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Abstract

Meta-learning (ML) has emerged as
a promising learning method under
resource constraints such as few-shot
learning. ML approaches typically pro-
pose a methodology to learn general-
izable models. In this work-in-progress
paper, we put the recent ML approaches
to a stress test to discover their limi-
tations. Precisely, we measure the per-
formance of ML approaches for few-
shot learning against increasing task
complexity. Our results show a quick
degradation in the performance of ini-
tialization strategies for ML (MAML,
TAML, and MetaSGD), while surpris-
ingly, approaches that use an optimiza-
tion strategy (MetaLLSTM) perform sig-
nificantly better. We further demon-
strate the effectiveness of an optimiza-
tion strategy for ML (MetaLSTM++)
trained in a MAML manner over a pure
optimization strategy. Our experiments
also show that the optimization strate-
gies for ML achieve higher transferabil-
ity from simple to complex tasks.

1. Introduction

Rapidly learning new skills from limited ex-
perience is a fundamental trait of human
intelligence. Replicating similar capabilities
in deep neural networks is a challenging
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task. Meta-learning (ML) approaches have
emerged as a promising direction in this
context, facilitating learning from a limited
amount of labeled training data (also re-
ferred to as the few-shot learning). They can
be broadly classified into initialization and
optimization strategies. Initialization strate-
gies such as Model Agnostic Meta-learning
(MAML) (Finn et al., 2017), Meta Stochas-
tic Gradient Descent (MetaSGD) (Li et al.,
2017), Task Agnostic Meta-learning (TAML)
(Jamal and Qi, 2019) learn an optimal model
initialization that swiftly adapts to new tasks
with limited training data. Optimization
strategies such as Learn2Learn (Andrychow-
icz et al., 2016), MetaLSTM (Ravi and
Larochelle, 2017) learn parametric optimiz-
ers that accelerate the adaptation of a model
to new tasks. Though the two approaches
have the common objective of enforcing gen-
eralization to unseen tasks, the difference in
their methodology presents a diverse set of
merits and caveats.

Initialization methods learn an optimal
prior on the model parameters through the
experience gained across various tasks. The
optimal prior is defined to be equally close to
the individual training tasks’ optimal param-
eters. This helps the model to quickly adapt
to unseen tasks from the same distribution.
MAML learns the optimal prior by assum-
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ing that a model quickly learns unseen tasks
with sparse data if it is trained and tested
under similar circumstances (Vinyals et al.,
2016). Literature suggests that the optimal
prior learned by MAML may still be biased
towards some tasks (Jamal and Qi, 2019).
TAML overcomes the bias by explicitly min-
imizing the inequality in the optimally ini-
tialized model performance across a batch of
tasks.

However, as the task complexity in-
creases, finding an optimal prior becomes
challenging. Thus, though gradient descent
takes off from a good initialization (better
than random), attaining good performance
also depends on the model’s ability to tra-
verse the loss surface. A good initialization
alone is insufficient. Our experiments con-
firm the degradation in the performance of
these models as the complexity of the tasks
increases.

The optimization strategy MetaLSTM
(Ravi and Larochelle, 2017), learns recur-
rent parametric optimizer that captures both
task-specific and agnostic knowledge. The
learned optimizer mimics the gradient-based
optimization of the base model. It uses the
current base model’s loss and gradients to
output the model parameters for the next it-
eration during the adaptation process. Thus,
the optimizer can be viewed as employing
dynamic learning rates dependent on the
model’s parameters and task data, unlike
MetaSGD that only considers the former de-
pendence. Optimization strategies, however,
have an overhead of learning additional pa-
rameters and have limited scalability (Finn
et al., 2017; Li et al., 2017). Coordinate-wise
sharing of the optimizer’s parameters across
the base model’s parameters (Andrychowicz
et al., 2016; Ravi and Larochelle, 2017) re-
duces the learning overhead.

Initialization approaches have achieved
promising results on sparse data ML set-
tings. However, their capability on increas-
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ingly complex tasks has not been studied.
In this work-in-progress paper, we conduct a
stress test on initialization and optimization
ML strategies against increasing task com-
plexity. We also combine the two approaches
to learn a parametric meta-optimizer Metal.-
STM++, a version of MetaLSTM trained in
the MAML manner. We show that Metal-
STM++ achieves significantly better perfor-
mance with fewer adaptation steps on sim-
ple and complex tasks. Further, motivated by
human learning tactics - experience gained
from simple tasks helps to learn challenging
tasks gradually- we also examine the trans-
ferability of these strategies from simple to
complex tasks and vice versa.

