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Abstract

In May 2010 Yahoo! Inc. hosted the Learning to Rank Challenge. This paper summarizes
the approach by the highly placed team Washington University in St. Louis. We investigate
Random Forests (RF) as a low-cost alternative algorithm to Gradient Boosted Regression
Trees (GBRT) (the de facto standard of web-search ranking). We demonstrate that it yields
surprisingly accurate ranking results — comparable to or better than GBRT. We combine
the two algorithms by first learning a ranking function with RF and using it as initialization
for GBRT. We refer to this setting as iGBRT. Following a recent discussion by Li et al.
(2007), we show that the results of iGBRT can be improved upon even further when the
web-search ranking task is cast as classification instead of regression. We provide an upper
bound of the Expected Reciprocal Rank (Chapelle et al., 2009) in terms of classification
error and demonstrate that iGBRT outperforms GBRT and RF on the Microsoft Learning
to Rank and Yahoo Ranking Competition data sets with surprising consistency.

Keywords: Ranking, Decision Trees, Boosting, Random Forests

1. Introduction

The success of search engines such as Google, Yahoo! and Bing has lead to an increased
interest in algorithms for automated web search ranking. Web search ranking is often treated
as a supervised machine learning problem (Burges et al., 2005; Li et al., 2007; Zheng et al.,
2007b): each query-document pair is represented by a high-dimensional feature vector and
its label indicates the document’s degree of relevance to the query. A machine learning
algorithm is trained to predict the relevance from the feature vector, and during test time
the documents are ranked according to these predictions.

The past years have seen many different approaches to web search ranking, including
adaptations of support vector machines (Joachims, 2002; Chapelle and Keerthi, 2010), neu-
ral networks (Burges et al., 2005) and gradient boosted regression trees (GBRT) (Zheng
et al., 2007b). The latter has arguably established itself as the current state-of-the-art
learning paradigm (Li et al., 2007; Gao et al., 2009; Burges, 2010).

Irrespective of which learning algorithm is used, the various ranking settings fall into
three categories: point-wise, pair-wise, and list-wise. Point-wise algorithms predict the

c© 2011 A. Mohan, Z. Chen & K. Weinberger.



Mohan Chen Weinberger

relevance of a document to a query by minimizing a regression loss (e.g. the squared loss).
Pair-wise approaches learn a classifier that predicts if one document is more relevant than
another; these approaches include RankBoost (Freund et al., 2003), FRank (Tsai et al.,
1999), and GBRank (Zheng et al., 2007a). List-wise approaches, such as AdaRank (J.,
2007), PermuRank (Xu et al., 2008), tend to iteratively optimize a specialized ranking
performance measure, for example NCDG.

In this paper we describe the point-wise ranking approach of the team Washington
University in St. Louis for the Yahoo Learning To Rank Challenge in May 2010. Most of
the decisions we made throughout the competition were heavily influenced by our limited
computational resources. We focussed on developing a light-weight algorithm that can be
trained fully on a single multi-core desktop within reasonable amount of time.

We investigate the use of Random Forests (RF) (Breiman, 2001) for web search ranking
and demonstrate that it can be a powerful low-cost alternative to GBRT. Although RF is
also based on tree averaging, it has several clear advantages over GBRT: 1. It is particularly
insensitive to parameter choices; 2. It is known to be very resistant to overfitting; 3.
It is “embarrassingly” parallelizable. In addition, we demonstrate on several real world
benchmark data sets that RF can match (or outperform) GBRT with surprising consistency.

As a second contribution, we address a particular weakness of GBRT. In gradient boost-
ing, there exists an inherent trade-off between the step-size and early stopping. To obtain
the true global minimum, the step-size needs to be infinitesimally small and the number
of iterations very large. Of course, this is unrealistic and common practice is to use a rea-
sonably small step-size (≈ 0.1) with roughly 1000 iterations. We show that, as RF often
outperforms GBRT and is very resistant to overfitting, its predictions can be used as a
starting-point for the gradient boosting. In this setting GBRT starts-off at a point that is
very close to the global minimum and merely refines the already good predictions.

