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Abstract competitively against fully supervised pro-
totypical networks, trained on 100% of
the labels, even outperforming it in the
1-shot mini-Imagenet case with 50.89%

Recent progress has shown that few-shot
learning can be improved with access to
unlabelled data, known as semi-supervised

few-shot learning(SS-FSL). We introduce to 49.4% accuracy. We also show that
an SS-FSL approach, dubbed as Proto- our loss is resistant to distractors, unla-
typical Random Walk Networks(PRWN), beled data that does not belong to any

of the training classes, and hence re-
flecting robustness to labeled /unlabeled
class distribution mismatch. The as-
sociated GitHub page can be found at
https://prototypical-random-walk.

built on top of Prototypical Networks
(PN). We develop a random walk semi-
supervised loss that enables the network
to learn representations that are com-
pact and well-separated. Our work is

related to the very recent development github.io.

of graph-based approaches for few-shot

learning. However, we show that com- 1. Introduction

pact and well-separated class represen-

tations can be achieved by modeling our Few-shot learning is an artificial learning skill
prototypical random walk notion with- of rapidly generalizing from limited supervi-

out needing additional graph-NN param-
eters or requiring a transductive setting
where a collective test set is provided.

sory data (few labeled examples), typically
without the use of any unlabeled data (Koch
Our model outperforms baselines in most et al., 2015; Miller et al., 2000; Lake et al.,
benchmarks with significant improvements 2011). Our work is at the intersection be-
in some cases. Our model, trained with tween few-shot learning and semi-supervised
40% of the data as labeled, compares learning, where we augment the capability
of few-shot artificial learners with a learning
signal derived from unlabeled data.

* Shared senior authorship
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Prototypical Random Walk (PRW)
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Figure 1: Our PRW aims at maximizing the probability of a random walk begins at the
class prototype p;, taking 7 steps among the unlabeled data, before it lands to
the same class prototype. This results in a more discriminative representation,
where the embedding of the unlabeled data of a particular class got magnetized
to its corresponding class prototype, denoted as prototypical magnetization.

Semi-supervised Few-shot Learning (SS-
FSL): Few-shot learning methods typically
applied the supervised learning setup (e.g.,
(Vinyals et al., 2016; Ravi and Larochelle,
2017b; Snell et al., 2017)), recently, Ren et al.
(2018) and Zhang et al. (2018) developed

els by a prototypical random walk through
the embeddings of unlabeled data starting
from each class prototype passing through
unlabeled data in the embedding space and
encourages returning to the same prototype
at the end of the prototypical walk (cf. Fig. 1).

Semi-super- vised few-shot learning approachesThis PRW learning signal promotes a latent

that can leverage additional unlabeled data.
The machinery of both approaches adopts
a meta-learning episodic training procedure
with integrated learning signals from unla-
beled data. Ren et al. (2018) built on the
top of prototypical networks (PN) (Snell
et al., 2017) so better class prototypes can be
learned with the help of the unlabeled data.
Zhang et al. (2018) proposed a GAN-based
approach, Meta-GAN, that helps to make it
easier for FSL models to learn better decision
boundaries between different classes.

space where points of the same class are com-
pactly clustered around their prototype while
being well isolated from other prototypes.
We sometimes refer to this discriminative at-
traction to class prototypes as prototypical
magnetization.

Since the PRW loss is computed over a
similarity graph involving all the prototypes
and unlabeled points in the episode, it takes
a global view of the data manifold. Due
to the promoted prototypical magnetization
property, this global view enables more effi-

In this work, we propose Prototypical Ran- cient learning of discriminative embeddings
dom Walks (PRW) as an effective graph-based from few examples, which is the key chal-

learning signal derived from unlabeled data.

lenge in few-shot learning. In contrast, there

Our approach improves few-shot learning mod- are local SSL losses, where the loss is de-
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fined over each point individually, most no-
table of those approaches is the state-of-the-
art Virtual Adversarial Training (VAT) by
Miyato et al. (2018). We show that in the
FSL setting, our global consistency guided
by our prototypical random walk loss adds a
learning value compared to local consistency
losses as in VAT (Miyato et al., 2018).
Contribution. We propose Prototypi-
cal Random Walk Networks (PRWN) where
we promote prototypical magnetization of the
learning representation. We demonstrate the
effectiveness of PRWN on popular few-shot

image classification benchmarks. We also show classified into the N, episode classes.

that our model trained with a fraction of the
labels is competitive with PN trained with
all the labels. Moreover, we demonstrate
that our loss is robust to ”distractor” points
which could accompany the unlabeled data
yet not belong to any of the training classes
of the episode.