2. Methodology

Problem Formulation and Notations
Given a principal dataset D and asso-
ciated distribution of tasks P(7), ML
techniques create meta-sets - Dmeta—train
pmeta—validation oy q pmeta—test fq. training
the model, tuning hyperparameters and eval-
uating performance. Each meta-set is a col-
lection of mutually exclusive tasks drawn
from the distribution P(7") and each task 7;
is associated with a dataset D; comprised of
disjoint sets {D!", D'}, Each task is an N-
way K-shot learning problem. ML techniques
alm to learn an accurate base model f pa-
rameterized by 6 for an unseen task 7; when
fine-tuned with few examples D!" of the task.
MAML uses a nested iterative process
to learn the task-agnostic optimal initializa-
tion #*. In the inner iterations representing
the task adaptation steps, 6* is separately
fine-tuned for each meta-training task 7; us-
ing D" to obtain 6; through gradient descent
on the loss L!". Specifically, ; is initialized as
6* and updated using 6; « 0; — Vg, L (fo,).
In the outer loop, the meta optimization is
performed over 6* using the loss £ com-
puted with the task adapted model param-
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eters 0; on held-out dataset DI**'. Specifi-
cally, during meta-optimization 6* + 6* —
BV o« 37 op(r) £ (fo,)-

MetaSGD improves upon MAML by
learning parameter specific learning rates
« in addition to the optimal initializa-
tion in a nested iterative procedure. Meta-
optimization is performed on 6* and « is
learned in the outer loop using the loss £t
computed on held-out dataset D!, Specif-
ically, during meta-optimization (6*,«) <«
(0%, 0) = BV (6= 0) 2orimp(T) L (fo,)- Learn-
ing dynamic learning rates for each parame-
ter of a model makes MetaSGD faster and
more generalizable than MAML. A single
adaptation step is sufficient to adjust the
model towards a new task. However the
dependence of the learning rate only on
model parameters limits the capability of
MetaSGD.

TAML reduces the bias of the opti-
mal initialization, learned through MAML,
towards any task by explicitly minimizing
the inequality among the performances of
a batch’s tasks. It uses statistical measures
like the Theil index, Atkinson index, Gen-
eralized entropy index, and Gini coefficient
to estimate the inequality among tasks’ per-
formances. In this work, we use the Theil in-

dex owing to the average best results, defined
1 B Etest test

as =y, 2
B 1= Etest

i )
n Ftest to measure the in
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equality among the performances of the tasks
in a batch. B is number of tasks in a batch,
L5t s loss of task 7; on DSt and L is
the average test loss of a task batch. For few-
shot learning, TAML proposes entropy min-
imization to preclude the bias of 6* towards
any task 7; by maximizing the entropy of the
labels predicted by fp« and minimizing the
entropy of the labels predicted by adapted
model fp,. This is equivalent to a maximum
entropy prior over #* such that the initialized
model is not biased to any task.

MetaLSTM learns an optimizer M
parametrized by ¢ to supervise the optimiza-
tion process of the base model (fy). The
parametric optimizer is an LSTM, which
is inherently capable of performing bi-level
learning due to its architecture. During adap-
tation of fp on D!, M takes meta informa-
tion characterized by current loss £/ and
gradients Vy, (L!") as input and outputs the
next set of parameters ;. Internally, the cell
state of M corresponds to 6, and the cell
state update in M resembles a learned and
controlled gradient update as the emphasis
on the previous parameters and the current
update is regulated by the learned forget and
input gates respectively. While adapting fy
to DI", meta-information about the trajec-
tory on the loss surface across the adapta-
tion steps is captured in the hidden states
of M, representing the task-specific infor-
mation. During meta-optimization, ¢ is up-
dated based on loss L% of task computed on
held-out dataset D{*! to garner the common
knowledge across tasks.

MetaLSTM+4+ A caveat of Metal-
STM is the sequential update to M after
each adaptation task. As a result, the op-
timization strategy traverses the loss surface
in an ordered sequence of task specific op-
tima. This leads to a longer and oscillatory
optimization trajectory as shown in Figure 1
and bias of M towards the final task. We pro-
pose to overcome this bottleneck by learning
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Test Accuracy (20-Way)

Model 1 Shot 5-Shot
MAML* 91.93 £+ 0.72 97.65 £ 0.20
MetaSGD* 94.58 + 0.59 97.79 £ 0.23
TAML (Theil Index)* 92.25 £ 0.70 95.14 £+ 0.87
MetaLLSTM* 90.63 £ 0.83 97.11 £ 0.24
MetaLSTM++ (Ours) 96.50 + 0.42 98.41 + 0.31

The hyper-parameters for each ML ap-
proach have been fine-tuned for each com-
plexity setting separately for a fair com-
parison. We find optimal hyper-parameters
by performing a grid search over 30 dif-
ferent configurations for 5000 iterations.
The search interval for all strategies is the

Table 1: Few shot classification performance
of ML algorithms on the Omniglot
dataset. The & represents the 95%
confidence interval across 300 tasks.
All the algorithms are rerun (de-
noted by *) on the same split for
a fair comparison.