We refer to the resulting algorithm as initialized Gradient Boosted Regression Trees
(iGBRT). iGBRT is insensitive to parameters and when web-search ranking is cast as a
classification problem, as suggested by Li et al. (2007), it outperforms both GBRT and
Random Forests on all Yahoo and Microsoft benchmark datasets. As a final contribution,
in addition to the empirical evaluation, we provide an upper bound of the ERR metric with
respect to the classification error of a ranker.

This paper is organized as follows: In section 2 we briefly review the web-searching
ranking setting and define necessary notation. In section 3 we introduce RF. In section 4 we
introduce GBRT. Both algorithms are combined in section 5 as initialized gradient boosted
regression trees (iGBRT). In section 6 we review the classification setting introduced by Li
et al. (2007), adapt iGBRT to this framework and provide an upper bound of the ERR in
terms of the classification error. Finally, we provide an extensive evaluation of all algorithms
in section 7.

2. Notation and Setup

We assume that we are provided with data of triples D = {(x1, q1, y1), . . . , (xn, qn, yn)},
consisting of documents (xi ∈ Rf ), queries (qi ∈ {1, . . . , nq}) and labels (yi ∈ {0, . . . , 4}).
The label yi indicates to what degree document xi is relevant to the query qi and ranges
from yi = 0 (“irrelevant”) to yi = 4 (“perfect match”). There are fewer queries than samples
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Algorithm 1 Random Forests
Input: D = {(x1, y1), . . . , (xn, yn)}, Parameters: K : 0 < K ≤ f , MRF : MRF > 0
for t = 1 to MRF do
Dt ⊆ D #Sample with replacement, |Dt| = |D|.
ht ← Cart(Dt,K,∞) #Build full (d =∞) Cart with K ≤ f randomly chosen features at each split.

end for
T (·) = 1

MRF

∑MRF
t=1 ht(·).

return T (·)

(nq < n). In this paper, our algorithmic setup is not affected by the number of queries. We
assume that a document vector xi is a f dimensional feature vector that incorporates all
the sufficient statistics about the query and the document as features. For example, one
feature could be “the number of occurrences of the query in the document”. To simplify
notation we will assume that all documents belong to the same query, i.e. nq = 1 and with
a slight abuse of notation let D = {(x1, y1), . . . , (xn, yn)}. However, the techniques work for
sets with multiple queries, and in fact the data we use for experiments does contain many
queries.

Point-wise machine-learned ranking trains a predictor T (·) such that T (xi) ≈ yi. If
T (·) is accurate, the ordering πh of all documents according to values of T (xi) should be
close to the desired ordering πy according to yi. We can evaluate the quality of the ranking
function either with the root mean squared error (RMSE) or with ranking specific metrics
such as normalized discounted cumulative gain (NDCG) (Järvelin and Kekäläinen, 2002) or
expected reciprocal rank (ERR) (Chapelle et al., 2009). (Please note that for RMSE lower
values are better, whereas for NDCG and ERR higher values indicate better performance.)

All the algorithms in this paper are based on Classification and Regression Trees (CART)
(Breiman, 1984). We assume that we have an efficient implementation of a slightly modified
version of CART that greedily builds a regression tree to minimize the squared-loss, but at
each split uniformly samples k features and only evaluates those as candidates for splitting.

Cart(S, k, d) ≈ argmin
h∈Td

∑
(zi,ri)∈S

(h(zi)− ri)2. (1)

The three parameters of our CART algorithm (1) are: 1. a set S ⊆ D; 2. an integer k ≤ f
which determines how many uniformly picked features are considered at each split; 3. an
integer d > 0 that defines the maximum depth of the resulting tree (in (1) Td denotes the
set of all CART trees of maximum depth d).

The Yahoo Learning to Rank Challenge was based on two data sets of unequal size:
Set 1 with 473134 and Set 2 with 19944 documents. We use the smaller Set 2 for illustration
throughout the paper. In section 7 we report a thorough evaluation on both Yahoo data
sets and the five folds of the Microsoft MSLR data set.

