‖h‖∞‖L1

∫
l2(R+)

∫
Sd
σ(〈c1α1, β〉)q̂(c, α1)κ(dα1)ζ(dc)

=
λ1

‖h+ ‖h‖∞‖L1

∫
Sd
σ(〈α1, β〉)

[∫
l2(R+)

c1q̂(c, α1)ζ(dc)

]
κ(dα1)

where q̂ marginalizes out all other αk terms. Let q̃(α1) =
∫
l2(R+)

c1q̂(c, α1)ζ(dc). From the fact that c1 ≤ 1, and by
Jensen’s inequality, ‖q̃‖L2(κ) ≤ ‖q̂‖L2(κ×ζ) ≤ ‖q‖L2(τ).

Now we may appeal to a separation of test function representations acting on spherical inputs. From D.5 in (Bach, 2017a),
there exists some β ∈ Sd such that

|σ(〈e1, β〉)−
∫
Sd
σ(α1, β)q̃(α1)κ(dα1)‖ & ‖q̃‖−5/d

L2
≥ ‖q‖−5/d

L2

Therefore

|f2(µ∗β)− f(µ∗β)| & λ1

‖h+ ‖h‖∞‖L1

‖q‖−5/d
L2

Finally, note that λ1 ' d−1, and by the addition formula and the fact Pk(1) = 1 for all k:

‖h+ ‖h‖∞‖L1 ≤ 2‖h‖∞

= 2 max
x∈Sd

N(d,1)∑
j=1

β1,jY1,j(x)

≤ 2 max
x∈Sd
‖β‖2

√√√√N(d,1)∑
j=1

Y1,j(x)2

≤ 2N(d, 1)

. d

So we arrive at the desired bound.

�

B. Experimental Details and Additional Data
Synthetic Details: For all experiments we use the same architecture. Namely, for an input set x = (x1, . . . , xN ),
the network is defined as fN (x) = wT3 σ(W2

1
N

∑N
i=1 σ(W1x̃i)), where we choose the architecture as W1 ∈ Rh1×d,
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W2 ∈ Rh2×h1 , and w3 ∈ Rh2 . Here, h1, h2 = 100 for S1, h1 = 100 and h2 = 1000 for S2, and h1 = h2 = 1000 for S3.
The weights are initialized with the uniform Kaiming initialization (He et al., 2015) and frozen as described in Table 1.

We relax the functional norm constraints to penalties, by introducing regularizers of the form λ‖fN‖Si for λ a hyperparameter.
Let K(·) map a matrix to the vector of row-wise squared norms, and let | · | denote the element-wise absolute value of a
matrix. Then we calculate the functional norms via the path norm as follows:

• For S1, ‖fN‖S1 = |w3|T |W2|K(W1)

• For S2, we explicitly normalize the frozen matrix W1 to have all row-wise norms equal to 1, then ‖fN‖S2 =
|w3|TK(W2)

• For S3, we normalize the rows of W1 and W2, which simply implies ‖fN‖S3 = ‖w3‖2

We optimized via Adam (Kingma & Ba, 2014) with an initial learning rate of 0.0005, for 5000 iterations. Under this
architecture, all S1, S2 and S3 functions achieved less than 10−15 training error without regularization on all objective
functions (listed below) on training sets of 100 samples.

We use the following symmetric functions for our experiments:

• f∗N (x) = maxi(‖xi‖−1
2 )

• f∗N (x) = λ log
(∑N

i=1 exp(‖xi‖−1
2 /λ)

)
for λ = 0.1

• f∗N (x) = median({‖xi‖−1
2 }Ni=1)

• f∗N (x) = secondi(‖xi‖−1
2 ) i.e. the second largest value in a given set

• f∗N (x) = 1
N

∑N
i=1(‖xi‖−1

2 )

• f∗N (x) = 2
N(N−1)

∑
i<j

1
‖xi−xj‖2

• f∗N (x) is an individual neuron, parameterized the same as fN but with different hidden layer sizes. For the neuron,
h1 = h2 = 1, for the smooth_neuron, h1 = 100 and h2 = 1. Additionally, the proof of Theorem A.5 dictates that we
must choose the neuron’s test function to have large kernel norm, so we initialize W1 elementwise from the Gaussian
mixture with density 0.5 ∗ N (1, 0.5) + 0.5 ∗ N (−1, 0.5).

Note that in order to guarantee the “smooth_neuron" is representable by our finite-width networks, we explicitly set W1 in
the S2 and S3 models to equal the W1 matrix of the “smooth_neuron".

