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Abstract

In this paper, we report on our experiments on the Yahoo! Labs Learning to Rank challenge
organized in the context of the 23rd International Conference of Machine Learning (ICML
2010). We competed in both the learning to rank and the transfer learning tracks of the
challenge with several tree-based ensemble methods, including Tree Bagging (Breiman,
1996), Random Forests (Breiman, 2001), and Extremely Randomized Trees (Geurts et al.,
2006). Our methods ranked 10th in the first track and 4th in the second track. Although
not at the very top of the ranking, our results show that ensembles of randomized trees are
quite competitive for the “learning to rank” problem. The paper also analyzes computing
times of our algorithms and presents some post-challenge experiments with transfer learning
methods.
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1. Introduction

In the context of machine learning, “learning to rank” (LTR) is concerned with the au-
tomatic induction of ranking models from training data. From an information retrieval
perspective, one is given a learning sample of query-item pairs described by a set of input
features and by a numerical score measuring the relevance of the item as a response to the
query (or its rank among other items that can be associated to the query). The goal is
then to learn, from this data, a function of the input features that ranks as well as possible
(potentially unseen) items for a given (potentially unseen) query. LTR has been a very
active area of research within machine learning in the last decade, mainly driven by its
applications in the context of web search engines and recommender systems.

This paper reports on our experiments on the Yahoo! Labs LTR challenge organized
in the context of the 23rd International Conference of Machine Learning (ICML 2010) in
Haifa, Israël (Chapelle and Chang, 2011). The goal of the challenge was to have researchers
and industrial scientists compete with their algorithms on a real-world large-scale dataset.
The challenge was divided into two tracks: a standard learning to rank track and a transfer
learning track. The goal of the first track was to obtain the best possible performance on a
large-scale dataset of query-URL pairs. For the second track, an additional smaller dataset,
compiling query-URL pairs from a different country than the first dataset, was provided
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Table 1: Description of the challenge datasets
set1 set2

Train Val Test Train Val Test

Nb queries 19,944 2,994 6,983 1,266 1,266 3,798
Nb URLs 473,134 71,083 165,660 34,815 34,881 103,174

and the goal was to leverage the first dataset to improve the performance on the second
dataset.

Our approach to this challenge is primarily based on the use of ensembles of randomized
regression trees, in particular Extremely Randomized Trees (Geurts et al., 2006). Although
we experimented with several output encodings, we basically addressed this problem as
a standard regression problem trying to predict the relevance score as a function of the
input features. On the first track of the challenge, our submission was ranked at the 10th
position. Although this result was obtained with a heterogeneous (and not very elegant)
ensemble of 16000 randomized trees produced by combining Bagging, Random Forests and
Extremely Randomized Trees, our post-challenge experiments show that using Extremely
Randomized Trees alone with default parameter settings and only 1000 trees yields exactly
the same rank. On the second track, our submission was ranked at the 4th position. We
have experimented with various simple transfer learning methods but unfortunately none
of these really outperformed a model learned only from the second dataset. Interestingly,
post-challenge experiments show however that some of the transfer approaches that we
tested would have actually improved performances with respect to a model learned only
from the second dataset if the size of this dataset would have been smaller.

The rest of this paper is organized as follows. Section 2 describes the two datasets and
the rules of the challenge. In Section 3, we briefly review standard regression trees and
ensemble methods and then present several simple adaptations of these methods for the
learning to rank problem and for transfer learning. Our experiments on both tracks are
then described in Section 4, which ends with an analysis of the computational requirements
of our algorithms. We conclude and discuss future work directions in Section 5.

2. Learning to rank challenge: data and protocol

Contestants of the LTR challenge were provided with two distinct datasets collected at
Yahoo! from real-world web search ranking data of two different countries. Both datasets
(respectively labeled as set1 and set2 ) consist of query-URL pairs represented as feature
vectors. 415 features are common to the two sets, 104 are specific to set1 and 181 are
specific to set2. All of them are numerical features normalized between 0 and 1. For each
query-URL pair, a numerical relevance score also indicates how well the URL matches the
corresponding query, 0 being irrelevant and 4 being perfectly relevant. The queries, URLs
and features semantics have not been revealed.