3. Random Forests

In this section we briefly introduce Random Forests (Breiman, 2001). The fundamental
concept underlying Random Forests is bagging (Breiman, 1984). In bagging, a learning
algorithm is applied multiple times to a subset of D and the results are averaged. Each time
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Algorithm 2 Gradient Boosted Regression Trees (Squared Loss)

Input: data set D = {(x1, y1), . . . , (xn, yn)}, Parameters: α, MB , d
Initialization: ri = yi for i = 1 to n
for t = 1 to MB do
Tt ← Cart({(x1, r1), . . . , (xn, rn)}, f, d) #Build Cart of depth d, with all f features and targets {ri}
for i = 1 to n do
ri ← ri − αTt(xi) #Update the residual of each sample xi.

end for
end for
T (·) = α

∑MRF
t=1 Tt(·). #Combine the Regression Trees T1, . . . , TMB .

return T (·)

the algorithm is trained, n = |D| data points are sub-sampled with replacement from D,
so that the individual classifiers vary slightly. This process reduces overfitting by averaging
classifiers that are trained on different data sets from the same underlying distribution.
Random Forests is essentially bagging applied to CART with full depth (d =∞), where at
each split only K uniformly chosen features are evaluated to find the best splitting point.
The construction of a single tree is independent from earlier trees, thus making Random
Forests an inherently parallel algorithm. Algorithm 1 implements the regression version
of the Random Forests algorithm. Only two parameters need to be tuned. MRF specifies
the number of trees in the forest and K determines the number of features that each node
considers to find the best split. As Random Forests is based on bagging, it does not overfit
with increasing MRF , so we set it to be very large (MRF = 10000). The algorithm is only
sensitive to one parameter, K. A common rule of thumb is to set K to 10% of the number
of features (i.e. K = 0.1f). We follow this rule throughout the paper.

4. Gradient Boosted Regression Trees

Similar to Random Forests, Gradient Boosted Regression Trees (GBRT) (Friedman,
2001) is a machine learning technique that is also based on tree averaging. However, instead
of training many full (d = ∞) high variance trees that are averaged to avoid overfitting,
GBRT sequentially adds small trees (d ≈ 4), each with high bias. In each iteration, the new
tree to be added focuses explicitly on the documents that are responsible for the current
remaining regression error. Empirical results have shown that GBRT is especially well-
suited for web-search ranking (Zheng et al., 2007b; Burges, 2010). In fact, all the winning
teams of the Yahoo Learning to Rank Challenge used some variation of GBRT1.

Let T (xi) denote the current prediction of sample xi. Furthermore, assume we have
a continuous, convex and differentiable loss function L(T (x1), . . . , T (xn)) which reaches
its minimum if T (xi) = yi for all xi. Throughout the paper we use the square loss:
L = 1

2

∑n
i=1(T (xi)− yi)2. In each iteration, a new tree h(·) is added to the existing classi-

fier T (·). The best h(·) is found with a first-order Taylor expansion of L(T + ht), which is
minimized with respect to ht(·). See Zheng et al. (2007b) for a detailed derivation.

1. See the official ICML workshop homepage http://learningtorankchallenge.yahoo.com/workshop.php.
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Algorithm 3 Initialized Gradient Boosted Regression Trees (Squared Loss)

Input: data set D = {(x1, y1), . . . , (xn, yn)}, Parameters: α, MB , d, KRF , MRF

F ← RandomForests(D,KRF ,MRF )
Initialization: ri = yi − F (xi) for i = 1 to n
for t = 1 to MB do
Tt ← Cart({(x1, r1), . . . , (xn, rn)}, f, d) #Build Cart of depth d, with all f features, and targets {ri}.

for i = 1 to n do
ri ← ri − αTt(xi) #Update the residual of each sample xi.

end for
end for
T (·) = F (·) + α

∑MB
t=1 Tt(·). #Combine the Regression Trees T1, . . . , TM with the RF F .

return T (·)

Intuitively, GBRT performs gradient descent in the instance space x1, . . . ,xn i.e. during
each iteration the current prediction T (xi) is updated with a gradient step

T (xi)← T (xi)− α
L

T (xi)
, (2)

where α > 0 denotes the learning rate. The negative gradient − ∂L
∂T (xi)

is approximated with

the prediction of the regression tree ht(xi) which satisfies:

ht ≈ −argmin
h∈Td

n∑
i=1

(ht(xi)− ri)2 , where: ri =
∂L

∂T (xi)
. (3)