2. Approach

We build our approach on top of Prototypical
Networks (PN) (Snell et al., 2017) and aug-
ment it with a novel random walk loss lever-
aging the unlabeled data during the meta-
training phase. The key message of our work
is that more discriminative few-shot repre-
sentations can be learned through training
with prototypical random walks. We maxi-
mize the probability of a random walk that
starts from a class of prototypes and walk
through the embeddings of unlabeled points

to land back to the same prototype; see Fig. 1.

Our random walk loss enforces the global
consistency where the overall structure of the
manifold is considered. In this section, we
detail the problem definition and our loss.

2.1. Problem Set-up

The few-shot learning problem may be for-
mulated as training over the distribution of
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classification tasks Piyqin (7T ), in order to gen-
eralize to a related distribution of tasks Pyest(T)
at test time. This setting entails two lev-

els of learning; meta-training is learning the

shared model parameters(meta-parameters)

to be used on future tasks, adaptation is the

learning done within each task. Meta-training
can be seen as the outer training loop, while

adaptation being the inner loop.

Concretely, for Ns-shot N.-way FSL, each
task is an episode with a support set S con-
taining Ny labeled examples from each of NV,
classes, and a query set Q of points to be
The
support set is used for adaptation, then the
query set is used to evaluate our performance
on the task and compute a loss for meta-
training.

To run a standard FSL experiment, we
split our datasets such that each class is present
exclusively in one of our train/val/test splits.
To generate a training episode, we sample N,
training classes from the train split and sam-
ple Ny samples from each class for the sup-
port set. Then we sample N, images from
the same classes for the query set. Validation
and test episodes are sampled analogously
from their respective splits.

Following the SS-FSL setup in (Ren et al.,
2018; Zhang et al., 2018; Liu et al., 2019), we
split our training dataset into labeled/ unla-
beled; let Dy, ;, denote all labeled points = €
class(k), and Dy be all unlabeled points
x € class(k). Analogous notation holds for
our support and query set, S and Q. To
set up a semi-supervised episode, we simply
need to add some unlabeled data to the sup-
port set. For every class ¢ sampled for the
episode, we sample NV, samples from D,
and add them to S. In order to make the set-
ting more realistic and challenging, we also
test our model with the addition of distrac-
tor data. Those are unlabeled points added
to the support set, but not belonging to the
episode classes. We simply sample Ny ad-
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ditional classes, and sample IV, points from
each class to add to the support set. We
present pseudo-code for episode construction
in the supp. materials.

It is worth mentioning that the unlabeled
data may be present at either train or test
time, or both. At training time, we want to
use the unlabeled data for meta-training i.e.
learning better model parameters. For un-
labeled data at test time, we want to use it
for better adaptation, i.e. performing better
classification on the episode’s query set. Our
loss operates on the meta-training level, to
leverage unlabeled data for learning better
meta-parameters. However, we also present
a version of our model capable of using unla-
beled data for adaptation, by using the semi-
supervised inference from Ren et al. (2018)
with our trained models.

Prototypical Networks. Prototypical
networks (Snell et al., 2017) aim to train
a neural network as an embedding function
mapping from input space to a latent space
where points of the same class tend to clus-
ter. The embedding function ®(-) is used to
compute a prototype for each class, by av-
eraging the embeddings of all points in the
support belonging to that class:

Y o)

|SC’L‘ 2;€Se, L

Pc

(1)

where p. is the prototype for our c¢-th class,
and 6 represents our meta-parameters. Once
prototypes of all classes are obtained, query
points are also embedded to the same space,
and then classified based on their distances
to the prototypes, via a softmax function.