Both datasets were randomly split into 3 subsets, training, validation and test (see Table
1 for their respective sizes), and relevance scores were given for the training subsets only.
In the first track of the challenge, contestants were asked to train a ranking function on
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the training subset of set1 and to predict a ranking of the URLs for each query on the
validation and test subsets. In the second track, contestants were asked to do the same
for set2, except that they were also allowed to leverage set1. In both tracks, predictions
for the validation and test sets were evaluated and ranked using the Expected Reciprocal
Rank (ERR) metric (Chapelle et al., 2009), which measures the expected reciprocal length
of time that the user will take to find a relevant document (the higher, the better). After
each submission, contestants were given as immediate feedback their score on the validation
set but their score on the test set was kept secret in order to establish the final ranking
at the end of the challenge. For informational purposes, contestants were also given their
score using the Normalized Discounted Cumulative Gain (NDCG) metric (Järvelin and
Kekäläinen, 2002). See (Chapelle and Chang, 2011) for more details about these metrics
and the challenge data.

3. Method

After a brief description of tree-based ensemble methods in Section 3.1, we discuss in Section
3.2 various output encodings for solving the learning to rank problem and then in Section
3.3 several simple transfer learning strategies.

3.1. Tree-based ensemble methods

In this section, we briefly describe standard supervised learning of classification and regres-
sion trees, ensemble methods based on them, and the ensembles of Extremely Randomized
Trees that are at the heart of our solution.

Standard classification and regression trees. A classification/regression tree (Brei-
man et al., 1984) represents an input-output model by a tree whose interior nodes are each
labeled with a (typically binary) test based on one input feature. For numerical features,
typical tests compare the value of the feature to a discretization threshold. Each terminal
node of the tree is labeled with a value of the output (discrete or continuous) and the
predicted output for a new instance is determined as the output associated to the leaf
reached by the instance when it is propagated through the tree starting at the root node.

A tree is built from a learning sample of input-output pairs by recursively identifying
at each node the test that leads to a split of the node sample into two subsamples that
are as pure as possible in terms of their output values. In the case of a numerical output
(regression trees), the impurity of the output in a subsample is directly measured by the
(empirical) output variance. The algorithm then stops developing a branch as soon as some
stopping criterion is met. A standard criterion is to avoid splitting a node as soon as either
the output is constant in the node subsample or the number of learning sample instances
that reach this node is lower than a given threshold nmin.

Ensemble methods. Single classification and regression trees typically suffer from high
variance, which makes them not competitive in terms of accuracy. One very efficient way
to circumvent this problem is to use them in the context of ensemble methods. Mainly two
families of ensemble methods have been studied in the literature: Randomization-based
methods and boosting methods. Although boosting methods can be very effective and have
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been successful in the context of ranking (Li et al., 2007; Wu et al., 2008), we will focus in
this paper on randomization methods.

Randomization methods produce different models from a single initial learning sample
by introducing random perturbations into the learning procedure. For example, Bagging
(Breiman, 1996) builds each tree of the ensemble from a random bootstrap copy of the
original data. Another popular tree-based randomization method is the Random Forests
algorithm proposed by Breiman (2001), which combines the bootstrap sampling idea of
Bagging with a further randomization of the input features that are used as candidates to
split an interior node of the tree. Instead of looking for the best split among all features, the
algorithm first selects, at each node, a subset of K features at random and then determines
the best test over these features to effectively split the node. This method is very effective
and has found many successful applications in various fields.

Extremely Randomized Trees. Most experiments in this paper will be carried out with
a particular randomization method called Extremely Randomized Trees (ET) proposed by
Geurts et al. (2006). This method is similar to the Random Forests algorithm in the sense
that it is based on selecting at each node a random subset of K features to decide on the
split. Unlike in the Random Forests method, each tree is built from the complete learning
sample (no bootstrap copying) and, most importantly, for each of the features (randomly
selected at each interior node) a discretization threshold (cut-point) is selected at random
to define a split, instead of choosing the best cut-point based on the local sample (as in Tree
Bagging or in the Random Forests method). As a consequence, when K is fixed to one,
the resulting tree structure is actually selected independently of the output labels of the
training set. In practice, the algorithm only depends on a single main parameter, K. Good
default values of K have been found empirically to be K =

√
p for classification problems

and K = p for regression problems, where p is the number of input features (Geurts et al.,
2006).