In the case where L is the squared loss, the gradient for a document xi becomes the residual
from the previous iteration, i.e. ri = yi−T (xi). Each iteration t, we use the standard CART
algorithm (1), with K = f , to find a solution to (3). GBRT depends on three parameters:
The learning rate α > 0, the tree-depth d, and the number of iterations MB. Based on
experiments from previous research (Friedman, 2001; Zheng et al., 2007b), we set d = 4 and
pick MB and α with a validation data set. Smaller learning rates tend to result in better
accuracy but require more iterations. If MB is too large, the algorithm starts overfitting.
Figure 1 shows how Boosting compares to RF on the Yahoo Learning to Rank Challenge
data Set 2 for various settings of α and MB. The figure shows a clear trend that RF
outperforms all settings of GBRT according to all three metrics (ERR, NDCG, RMSE).
Although not shown here, boosting for even more iterations, up to MB = 5000, did not
change that result at any time — on the contrary, GBRT started to overfit, widening the
performance gap between RF and GBRT. Similar results were obtained on the much larger
Yahoo Set 1, whereas the results on the Microsoft Learning to Rank data set were mixed
with no clear winner (see Table 3 in section 7). RF was averaged over MRF = 10000
iterations and K = 70.

5. Initialized Gradient Boosted Regression Trees

GBRT, as described in the previous section, is traditionally initialized with the all-zero
function T0(xi) = 0. Consequently, the initial residual is ri = yi. As the loss function L is
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Figure 1: Results of GBRT (with varying step-size α) compared to RF (bold black line) on
the Yahoo Set 2. RF outperform boosted regression trees with respect to RMSE,
ERR and NDCG.

MRF 0 100 1000 10000

RMSE 0.64132 0.63416 0.63097 0.63047
ERR 0.45669 0.45956 0.46170 0.46257

NDCG 0.76575 0.77080 0.77712 0.77805

Table 1: Performance of iGBRT with varying initializations on Yahoo Set 2.

convex, the gradient descent approach from GBRT should converge to its global minimum
irrespective of its initialization (with an appropriate learning-rate α) (Shor, 1970). However
these theoretical results tend to not hold in practice for two reasons: 1. in each iteration
the gradient is only approximated ; 2. for true convergence, the learning-rate α needs to
be infinitesimally small — requiring an unrealistically large number of iterations MB � 0.
We therefore propose to initialize GBRT with the predictions of RF from section 3. RF
is a good initialization for several reasons: 1. RF is known to be very resistant towards
overfitting and therefore makes a good optimization starting point; 2. RF is insensitive to
parameter settings and does not require additional parameter tuning.

Algorithm 3 shows the pseudo-code implementation of iGBRT. The main differences to
GBRT (Algorithm 2) lie in the initial settings of ri, which are set to the residual of the RF
predictions: ri ← yi − F (xi), and the final boosted classifier which is added to the initial
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Figure 2: Results of iGBRT on Yahoo test set 2. The predictions were initialized with the
predictions of Random Forests (RF). iGBRT improves over RF on all metrics,
with some overfitting in the settings with large learning-rates (α = 0.1).

results of RF. Figure 2 shows the traces of iGBRT under various step-sizes (on the test
partition of yahoo Set 2). In contrast to the standard GBRT, iGBRT improves consistently
over Random Forests. In fact, iGBRT outperforms RF and GBRT for all settings of α
and MB ≤ 1000 in RMSE, NDCG, and ERR (except for a very brief period in ERR with
α = 0.1).

Table 1 shows ranking results of iGBRT, under varying amounts of trees MRF for
the Random Forests initialization. The column with MRF = 0 is identical to standard
GBRT. The number of boosting iterations MB was chosen on a validation data set (up to
MB = 1000). The table shows clearly that the boosted results were heavily influenced by
their initialization. Strikingly, even with only 100 averaged trees as initialization, iGBRT
outperforms standard GBRT (MRF = 0) with respect to all three metrics.