where d(-, ) is the Euclidean distance. In the
semi-supervised variant (Ren et al., 2018),
PN use the unlabeled data to refine the class
prototypes. This is achieved via a soft K-
means step. First, the class probabilities for
the unlabeled data z; . are computed as in
Eq.2, and the labeled points have a hard as-
signment, i.e. z;. is 1 if ; € class(c) and 0
otherwise. Then the updated prototype p.
is computed as the weighted average of the
points assigned to it; see Eq. 2. We can see
this as a task adaptation step, which does not
directly propagate any learning signal from
the unlabeled points to our model parame-
ters 6. In fact, it might be used only at the
inference time, and results from Ren et al.
(2018) show that it provides a significant im-
provement when used as such. When used
during meta-training by updating the model
parameters from the unlabeled data, the per-
formance improves only marginally (i.e., from
49.98% to 50.09% on mini-imagenet (Vinyals
et al., 2016)). While this approach is power-
ful as the adaptation step, it fails to fully ex-
ploit the unlabeled data during meta-training.
SS-FSL with adaption at test time. Our ap-
proach also allows using the former K-means
refinement step at inference time, analogous
to the ‘Semi-supervised inference’ model from
Ren et al. (2018). Orthogonal to Ren et al.
(2018), our approach can be thought of as
a meta-training regularizer that brings dis-
criminative global characteristics to the learn-
ing representation efficiently.

2.2. Prototypical Random Walk

Given the class prototypes p., computed us-

For a point x; with an embedding h; = ®(z;; 0),ing the labeled data in the support set &g,

the probability of belonging to class ¢ is com-
puted by

€xXp (7d(hm pc))
e exp (=d(hi, p;))
z;, ESyUSL h7

ZN

i=1 ?i,c

Zi,e = p(yc|zi) =

)

2
2

* Zi,e
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and the embeddings h; of unlabeled support
set Sy, we construct a similarity graph be-
tween the unlabeled points’ embeddings and
the prototypes. Our goal is to have points of
the same class form a compact cluster in la-
tent space, well separated from other classes.
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Our Prototypical Random Walk(PRW) loss
aims to aid this by compactly attracting the
unlabeled embeddings around the class pro-
totypes, promoting well-separation(cf. Fig. 1).

This notion is translated into the idea
that a random walker over the similarity graph
rarely crosses class decision boundaries. Here,
we do not know the labels for our points or
the right decision boundaries, so we cannot
optimize for this directly. We basically imag-
ine our walker starting at a prototype, taking
a step to an unlabeled point, and then step-
ping back to a prototype. The objective is to
increase the probability that the walker re-
turns to the same prototype it started from;
we will refer to this probability as the landing
probability. Additionally, we let our walker
taking some steps between the unlabeled points
before taking a step back to a prototype.

Concretely, for an episode with N class
prototypes, and M unlabeled points over-
all, let A € RMXN be the similarity ma-
trix, such that each row contains the negative
Euclidean distances between the embedding
of an unlabeled point an d the class proto-
types. Similarly, we compute the similarity
matrix between the unlabeled points B €
RM*M = Mathematically speaking, A;; =
—llhi = pjlI* Bij = —|lhi — hy|* where h;
®(z;) is the embedding of the i-th unlabeled
sample, and p; is the j-th class prototype.
The diagonal entries B;; are set to a small
enough number to avoid self-loop.

Transition probability matrices for our ran-
dom walker are calculated by taking a soft-
max over the rows of similarity matrices. For
instance, the transition matrix from proto-
types to points is obtained by softmaxing
AT T(P=2) = softmax(AT), such that p(x;|p;)
— rp—2)

J,?