Experiments in (Geurts et al., 2006) show that this method is most of the time com-
petitive with Random Forests in terms of accuracy, and sometimes superior. Because it
removes the need for the optimization of the discretization thresholds, it has also a clear
advantage in terms of computing times and ease of implementation.

We refer the reader to (Geurts et al., 2006) for a more formal description of the algorithm
and a detailed discussion of its main features.

Summary. The main strength of tree-based randomization methods is the fact that they
are (almost) parameter-free while still able to learn non-linear models, hence making them
good all-purpose and off-the-shelf methods (Hastie et al., 2001). Their computing times are
also very competitive and, through feature importance measures, they can provide some
insight about the problem at hand (Hastie et al., 2001). On the downside, their accuracy is
sometimes not at the level of the state-of-the-art on some specific classes of problems and
their storage requirement might be prohibitive in some applications.

3.2. Output encodings

In most of our experiments, we have adopted a simple pointwise regression approach for
solving the ranking problem with ensembles of randomized trees. Each query-URL pair
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is treated as an independent training instance described by its input features and labeled
with the relevance score of the URL for that query. Ensembles of regression trees are fitted
on the training sample to learn a predictive model for the relevance score. The URLs
corresponding to a query from the validation or test sample are then ranked according to
the relevance score predicted by the regression model.

In addition to the previous regression setting, we also compared several alternative
output encodings:

• Regr-proba: the same pointwise regression approach but recoding the relevance
scores {0, 1, 2, 3, 4} into the probabilities of relevance {0, 1/16, 3/16, 7/16, 15/16} that
are at the basis of the definition of the ERR criterion.

• Regr-rank: the same pointwise regression approach but instead of computing the
ensemble prediction by averaging the relevance scores predicted by each tree, we
computed for each URL its rank among the other URLs as predicted by each tree
of the ensemble and then ranked the URLs according to their average rank over all
ensemble trees.

• Clas-avg: the pointwise classification approach suggested in (Li et al., 2007). The
relevance score is considered as a discrete output (with five values) and an ensemble of
classification trees is built to predict it. For a given query-URL pair, the classification
model outputs class-conditional probability estimates P̂ (y = i|x) that are then turned
into a relevance score by computing the expected relevance

∑4
i=0 iP̂ (i|x).

• Clas-moc: a variant of the previous approach addressing the problem as a multiple
ordinal classification problem (Li et al., 2007). Four binary classifiers are trained
to learn the probabilities P (y ≤ i|x) for i ∈ {0, 1, 2, 3}. A score prediction is then
obtained from the resulting estimates P̂ (y ≤ i|x) by computing

4∑
i=1

i(P̂ (y ≤ k|x)− P̂ (y ≤ k − 1|x))

(with P̂ (y ≤ 4|x) = 1).

3.3. Transfer learning

In this section, we enumerate several simple strategies for transfer learning that we have
exploited on the second track of the challenge. In the description that follows, we will
denote by F1 (resp. F2) the set of features defined only on set1 (resp. set2), by FC the
set of common features, and by M(X,F ) a model learned from data X with features F .
The methods that we have compared are the following:

1. M(set2, FC + F2): A model learned from set2 as a base case.

2. M(set1, FC): A model learned from set1 with the common features only.

3. M(αset1 + (1 − α)set2, FC + F1 + F2): A model learned from a weighted union
of the two datasets with all features. The introduction of the parameter α assumes
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that the learning algorithm can deal with weighted instances. It adjusts the relative
weight put on the instances of the two sets. In our experiments, α will be optimized
in [0, 1] on the validation set.

4. αM(set1, FC)+(1−α)M(set2, FC+F2): a convex combination of the predictions of
a model learned from set1 and a model learned from set2. The parameter α ∈ [0, 1]
will be optimized on the validation set.

5. M(set2, FC+F2+M(set1, FC)): A model learned from set2 using as an additional
input feature the relevance score predicted by the model learned from set1

6. M(set2−M(set1, FC), FC +F2): A model learned from queries in set2 where the
outputs are the residuals with respect to the model learned from set1 only. Predic-
tions are then obtained by summing the predictions of this model with the predictions
of the model M(set1, FC).