For each model in each experiment, λ was determined through cross validation over λ ∈ [0, 10−6, 10−4, 10−2] using fresh
samples of training data, and choosing the value of λ with lowest generalization error, which was calculated from another
1000 sampled points.

Then, with determined λ, each model was trained from scratch over 10 runs with independent random initializations. The
mean and standard deviation of the generalization error, testing on varying values of N , are plotted in Figure 1.

Application Details: For the MNIST experiment with results given in Table 4, we follow a similar setup to (De Bie et al.,
2019). From an image in R28×28, we produce a point cloud by considering a set of tuples of the form (r, c, t), which are the
row, column and intensity respectively for each pixel. We restrict to pixels where t > 0.5, and select the pixels with the top
200 intensities to comprise the point cloud (if there are fewer than 200 pixels remaining after thresholding, we resample
among them). Furthermore, we normalize the row and column values among all the points in the cloud. This process maps
an image to a set S ⊆ R3 such that |S| = 200.

For this dataset we consider h1 = 500 and h2 = 500 for our Si finite-width architectures.

We perform cross-validation by setting aside 10% of the data as a validation set, and calculate the mean and standard
deviation of the generalization error over five runs. In order to study generalization in this setting, we test on point clouds
of different size, 100 and 200, and show the results in Table 4. The starting learning rate is 0.001. Otherwise, all other
experimental details are the same as above.
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Error (N = 100) Error (N = 200)
S1 8.03 5.62
S2 8.25 5.78
S3 14.45 10.80

Table 4: Classification test error on Pointcloud MNIST in percent, after images are compressed into sets of size N , trained
with N = 200.

Robust Mean Details: We use the regular ReLU activation in the first layer for training stability. Each network is trained
on a batch of 5000 input sets sampled as above, as the task of robust estimation appears more susceptible to overfitting than
the simpler symmetric objectives learned in the previous section. All networks are trained for 30000 iterations, and all other
details of training are kept consistent with the previous section (including the larger number of random kernel features).

The hyperparameters required for the adversarial estimator in (Diakonikolas et al., 2017) are τ and “cher", which both
control the thresholding of which vectors are discarded according to the projection on the maximal eigenvector of the
empirical covariance. Cross validation over the sets [0.1, 0.15, 0.2] and [1.5, 1.8, 2.0, 2.3] yielded the choices τ = 0.1 and
“cher" = 1.5.

Additional Experiments In Figure 4 we consider higher dimensional vectors for our set inputs to the symmetric models.
In Figure 5 we consider training over multiple set sizes as well, with the input size sampled uniformly from 4, 5, 6.

We consider the Pointcloud MNIST dataset, after mapping our image to sets. This dataset is substantially more difficult than
regular MNIST, as the induced sets obfuscate the geometric structure of the original images. The results on Pointcloud
MNIST, across differently-sized set representations of images, are given in Table 4. The fact that we only consider three-layer
networks limits the ability of the model to reconstruct the original image representation and perform comparably to a model
acting on regular MNIST. Nevertheless, we still observe the expected ordering of our functional spaces. When testing on
smaller sets than training, the generalization error increases faster for S3 than for S1 and S2.

In Table 5 we consider the robust mean experiment, using the same hyperparameters except training on sets of larger size
(N = 60) and plotting MSE on sets of varying size. As with the smaller scale experiment, we observe that S1 enjoys a slight
advantage over the other methods when restricting attention to the in-distribution generalization setting of N = 60, but
outside that range the performance is comparable to the naive sample mean, suggesting that out-of-distribution generalization
for the robust mean is not easily attainable for these networks.

N = 20 N = 40 N = 60 N = 80 N = 100
S1 0.149± 0.039 0.073± 0.023 0.043± 0.004 0.034± 0.004 0.028± 0.003
S2 0.151± 0.039 0.076± 0.023 0.045± 0.004 0.036± 0.004 0.030± 0.003
S3 0.159± 0.039 0.081± 0.023 0.050± 0.004 0.040± 0.004 0.034± 0.003

Sample Mean 0.152± 0.069 0.066± 0.029 0.055± 0.025 0.034± 0.015 0.026± 0.012
Geometric Median 0.137± 0.062 0.063± 0.028 0.047± 0.021 0.032± 0.014 0.025± 0.011

Adversarial Estimator 0.472± 0.545 0.386± 0.555 0.346± 0.546 0.282± 0.521 0.206± 0.455
Table 5: Mean squared test error for robust mean estimation among the finite model instantiations and baselines.
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Figure 4: Test Error for d = 20
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Figure 5: Test Error for varied input size training