. Similarly, transition from points

to prototypes '(@=P) and transitions between

points I'*=%) " are computed by softmaxing

random walker matrix as

T() = Pe=a)  (pla=a)y7  pla=p)  (3)
where 7 denotes the number of steps taken
between the unlabeled points, before step-
ping back to a prototype. An entry T; ; de-
notes the probability of ending a walk at pro-
totype j given that we have started at pro-
totype ¢, and the j-th row is the probabil-
ity distribution over ending prototypes, given
that we started at prototype j. The diagonal
entries of 1" denote the probabilities of re-
turning to the starting prototype; our land-
ing probabilities. Our goal is to maximize
those by minimizing a cross-entropy loss be-
tween the identity matrix I and our random
walker matrix 7', dubbed as Lyqker
’ T
Loalker = Z al- H(Ia T(l))y Lyisit = H(u7 P)7
i=0
[/RW :Ewalker + ['visita

(4)

where H(I,T) = _N% SN log Ty i, and « s
an exponential decay hyperparameter. How-
ever, one issue with Lygiker loss, is that we
could end up visiting a small subset of the
unlabeled points. To remedy this problem,
Haeusser et al. (2017a) introduce a ‘visit loss’,
pressuring the walker to visit a large set of
unlabeled points. Hence, we assume that our
walker is equally likely to start at any proto-
type, then we compute the overall probabil-
ity that each point would be visited when
we step from prototypes to points. P
N% vazco ng_m), where ng—m) represents a
column of the matrix. Then we add Ly;si
as the standard cross-entropy between this
probability distribution and the uniform dis-
tribution . Hence, our final random walk
loss is Lrw is the sum of Lgiker and Lyisit;
see Eq 4.

A, and B, respectively. Now, we define our
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1. To be exact, this is the average cross-entropy be-
tween the individual rows of I and T, since those
are probability distributions.
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Overall Loss. To put it all together,
our objective function could be written as
argming Lg + ALgw, where A is a regular-
ization parameter. While gradient of Lg =
- ZiQ:LO y; log z; . provides the supervised sig-
nal, the gradient of Ly encourages the “pro-
totypical magnetization” property guided by
our random walk. This loss is minimized
in expectation over randomly sampled semi-
supervised episodes from our training data.

3. Related Work

Associative learning and local consis-
tency in Semi-Supervised Learning SSL
contains a rich toolbox of principles and tech-
niques to leverage unlabeled data to learn
better discriminative embeddings. The core
idea is that similar inputs tend to close in em-
bedding space, measured with metrics such
as Euclidean distance, and KL-divergence.
Loss functions are designed to further en-
courage inputs belonging to the same class
to cluster together in embedding space, such
as triplet loss, mean teacher and learning by
association (Haeusser et al., 2017b).
Particularly, our work can be seen as a

generalization of learning by association, which

is a special case of PRWN with a walk step
size of 1. By using a walk step size larger
than 1, we effectively increase the local re-
ceptive field to further associate and cluster
similar inputs together in embedding space
Semi-Supervised Few-Shot Learning
In a few-shot learning task, the model is as-
sumed to be meta-learned (read: pretrained)
to reach a good starting point, so that in the
testing phase, learning with very few sam-
ples possible (Miyato et al., 2018; Kamnitsas
et al., 2018; Haeusser et al., 2017a).
However, few-shot learning assumes the
dataset to be meta-learned is sufficiently large
and fully labeled. Hence, Ren et al. (2018)
introduced the SS-FSL setting, so that FSL
is feasible where labeled data is scarce. This
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setting combines both SS and FSL settings,
where the meta-learning phase leverage un-
labeled data to better meta-learn the task.

SS-FSL is also applied in other ways such
as self-teaching (Li et al., 2019) and adaptive
subspace (Simon et al., 2020), and applied
in other tasks, such as transfer learning (Yu
et al., 2020) and image translation (Wang
et al., 2020). Orthogonal to these develop-
ments, our goal is to show that learning rep-
resentations can be efficiently improved by
prototypical random walk loss.

Application of Random Walk for As-
sociative Learning Our work is also sim-
ilar to the application of random walk for
person re-identification (Shen et al., 2018),
where a random walk is used to re-rank and
find the best match given input probe im-
age relative to the collection of known gallery
images. However, our focus is on applying
PRWN for semi-supervised few-shot learning
tasks, that is to leverage unlabeled data for
meta-training the model to good initial pa-
rameters, so that it is able to learn with few
samples during test time.

4. Experiments on 2D synthetic
datasets

To gain an intuition on how the proposed
method works, we performed experiments on
2D synthetic datasets to easily visualize how
the decision boundary is formed.