Several of these variants have only been added after the challenge ended. Methods 1 and
2 are the two base cases that do not exploit respectively set1 and set2 data. Method 3 is
straightforward. We included methods 4 and 5 because they were proposed by two other
contestants and were found to improve (slightly) over the use of the set2 data only. Method
6 was inspired by least-square residual fitting (Hastie et al., 2001). Similar approaches were
proposed in (Chen et al., 2008) and (Gao et al., 2009).

4. Experiments

Below, we successively report on our experiments on the two tracks of the challenge. The
section ends with a discussion of the computing times and storage requirements of our
solutions. While the validation of several methods compared below was actually done
by cross-validation on the training sample during the challenge period, we have rerun all
methods on the complete training sample and evaluated their performance both on the
validation and test samples. Our results are thus directly comparable to other contestants’
results.

In our discussion, a method is declared significantly better than another if a paired
t-test comparing the two methods in terms of ERR returns a p-value lower than 0.05. For
readibility reason, standard errors are not reported systematically in our tables but typical
values on both tracks and sets are given in Table 2. They have shown to be very stable
from one method to another.

4.1. Track 1: learning to rank

Our strategy on this track was first to compare several randomization methods and then
to increase as much as possible the number of trees to reach convergence. In a second step,
we also compared the alternative output encoding strategies described in Section 3.2.

Comparison of tree-based methods. Table 3 compares Random Forests (RF) and
Extremely Randomized Trees (ET) with 500 trees and the two default settings for their main
common parameter K. For comparison, we also report in this table the results obtained
with a model that would rank all URLs randomly.
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Table 2: Typical standard errors for ERR and NCDG on both tracks
set1 validation set1 test
ERR NDCG ERR NDCG

∼ 0.006 ∼ 0.004 ∼ 0.004 ∼ 0.0025

set2 validation set2 test
ERR NDCG ERR NDCG

∼ 0.008 ∼ 0.005 ∼ 0.005 ∼ 0.003

Table 3: Comparison of different tree-based ensemble methods (with 500 trees. In bold:
best values in each column)

set1 validation set1 test
Method ERR NDCG ERR NDCG

Random 0.2779 0.5809 0.2830 0.5783
ET, K =

√
p 0.4533 0.7841 0.4595 0.7896

ET, K = p 0.4564 0.7907 0.4620 0.7948
RF, K =

√
p 0.4552 0.7884 0.4611 0.7923

RF, K = p (Bagging) 0.4553 0.7866 0.4629 0.7934

The two methods are not very sensitive to the value of K, although in both cases, the
best result is obtained with K = p. Both methods are very close in terms of performance
with a slight advantage to ET K = p on the validation sample and a slight advantage to RF
K = p (which is equivalent to Bagging in this case) on the test sample. These differences
are however not statistically significant.

Effect of the ensemble size. Table 4 shows the effect of the number of trees with ET
and K = p on ERR and NDCG on the validation and test samples. The last column gives
the rank that each entry would have obtained at the challenge. As expected, both the
ERR and the NDCG monotonically increase as the size of the ensemble increases. ERR
however saturates at 1000 trees. Although slight, the improvement from 500 to 1000 trees
is statistically significant (p-value=0.0009) and it makes the method climbs from the 17th
rank to the 10th rank.

Output encoding. The five different output encoding methods are compared in Table
5, in each case with ET, K = p and 500 trees. Regr-proba is the best approach on the
validation set but it is less good than Regr on the test set. On the test set, only Clas-moc
is better than the straightforward regression encoding and the difference is significant (p-
value=0.03). However, because it builds four binary classifiers, this variant uses four times
more trees than the other methods and as shown in Table 4, the regression approach reaches
the same test ERR with 1000 trees or more. Unlike what was found in Li et al. (2007), the
two classification encodings are thus not interesting in our context.