6. Classification vs. Regression

So far, all our algorithms used regression to approximate the relevance of a document.
Recently, Li et al. (2007) proposed a learning to rank paradigm that is based on classification
instead of regression. Instead of learning a function T (xi) ≈ yi, the authors utilize the fact
that the original relevance scores are discrete, yi ∈ {0, 1, 2, 3, 4}, and generate four binary
classification problems indexed by c = 1, . . . , 4. The cth classification problem predicts if the
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document is less relevant than c. More formally, we denote the binary label of document
xi for problem c ∈ {1, . . . , 4} as bci ≡ (yi < c). For each of these binary classification
problems, we train a classifier T c(·). We carefully choose classifiers T c(·) to return well
defined probabilities (i.e. 0 ≤ T c(·) ≤ 1) and T c(x) can be interpreted as the probability of
document x being less relevant than c. More formally, T c(x) = P (rel(x) < c). If we define
the constant functions T 0(·) = 0 and T 5(·) = 1 (by definition relevance is non-negative and
all documents are less relevant than 5), we can combine all classifiers T 0, . . . , T 5 to compute
the probability that a document xi has a relevance of r ∈ {0, . . . , 4}:

P (rel(xi) = r) = P (rel(xi) < r + 1)− P (rel(xi) < r)

= T r+1(xi)− T r(xi).

Li et al. (2007) show that GBRT is well-suited for this setup. Regression trees, minimizing
the squared-loss, predict the average label of documents at a leaf. If these contain only
binary labels {0, 1}, the predictions are within the interval [0, 1]. The same holds for
Random Forests, which are essentially averaged regression trees. We can therefore use
RF and iGBRT as binary classifiers for this framework2. We evaluate the classification
paradigm in the following section.

In an attempt to explain our empirical results, which clearly favor classification over
regression, we show that the ERR error is bounded by the classification error in Ap-
pendix A. Our current bound shows a clear relationship between ERR and classifica-
tion performance, however is probably too loose to be of considerable practical value.

Theorem 1 Given n documents indexed by {1, · · · , n}. Suppose a classifier, assigns a
relevance score to each document, denoted by ŷ1, . . . , ŷn ∈ {0, 1, 2, 3, 4}. A ranker, π, ranks
documents according to ŷi such that π(i) < π(j) if ŷi > ŷj (ties are broken arbitrarily). Let
g be a perfect ranker and let the ERR scores of g and π be ERRg and ERRπ, respectively.
The ERR error of π, ERRg − ERRπ, is bounded by the square root of the classification
error:

ERRg − ERRπ ≤
15π

16
√

6

√√√√ n∑
i=1

1yi 6=ŷi

7. Results

We evaluate all algorithms on several data sets from the Yahoo Ranking competition (two
sets from different countries) and the five splits of the Microsoft MSLR data sets3. Both data
sets contain pre-defined train/validation/test splits. Table 2 summarizes various statistics
about all the data sets.

We experimented with several ways to deal with missing features (which were present
in all data sets): splitting three ways during tree construction and substituting missing

2. Depending on the step-size, there might be small violations of the probability assumptions in the case
of boosting. However, in our experience this does not seem to hurt the performance.

3. http://research.microsoft.com/en-us/projects/mslr/
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Yahoo LTRC MSLR Folds
TRAIN Set 1 Set 2 F1 F2 F3 F4 F5

# Features 700 700 136 136 136 136 136
# Documents 473134 34815 723412 716683 719111 718768 722602

# Queries 19944 1266 6000 6000 6000 6000 6000
Avg # Doc per Query 22.723 26.5 119.569 118.447 118.852 118.795 119.434

% Features Missing 0.68178 0.67399 0.37228 0.37331 0.37263 0.37163 0.37282

TEST Set 1 Set 2 F1 F2 F3 F4 F5

# Documents 165660 103174 241521 241988 239093 242331 235259
# Queries 6983 3798 6000 6000 6000 6000 6000

Avg # Doc per Query 22.723 26.165 119.761 119.994 118.547 120.167 116.6295
% Features Missing 0.68113 0.67378 0.37368 0.36901 0.37578 0.37204 0.37215

Table 2: Statistics of the Yahoo Competition and Microsoft Learning to Rank data sets.