The model is 3-layer MLP, 2-dimension
input, 32-dimension hidden unit, 4-dimension
output. It used a negative Euclidean dis-
tance metric for its output. We used two
datasets, and 3 models trained 300 epochs
in each data- set: (1) Spiral dataset with
1000 points split to 7 labels (10% labels +
Random Walk, 10% labels, and 100% labels;
1 shot, 5 way, 7 = 1); (2) Gaussian circle
dataset 1000 points split into 3 labels. There
were 3 models trained in each dataset (5%
labels + Random Walk, 5% labels, and 5%
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labels; 1 shot 3 way, 7 = 1) ; ¢f. Fig. 2
shows the results, it can be seen that the pro-
posed method can “connect the dots” of un-
labeled points in the green region and purple
region, hence producing decision boundary
similar to 100% labels. In the Gaussian circle
dataset, random walk loss helps the model
fits the circle more in just a few epochs, but
the model without random walk loss still has
many mis-classified points and the circular
outline is not obvious.

5. Experiments on Image Datasets

Overview. In these experiments, we cover
two main results: with and without distrac-
tors, where distractors are present at train
and test time when applied. In each, we
discuss experiments with and without semi-
supervised adaptation where additional unla-
beled data are used at test time. Note that
whether or not unlabeled data is available at
test time, we use the same trained model, the
difference comes from adding the adaptation
step in Eq. 2 at test time to leverage that
data.

5.1. Experimental Setup

Datasets. We evaluated our work on the
two commonly used SS-FSL benchmarks Om-
niglot, Mini-ImageNet, and tiered-ImageNet.
Omniglot (Lake et al., 2011) is a dataset of
1,623 handwritten characters from 50 alpha-
bets. Each character was drawn by 20 hu-
man subjects. We follow the few-shot set-
ting proposed by Vinyals et al. (2016), in
which the images are resized to 28 x 28 px
and rotations in multiples of 90° are applied,
yielding 6,492 classes in total. These are
split into 4,112 training classes, 688 valida-
tion classes, and 1,692 testing classes. Mini-
ImageNet (Vinyals et al., 2016) is a modi-
fied version of the ILSVRC-12 dataset (Rus-
sakovsky et al., 2015), in which 600 images,
of size 84 x 84 px, for each of 100 classes were
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randomly chosen to be part of the dataset.
We rely on the class split used by Ravi and
Larochelle (2017a). These splits use 64 classes
for training, 16 for validation, and 20 for test-
ing. tiered-ImageNet (Ren et al., 2018) is
also a subset of the ILSVRC-12 dataset (Rus-
sakovsky et al., 2015). However, it is way
bigger than the Mini-ImageNet dataset in
the number of images; around 700K images,
and the number of classes; around 608 classes
coming from 34 high-level categories. Each
high-level category has about 10 to 20 classes
and split into 20 training (351 classes), 6 val-
idation (97 classes) and 8 test (160 classes)
categories.

In our experiments, following Ren et al.
(2018); Zhang et al. (2018), we sample 10%
and 40% of the points in each class to form
the labeled split for Omniglot and Mini - Im-
agenet, respectively; the rest forms the unla-
beled split.

Implementation Details. We have pro-
vided full details of our experimental setting
including network architectures, hyperparam-
eter tuning on the validation set in supp.
materials.For a fair comparison, we opt for
the same Conv-4 architecture (Vinyals et al.,
2016) appeared in the prior SS-FSL art (Zhang
et al., 2018; Ren et al., 2018).

Episode Composition. All testing is
performed on 5-way episodes for both datasets.
Unless stated otherwise, the analysis perf-
ormed in sections 5.2 & 5.3 are performed
by averaging results over 300 5-shot 5-way
mini-imagenet episodes from the test split,
with N,=10. Further detail is in supp. ma-
terials. All accuracies reported are averaged
over 3000 5-way episodes and reported with
95% confidence intervals.