55



Geurts Louppe

Table 4: Effect of the number of trees (with ET, K = p)
set1 validation set1 test

Nb trees ERR NDCG ERR NDCG Rank

100 0.4548 0.7875 0.4609 0.7909 > 20
500 0.4564 0.7907 0.4620 0.7948 17
1000 0.4570 0.7906 0.4632 0.7957 10
5000 0.4571 0.7917 0.4632 0.7957 10
10000 0.4568 0.7919 0.4633 0.7961 10

Table 5: Comparison of different output encodings (with ET, K = p, 500 trees. In bold:
best values in each column)

set1 validation set1 test
Method ERR NDCG ERR NDCG

Regr 0.4564 0.7907 0.4620 0.7948
Regr-proba 0.4570 0.7877 0.4614 0.7898
Regr-rank 0.4551 0.7874 0.4601 0.7895
Clas-avg 0.4547 0.7862 0.4605 0.7900
Clas-moc 0.4565 0.7912 0.4632 0.7961

Final submission. In a last attempt to get further improvement, our final submission to
track 1 was an aggregation of several of our intermediate submissions (by simply averaging
relevance scores). The resulting ensemble contains in total 16000 trees: 1000 bagged trees,
10000 ET with K = p, and 5000 ET with K =

√
p. The ensemble is compared in Table

6 with an ensemble of 1000 ET with K = p and with the best performer’s scores. The
heterogeneous ensemble yields an improvement both on the validation and test samples
with respect to the pure ET ensemble. The improvement is significant on the test sample
(p-value=0.007) but not on the validation sample (p-value=0.19). Both methods reaching
the exact same rank at the challenge, the ET ensemble could be preferred because of its
simplicity and lower size. Our final ERR score on the test set is about 1% smaller than the
ERR score of the best performer of the challenge. Yet, this difference turns out to be very
statistically significant (see Chapelle and Chang, 2011).

Table 6: Final submission to track 1
set1 validation set1 test

Method ERR NDCG ERR NDCG Rank

ET, K = p, 1000 trees 0.4570 0.7906 0.4632 0.7957 10
Mix of 16000 trees 0.4579 0.7923 0.4642 0.7967 10
Best performer 0.4611 0.7995 0.4686 0.8041 1
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Table 7: Comparison of various approaches for transfer learning (with ET, K = p, 1000
trees. In bold: best values in each column)

set2 validation set2 test
Method ERR NDCG ERR NDCG

Random 0.2567 0.5299 0.2597 0.5251
1 M(set2, FC + F2) 0.4514 0.7859 0.4611 0.7810
2 M(set1, FC) 0.4353 0.7441 0.4472 0.7409
3 M(αset1 + (1− α)set2, FC + F1 + F2) 0.4514 0.7859 0.4611 0.7810
4 αM(set1, FC) + (1− α)M(set2, FC + F2) 0.4514 0.7859 0.4611 0.7810
5 M(set2, FC + F2 +M(set1, FC)) 0.4497 0.7853 0.4625 0.7830
6 M(set2−M(set1, FC), FC + F2) 0.4487 0.7811 0.4594 0.7784

4.2. Track 2: transfer learning

For our experiments on the second track, we focused on the pointwise regression approach
with the ET algorithm and investigated several ways to combine the two datasets.

Comparison of transfer learning approaches. All methods discussed in Section 3.3
are compared in Table 7, in all cases with ET, K = p, and 1000 trees. For methods 3 and
4, the value of α was optimized on the validation set. For Method 3, α was selected in
{0.0, 0.05, 0.125, 0.25, 0.5, 1.0}. For Method 4 that does not require to relearn a model for
each new α value, we screened all values of α in [0, 1] with a stepsize of 0.01.

On the validation set, no method is able to improve with respect to the use of the
set2 data. The model learned from set1 is clearly inferior but it is nevertheless quite
good compared to the random model. For both methods 3 and 4, the optimal value of
α is actually 0, meaning that these two models are equivalent to the model learned from
set2.1 Method 5, which introduces the prediction of the model learned on set1 among the
features, shows the best performances overall on the test set. However, the improvement
over the base model is only slight and actually not statistically significant.