M according to the training procedure of ini-
tialization ML strategies, termed as Metal.-
STM++. Unlike the MetaLSTM, the M of
MetaLLSTM++ is updated based on the aver-
age test loss of a task batch. This is intuitive
as a batch of tasks may better approximate
the data distribution, instead of a single task.
The batch update on M makes the optimiza-
tion trajectory smooth, short, and robust to
task order (Figure 1).

3. Experiments and Results

The ML approaches are benchmarked using
the popular Omniglot dataset (Lake et al.,
2015). We consider this dataset owing to its
simplicity and show that the performance of
ML strategies on complex settings has not
saturated even on this dataset. We follow
the standard split (1200 : 423) of the dataset
keeping 220 classes from the meta-training
split to tune the models’ hyperparameters.
The images are downsampled to 28 x28. We
use the same architecture as in (Finn et al.,
2017) for the base model. We use a two-layer
LSTM following Ravi and Larochelle (2017)
for the parametric optimizer.
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same. The number of adaptation steps range
within [22 — 26], the meta and base learn-
ing rates follow log uniform distribution in
the ranges [16_4 — 1} and [16_4 — 16_2] re-
spectively. For TAML (Theil), A also follows
a log uniform distribution over the range of
[16*2 — 1]. The meta batch size was varied
among 4, 8, 16, and 32. The final model was
trained for 20000 iterations using the optimal
set of hyper-parameters. Early stopping was
employed if no improvement was observed for
2500 steps. Cross-entropy loss is used in all
models.

We verified our implementation of all the
ML approaches on 20 way 1 and 5 shot set-
tings. The results reported in Table 1 are
consistent with the findings in the existing
literature. It is evident from the results that
MetaLSTM-++ outperforms the state of the
art ML approaches in both 1 and 5 shot set-
tings, thus showing the promise of combining
the initialization and the optimization strate-
gies for ML.

3.1. Increasing Task Complexity

We use the most challenging few-shot learn-
ing setting - one-shot setting, for the next
set of experiments. Furthermore, increas-
ingly challenging learning tasks are designed
by increasing the number of classes. In par-
ticular, we consider 20, 40, 60, 80, 100, 150,
175, and 200 classes. This challenging set-
ting was never studied before. Figure 2 shows
the results for MAML, TAML, MetaSGD,
MetaLSTM, and MetaLSTM-++ as the num-
ber of ways in a task increases. The most
salient observation is the rapid decrease in
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Figure 2: Accuracy of ML strategies w.r.t
the increase in the number of ways
in a task. The confidence interval
is 99.9%.

MAML, TAML, and MetaSGD performances
against increasingly challenging tasks. Fur-
ther, an accelerated fall in their performance
is witnessed when the number of ways in a
task rises beyond 150. Despite the exhaus-
tive hyperparameter search and finetuning,
the initialization based approaches saturate
at accuracies close to zero for 175 and 200
way tasks. This indicates that an optimal ini-
tialization alone is insufficient for the model
to perform well on complex tasks. A justi-
fication for this behavior is that the opti-
mal parameters for the diverse tasks may lie
far from each other, so finding an initializa-
tion that lies in the proximity of all tasks
may be difficult. Among initialization based
methods, MetaSGD is comparatively robust
to the increasingly complex tasks. A possible
explanation for this could be that MetaSGD
learns parameter adaptive learning rates in
addition to the optimal initialization, which
helps the model traverse the loss surface to
some extent while meta-testing.

MetaLSTM and MetaLSTM++, on the
contrary, exhibit a marginal decline in per-
formance despite the increasing task com-
plexity. This indicates that the paramet-
ric optimizers can learn the loss surface’s
generic dynamics to assist the model to ap-
proach the optima, even for complex tasks.
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Figure 3: Transferability of ML approaches
from (a) simple to complex tasks
(40-way 5-shot to 40-way 1-shot)
(b) complex to simple tasks (40-
way 1-shot to 40-way 5-shot)

It is evident that MetaLSTM++ consistently
outperforms all ML approaches, indicating
that the parametric optimizer trained ac-
cording to the initialization strategy has the
edge over pure optimization and initializa-
tion strategies.