ERR Regr./ Yahoo LTRC MSLR Folds
method Class. Set 1 Set 2 F1 F2 F3 F4 F5

GBRT R 0.45304 0.45669 0.35914 0.35539 0.35579 0.36039 0.37076
RF R 0.46349 0.46212 0.35481 0.35458 0.34775 0.35853 0.36853

iGBRT R 0.46301 0.46303 0.35787 0.35985 0.35383 0.36491 0.37422

GBRT C 0.45448 0.46008 0.36264 0.36168 0.35990 0.36498 0.37549
RF C 0.46308 0.46200 0.35868 0.35677 0.35003 0.36364 0.37052

iGBRT C 0.46360 0.46246 0.36232 0.36198 0.35486 0.36744 0.37430

NDCG Regr./ Yahoo LTRC MSLR Folds
method Class. Set 1 Set 2 F1 F2 F3 F4 F5

GBRT R 0.76991 0.76587 0.47958 0.48014 0.47477 0.48302 0.48705
RF R 0.79575 0.77552 0.47493 0.48105 0.47177 0.48238 0.49027

iGBRT R 0.79575 0.77725 0.47863 0.48847 0.47842 0.48927 0.49688

GBRT C 0.77246 0.77132 0.48385 0.48477 0.47705 0.48908 0.49383
RF C 0.79544 0.77373 0.47761 0.48202 0.47208 0.48563 0.48935

iGBRT C 0.79672 0.77591 0.48366 0.48858 0.47868 0.49084 0.49581

Table 3: Performance of Gradient Boosted Regression Trees (GBRT), Random Forests (RF) and Initialized
Gradient Boosted Regression Trees (iGBRT). All results are evaluated in ERR (upper table) and
NDCG (lower table). We investigated both, the regression setting (R - in second column) and
classification (C). The parameters were set by cross validation on the pre-defined validation data.

features with zeros, infinity, the mean or the median feature value. Results on validation
splits showed that substituting zeros for missing values tends to outperform the alternative
approaches across most data sets. We trained the respective rankers on the training set,
then ranked the validation and test sets. The performance of the learners are judged by
ERR and NDCG. For Boosting, we used learning rates α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The
reported numbers are the performances from the test sets, with the parameter settings
that best performed on the validation sets. For RF, we used the rule of thumb and fixed
K = 0.1f and MRF = 10000.
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Running Time RF RF GBRT iGBRT

Iterations M 10000 1000 1000 10000/500

Regression 130m 16m 103m 181m
Classification 768m 77m 388m 842m

Table 4: Run Times (in minutes) for RF, GBRT and iGBRT on the Yahoo Ranking Competition Set 2.

We performed all experiments on a standard workstation with 8 cores4. Table 4 sum-
marizes the training times. All implementations were parallelized. The RF implementation
distributed the construction of the MRF trees onto the various cores, during boosting the
splits were performed by different threads in parallel. With a comparable number of trees
(MRF = MB), RF was by far the fastest algorithm despite that its tree-sizes are much
larger. This can be attributed to the fact that RF scales linearly with the number cores
and resulted in a much better CPU utilization. For best possible ranking results we used
RF with MRF = 10000, which was a bit slower than GBRT. Although the differences be-
tween MRF = 10000 and MRF = 1000 were not necessarily significant, we included them
as they did matter for the competition leaderboard. iGBRT was the slowest algorithm as it
involves both RF and GBRT sequentially (given our limited resources, we set MB = 500).
In the classification setting, boosting became faster than RF as the different classification
problems could be learned in parallel and the 8 cores were utilized more effectively. Both
boosting algorithms required additional time for the parameter search by cross validation.
Our own open-source C++ implementation of all algorithms and links to the data sets are
available at the url: http://research.engineering.wustl.edu/~amohan/.

In addition to regression, we also used the classification setting from section 6 on all
three algorithms (iGBRT, RF and GBRT). Table 3 summarizes the results under ERR and
NDCG. We observed the following trends: 1. Classification reliably outperforms regression
across all methods. 2. iGBRT (with classification) outperforms RF and GBRT on most
of the data sets according to both ERR and NDCG. 3. RF (classification) yielded better
results than GBRT on all data sets except MSLR Fold 3. This is particularly impressive,
as no parameter sweep was performed for RF. In the Yahoo Competition iGBRT(C) would
have achieved 11th place on Set 1 and iGBRT(R) 4th place on Set 2 (with differences in
ERR from the winning solution on the order of 10−3 and 10−4 respectively). Please note
that the higher ranked submissions tended to average over millions of trees and were trained
for weeks on over hundred computers (Burges, 2010), whereas our models could be trained
on a single desktop in one day.