Experiments with less set2 data. One potential reason for these disappointing results
could be that, given the size of the set2 learning sample, the limit of what can be obtained
with our model family on this problem is already reached. As a consequence, set1 data
is not bringing any useful additional information. To check whether the transfer methods
could still bring some improvement in the presence of less set2 data, we repeated the same
experiment but reducing this time by 95% the size of the set2 learning sample (i.e., by
randomly sampling 5% of the queries). Average results over five random samplings are
reported in Table 8, with all transfer methods. With only 5% of the set2 data (about 65
queries), the model learned on set2 data is now comparable with the model learned on set1

data. Transfer methods 3, 4, and 5 improve with respect to both the model learned from

1. Note that the value of α that optimizes ERR on the test set is 0.22. It corresponds to an ERR of 0.4622,
which is slightly better than ERR of the model learned on set2 alone.
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Table 8: Transfer learning with only 5% of the set2 data (with ET, K = p, 1000 trees,
average over 5 random samplings).

set2 validation set2 test
Method ERR NDCG ERR NDCG

1 M(set2/5%, FC + F2) 0.4357 0.7434 0.4472 0.7407
2 M(set1, FC) 0.4353 0.7441 0.4472 0.7409
3 M(αset1 + (1− α)set2/5%, FC + F1 + F2) 0.4419 0.7552 0.4522 0.7519
4 αM(set1, FC) + (1− α)M(set2/5%, FC + F2) 0.4418 0.7580 0.4527 0.7529
5 M(set2/5%, FC + F2 +M(set1, FC)) 0.4361 0.7450 0.4486 0.7433
6 M(set2/5%−M(set1, FC), FC + F2) 0.4356 0.7453 0.4466 0.7435

Table 9: Final submission to track 2
set2 validation set2 test

Method ERR NDCG ERR NDCG Rank

ET, 10000 trees, K = p 0.4513 0.7867 0.4617 0.7819 4
Best performer 0.4506 0.7875 0.4635 0.7863 1

set2/5% and the model learned from set1. The improvement is significant2 for Method 3
(p-value=0.0173) and Method 4 (p-value=0.0014), but not for Method 5. For methods 3
and 4, the (average) optimal α values are respectively 0.5 and 0.6, which now gives more
weight to the set1 data. Although the improvement is not impressive, this experiment thus
suggests that transfer methods could be effective in the presence of less set2 data.

Final submission. Given that we were unsuccesful at exploiting set1 data, our final
submission to the challenge is an ET ensemble learned on set2 data only (with K =
p). Since the more trees the better, we increased the number of trees to 10000. Their
performances on the validation and test samples are reported in Table 9, as well as the
result of the best perfomer of this track. Our submission ranked at the fourth position of
the challenge. On this track, the differences between the top four contestants were however
not very significant (see Chapelle and Chang, 2011).

This result was surprising for two reasons. First, we were only ranked at the sixth
position on the validation set. This means that other contestants have probably overfitted
the validation set, which is not surprising given that we observed discrepancy between these
two sets in the results in Table 7. As a further clue of this discrepancy, note also that we are
actually performing better on the validation set than the overall track winner (see Table 9).
Second, our final solution does not exploit any data from set1, at all. As a matter of fact,
it turns out that other contestants were not much more successful than us at transfering
information from set1 to set2 (Chapelle and Chang, 2011).

2. Using a paired t-test to compare the ERR values found by both methods over the 5 random samplings.
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Table 10: Computing times and storage requirements of different methods

Method Learning1 Testing2 Nb nodes3 Storage4 ERR set1 test5

ET, K = p 296s 492ms 280K 1.3MB 0.4620
RF, K = p 618s 469ms 140K 663kB 0.4629
ET, K =

√
p 20s 543ms 400K 1.8MB 0.4595

RF, K =
√
p 28s 507ms 205K 959kB 0.4552

ET, K = p,nmin = 50 268s 336ms 47K 215kB 0.4626
ET, K = p,nmin = 100 254s 260ms 25K 115kB 0.4613

1Computing times in seconds for learning one tree on set1 learning sample
2Computing times in milliseconds for testing one tree on the validation and test samples of set1
3Total number of nodes in one tree built on set1 learning sample
4Storage requirement for one tree
5ERR obtained with 500 trees on the set1 test sample

4.3. Computational considerations

To conclude our experiments, we report in this section on the computational requirements of
our algorithms. Table 10 shows training and testing times, as well as storage requirements of
different tree-based methods all computed on set1.3 In addition to the methods discussed
above, we also analysed in this table the effect of the stop splitting parameter nmin that
reduces the complexity of the trees. These statistics have been obtained with an unoptimized
code intended only for research purpose4 and should thus be taken with some caution.