3.2. Transferability across Complexity

The primary goal of ML approaches is to
learn from experience a prior that general-
izes well. We investigate the generalizabil-
ity of ML approaches on complex tasks, us-
ing prior learned from simpler tasks. Specif-
ically, we meta-train a model on a 40-way
5-shot setting and meta-test it on a 40-way
1-shot setting. A 5-shot learning task is less
challenging than a 1-shot task. We observe
a performance drop across all ML strategies
as expected, as illustrated in Figure 3(A).
However, the critical observation is that ini-
tialization strategies - MAML, MetaSGD,
and TAML experience a substantial perfor-
mance reduction, indicating that optimal ini-
tialization obtained for a model in a simple
setting is not adequately generalizable to a
complex setting. However, MetaLSTM and
MetaLSTM++ show lesser performance re-
duction, confirming the generalizability of a
parametric optimizer from simple to complex
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settings. MetaLSTM++ consistently outper-
forms other approaches.

We also investigate the reverse transfer-
ability of ML models from complex to sim-
pler tasks. In particular, we train and test
a meta-model on a 40-way 1-shot and 5-shot
tasks respectively. As the model sees more in-
formation during the meta-test time, we ex-
pect all the models’ performance to increase.
The results from Figure 3(B) show that
the increase in the performance of MAML,
TAML, and MetaSGD is higher than Met-
aLSTM and MetaLSTM++. However, Met-
alLSTM++ still achieves higher overall accu-
racy across both scenarios.

To rule out the inadequacy of the adap-
tation steps during meta-testing, we observe
the behavior of 40-way 1-shot trained mod-
els against an increasing number of adapta-
tion steps during meta-testing on 40-way 5
shot tasks. The test accuracies are averaged
across 300 tasks. We observe from Figure
4 (a) that initialization methods and Met-
aLSTM++ require less adaptation on the
test data to achieve peak performance, but
MetaLLSTM requires significantly more adap-
tation steps. We also notice that Metal.-
STM++ performs better than all ML strate-
gies throughout the scenario (achieves higher
accuracy in a lesser number of adaptation
steps).

3.3. Ablation on the Initialization

MetaLSTM and MetaLSTM++ implicitly
learn a good initialization for the base
learner. We study the effect of decoupling
the learned initialization from the paramet-
ric optimizer in a 20-way 5-shot setting. In
the first experiment, we switch the Metal.-
STM and MetaLSTM++ optimizers with
Adam while retaining their initializations.
This setting is comparable to MAML. We ob-
serve from Figure 4 (b) that a model initial-
ized with MetaLSTM cell state and adapted
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Figure 4: Ablation studies across: (a) Adap-
tation steps (b) Initialization (ra-
dius = test accuracy across 300
tasks)

with Adam performs significantly poor at
the test time, indicating that the initializa-
tion learned by MetaLSTM is substandard.
We also observe that MetaLSTM++ learns
a better initialization than MetaLSTM ow-
ing to its meta-training strategy; however,
MAML learns the most desirable initializa-
tion. In the second experiment, we investi-
gate the model’s performance when initial-
ized by MAML and guided by MetaLSTM
and MetaLSTM++ optimizers. The results
from Figure 4 (b) show no substantial in-
crease in the performance, indicating that
the learned parametric optimizers can guide
the model to superior performance even with
substandard initialization (MetaLSTM and
MetaLSTM++).

4. Conclusion

Meta-learning approaches for few-shot learn-
ing have shown promising results on sim-
pler tasks of the Omniglot benchmarking
dataset. In this paper, we conduct a stress
test on these approaches using more chal-
lenging one-shot learning tasks from the
same dataset. We observe a sharp drop in
the accuracy (close to 0!) for MAML, TAML,
and MetaSGD with a significant increase in
the number of classes (175). Surprisingly, op-
timization strategies like MetaLSTM and the
proposed variant MetaL.STM++ continue to
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maintain accuracies above 80% even with
the challenging task of 200-way 1-shot learn-
ing. The experiments on transferability of
meta-models from simpler to complex tasks
(and vice versa) also suggest the effectiveness
of optimization strategies over initialization.
While the results show the limitations of and
motivate future research on pure initializa-
tion strategies for meta-learning, it also war-
rants the study into the causes for optimiza-
tion strategies’ effectiveness.
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