8. Conclusion

In this paper we compared three algorithms for machine learned web-search ranking in a
regression and classification setting. We showed that Random Forests, with parameters
picked according to simple rules of thumb, is a very competitive algorithm and reliably
outperforms tuned Gradient Boosted Regression Trees. We introduced initialized gradient
boosted regression trees (iGBRT), which uses GBRT to further refine the results of Random
Forests. Finally, we demonstrated that classification tends to be a better paradigm for

4. Intel Xeon L5520@2.27GHz
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web-search ranking than regression. In fact, iGBRT in a classification setting consistently
achieves state-of-the-art performance on all publicly available web-search data sets that we
are aware of.

Appendix A.

Let us define a ranker as a bijective function π : {1, · · · , n} → {1, · · · , n}, which maps
a given document’s index i into its ordering position πi. Also, let us denote the inverse
mapping of π by σi = σ(i) = π−1(i).

Expected Reciprocal Rank (ERR) (Chapelle et al., 2009) was designed to measure the
performance for web-search ranking algorithms. It simulates a person who looks through
the output of a web-search engine. The model assumes that the web-surfer goes through
the documents in order of increasing rank and stops the moment he/she is satisfied. R(yi)
denotes the probability that the person is satisfied with the ith result. The ranker obtains a
payoff of 1

i if the person is satisfied with the document in the ith position. ERR computes
the expected payoff under this model. The formal definition is as follows:

ERRπ =

n∑
i=1

Cπ(i)R(yσi) =

n∑
i=1

Cπ(πi)R(yi) (4)

where:

Cπ(i) =
1

i

i−1∏
j=1

(1−R(yπ−1(j))) =
1

i

i−1∏
j=1

(1−R(yσj )) (5)

and R(y) = 2y−1
16 . Here Cπ(i) is a product of the payoff 1

i and the probability that the

surfer was not satisfied with all previous documents,
∏i−1
j=1(1−R(yσj )).

Definition 1 Perfect ranker: A ranker, g is a perfect ranker, if it ranks documents
according to their original label yi, i.e. g(i) < g(j) if yi > yj. When yi = yj, then
document i and document j are arbitrarily ranked. Also denote the inverse mapping of g by
φi = φ(i) = g−1(i).

Now we denote the corresponding ERR score of the perfect ranker g as ERRg. Then
for a given ranker π, the ERR error is ERRg − ERRπ. Theorem 1 states that the ERR
error can be bounded by the classification error of the documents. The proof is below:
Proof This proof follows a line of reasoning inspired by Li et al. (2007). By the definition
of ERR we have

ERRπ =
n∑
i=1

Cπ(πi)R(yi) =
n∑
i=1

Cπ(πi)
2yi − 1

16

=
n∑
i=1

Cπ(πi)
2ŷi − 1

16
+

n∑
i=1

Cπ(πi)
2yi − 2ŷi

16
. (6)

According to the rearrangement inequality (because π is the ideal ranking for ŷi) we can
show that,
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n∑
i=1

Cπ(i)R(ŷσi) ≥
n∑
i=1

Cg(i)R(ŷφi)

n∑
i=1

Cπ(πi)
2ŷi − 1

16
≥

n∑
i=1

Cg(gi)
2ŷi − 1

16
. (7)

Combining (6) and (7) leads to

ERRπ ≥
n∑
i=1

Cg(gi)
2ŷi − 1

16
+

n∑
i=1

Cπ(πi)
2yi − 2ŷi

16

=
n∑
i=1

Cg(gi)
2yi − 1

16
−

n∑
i=1

Cg(gi)
2yi − 2ŷi

16
+

n∑
i=1

Cπ(πi)
2yi − 2ŷi

16

= ERRg +
n∑
i=1

(Cπ(πi)− Cg(gi))
2yi − 2ŷi

16
.

Consequently we obtain

ERRg − ERRπ ≤
1

16

n∑
i=1

(Cπ(πi)− Cg(gi))(2yi − 2ŷi).

Applying Cauchy-Schwarz inequality leads to

ERRg − ERRπ ≤ 1

16

(
n∑
i=1

(Cπ(πi)− Cg(gi))2
)1/2( n∑

i=1

(2yi − 2ŷi)2

)1/2

≤ 15π

16
√

6

√√√√ n∑
i=1

1yi 6=ŷi ,

where we use the fact that
∑n

i=1(Cπ(πi)− Cg(gi))2 ≤
∑n

i=1
1
i2
≤ π2

6 , and 24 − 20 = 15.
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