ET are twice as fast as RF for K = p and 30% faster for K =
√
p. Methods differ greatly

in terms of the size of the models (from 25K nodes to 400K nodes) but prediction times,
which is mainly related to the tree depth, only vary by 50% from the slowest to the fastest
method. Given that all methods are very close in terms of accuracy, retrospectively, ET
with K = p and nmin = 100 seems to be the best method as it produces much smaller model
with no apparent degradation in terms of ERR score. If one can sacrifice some accuracy to
reduce computing times, then ET with K =

√
p is also an interesting tradeoff. 500 models

are built in less than 3 hours (on a single core) and its ERR score is only 2% lower than
the ERR score of the best performing method of the challenge. Note that of course, better
tradeoffs for a given application could be achieved by adopting other parameter settings
(e.g., less trees in the ensemble or other values of K or nmin). Given that trees in the
ensemble are also built independently of each other, the parallelization of the algorithm is
trivial.

3. The software has been implemented in C with a MATLAB (The MathWorks, Inc.) interface. Computing
times excludes loading times and assumes that all data are stored in main memory. They have been
computed on a Mac Pro Quad-core Intel Xeon Nehalem 2,66 GHz with 16Go of memory. Storage re-
quirements have been derived from binary mat files generated with MATLAB assuming that all numbers
(i.e., tested attributes, node indices and discretization thresholds) are stored in single precision.

4. Software can be downloaded from http://www.montefiore.ulg.ac.be/~geurts/Software.html.
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5. Discussion

In this paper, we have reported on our experiments in the context of the 2010 Yahoo!
Labs LTR challenge. Our solution based on ensembles of randomized regression trees has
reached rank 10 on the first track and rank 4 on the second track. These results suggest that
tree-based randomization methods can be competitive on ranking problems. The default
parameter settings and output encoding turned out to be optimal in terms of accuracy, which
highlights the fact that these methods are essentially parameter-free. Computing times of
these methods remain also competitive on these very large datasets, both for training the
model and for making predictions.

It is interesting to analyse our solution in the light of the other participants’ solutions.
Remarkably, it actually turns out that all top-four contestants on both tracks have been
using regression tree-based methods. Unlike us, however, they all exploited some form of
(gradient) boosting, most of the time combined with randomization. The superiority of
these methods over our pure randomization-based approaches is clear from the fact that
we were ranked lower at the challenge. We believe however that one advantage of pure
randomization methods is that they require less parameter tuning than boosting methods.
Actually, we have experimented on the challenge data with gradient boosting, combined
with several kinds of randomization, but we were not able to improve with respect to
randomization methods. Chapelle and Chang (2011) also experimented on set1 data with
gradient boosting and obtained an ERR score on the test sample of 0.46201, which is lower
than our best score in Table 6 (but the difference is probably not significant). This suggests
that other participant’s best performances are probably due either to better parameter
tuning, specific combination of randomization and boosting approaches, or clever pre- or
post-processing (e.g, feature selection). A comparison of all these methods from the point
of view of computing times would also be interesting. Boosting methods have the advantage
of typically requiring smaller trees but their parallelization, although it has been studied
(Ye et al., 2009), is not as trivial as that of randomization methods. Training times should
also account for parameter tuning.

In terms of future works, we would like to pursue experiments on the transfer learning
approaches. In particular, it would be interesting to evaluate our simple strategies on other
tasks and also to investigate more sophisticated approaches on the challenge datasets (Pan
and Yang, 2010). This would help us understand why we were not successful at exploiting
set1 dataset when learning from the complete set2 dataset.
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challenge and the prize, Raphaël Marée for useful discussions, Louis Wehenkel for reading
the manuscript, and Olivier Chapelle and the anonymous reviewers for useful suggestions.
PG and GL are respectively research associate and research fellow of the FNRS, Belgium.
This work is partially supported by the Interuniversity Attraction Poles Programme (IAP
P6/25 BIOMAGNET), initiated by the Belgian State, Science Policy Office and by the
European Network of Excellence, PASCAL2. Experiments were all carried out on the NIC3
supercomputer of the University of Liège.
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