Baselines. We evaluate our approach on
standard SS-FSL benchmarks and compare
to prior art; PN (Ren et al., 2018), Meta-
GAN (Zhang et al., 2018) and EGNN-Semi (Kim
et al., 2019). We also compare PRWN with 3
control models; the vanilla prototypical net-
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work (PN) trained on the fully labeled dataset, PRWN up to 67.82% from 59.08% on the 5-

denoted PNy (the oracle), which is consid-
ered to be our target model, a PN (Ren et al.,
2018) model trained only on the labeled split
of the data (40% of the labels), which is es-
sentially PRWN without our random walk
loss, and finally a PN trained with the state-
of-the-art VAT (Miyato et al., 2018) and en-
tropy minimization as a strong baseline; we
denote it as PNy 47.

5.2. Semi-supervised meta-learning
without distractors

For experiments without semi-supervised adap-

tation, we observe from the third horizontal
section of Table 1, that PRWN improves on

the previous state-of-the-art MetaGAN (Zhang

et al., 2018), and EGNN-Semi (Kim et al.,
2019) on all experiments, with a significant
improvement on 5-shot mini-imagenet. It is
worth mentioning that our PRWN has less
than half the trainable parameters of Meta-
GAN which employs an additional larger gen-
erator.

Experiments with semi-supervised adap-
tation are presented in the bottom section
in Table 1. Note that PRWN already im-
proves on prior art without the adaptation.
With the added semi-supervised adaptation,
PRWN improves significantly, and the gap
widens. On the 5-shot mini-imagenet task,
PRWN achieves a relative improvement of
8,17%, 4,86%, and 8,28% over the previous
state-of-the-art, (Ren et al., 2018; Liu et al.,
2019; Kim et al., 2019), respectively. Sim-
ilar behavior has been observed on tiered-

ods in 1-shot classification and similar per-
formance on 5-shot classification; note that
standard deviation for (Kim et al., 2019) is
not reported for 1 and 5-shot classification.
Ablation study. From Table 1, we can
see that our PRW loss improves the baseline
PN significantly, boosting the accuracy of
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shot mini-imagenet for example. Moreover,
while PNy 47 proves a powerful model, com-
peting with prior state-of-the-art, PRWN still
beats it on all tests. Furthermore, We trained
PRWN on mini-imagenet with only 20% of
the labels, and we obtain an accuracy of 64.8%
on the 5-shot task; outperforming the SOTA
of 64.43% which uses double the number of
labels. Most remarkably, PRWN performs
competitively with the fully labeled PNy,
even outperforming it on 1-shot mini-imagenet.
Local & Global consistency Analy-

To evaluate the global consistency, we
take a look into the behavior of our random
walker for our various models. We compute
the landing probability over the graphs they
generate: the probability a random walker
returns to the starting prototype, given by
Trace(T) from Eq. 3. We can see in Fig. 2
that even as 7 grows, PRWN generates graphs
with the highest landing probs. Following is
PNy a7, implying that enforcing local consis-
tency still helps with global consistency. We
can also see that PN,; also does better than
PN, indicating that the addition of extra la-
beled data also improves global consistency.
To evaluate the local consistency and adver-
sarial robustness of our various models, we
compute their average VAT loss. Unsurpris-
ingly, PNy a7 performs best with 1.1 loss, fol-
lowing are both PRWN and PN,; with 3.1
& 2.91 respectively, then PN with 5.9. We
see again that improving global consistency
helps with local consistency, and so does ad-
ditional labeled data.

Discriminative Power. In order to
study our approach and baselines in a more
challenging setup, we evaluate their perfor-
mance on a Higher-Way classification. Fig. 2
shows that our model still performs better
than the baseline and close to PN (the or-
acle). The accuracy of PRWN, PN, and
PN, on 800-ways in Omniglot, are 64.43%,
65.57% and 39.84%, respectively. In Fig. 2,

sis.

ImageNet dataset outperforming existing meth
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Table 1: Semi-Supervised Meta-Learning + Ablation Study

Model Omniglot Mini-Imagenet Tiered-Imagenet

ode 1-shot 1-shot 5-shot 1-shot 5-shot
PNgu(Snell et al., 2017) 98.8 49.4 68.2 53.6 74.34
PN (Ren et al., 2018) 94.62 £ 0.09  43.61 £ 0.27 59.08 £ 0.22 46.52+ 0.52 66.15+ 0.22
MetaGAN (Zhang et al., 2018) 97.58 £ 0.07  50.35 &+ 0.23 64.43 £ 0.27 N/A N/A
EGNN-Semi (Kim et al., 2019) N/A N/A 62.52 + N/A N/A 70.98 + N/A
PNy ar (Ours) 97.14 £ 0.16 49.18 £ 0.22 66.94 £+ 0.20 N/A N/A
PRWN (Ours) 98.28 + 0.15 50.89 + 0.22 67.82 + 0.19 54.87 £ 0.46 70.52 + 0.43
PN + Semi-supervised inference(Ren et al., 2018)  97.45 £ 0.05 49.98 £0.34  63.77 £ 0.20 50.74 £ 0.75 69.37 £ 0.26
PN + Soft K-means(Ren et al., 2018) 97.25 £ 0.10 50.09 £+ 0.45 64.59 + 0.28 51.52 £ 0.36 70.25 £ 0.31
PN + Soft K-means + cluster(Ren et al., 2018) 97.68 &£ 0.07  49.03 £0.24  63.08 £0.18  51.85+0.25  69.42 £ 0.17
PN + Masked soft K-means(Ren et al., 2018) 97.52 £ 0.07  50.41 £0.24  64.39 £+ 0.24 52.39 £ 044  69.88 £+ 0.20
TPN-Semi (Liu et al., 2018) N/A 52.78 £ 0.27  66.42 £+ 0.21 55.74 £ 0.29 71.01 £ 0.23
PRWN + Semi-supervised inference (Ours) 99.23 + 0.08 56.65 + 0.24 69.65 + 0.20 59.17 + 0.41 71.06 + 0.39
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Figure 2: (a) Landing Probabilities on mini-ImageNet: The z-axis denotes the number of
steps for the walk (7), and the y-axis shows the probability of returning to the
right prototype. (b): The Higher-Way performance on Omniglot as we increase
the number of test classes N.. (¢): The relative improvement of PRWN over PN
as we increase the number of classes in Omniglot

we show the relative improvement over PN
reaching =~ 60% improvement on 800-ways
classification. Similar behavior has been re-
ported for mini-imagenet (See Supp. mate-
rials). This shows the performance gain from
our PRW loss is robust and reflects its dis-
criminative power.
Transductive/Semi-supervised adap-
tation approaches. Our approach is or-
thogonal and can be integrated with these
methods (Liu et al., 2019; Ren et al., 2018;
Douze et al., 2018). In fact, PRWN + semi-
supervised inference is such an integration
where K-means step is integrated from (Ren
et al., 2018). Tables 1, and 2 show that our
network, combined with the K-means step at
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test time, performs far better than the net-
works trained with those adaptation meth-
ods. This supports our hypothesis that semi-
supervised adaptation like the K-means step
fails to fully exploit the unlabeled data dur-
ing meta-training.

5.3. Semi-supervised meta-learning
with distractors

The introduction of distractors by Ren et al.
(2018) was meant to make the whole setup
more realistic and challenging. To recap, the
distractors are unlabeled points added to your
support set, but they do not belong to any of
the classes in that set i.e. the classes you are
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Table 2: Experiments with distractor classes

Model Omniglot Mini-Imagenet Tiered-Imagenet
1-shot 1-shot 5-shot 1-shot 5-shot

PRWN (Ours) 97.76 £+ 0.11 50.96 £ 0.23  67.64 + 0.18 53.30 £ 1.02 69.88 £ 0.96
PN+ Semi-supervised inference (Ren et al., 2018) 95.08 £0.09 4742 +£0.33  62.62 = 0.24  48.67 £ 0.60  67.46 = 0.24
PN+ Soft K-means (Ren et al., 2018) 95.01 &£ 0.09  48.70 £0.32  63.55 £ 0.28  49.88 £ 0.52  68.32 £ 0.22
PN+ Soft K-means + cluster (Ren et al., 2018) 97.17 £0.04  48.86 £0.32  61.27 £ 0.24  51.36 = 0.31 67.56 £ 0.10
PN+ Masked soft K-means (Ren et al., 2018) 97.30 £ 0.30  49.04 £ 031  62.96 £ 0.14  51.38 £ 0.38  69.08 & 0.25
TPN-Semi (Liu et al., 2018) N/A 50.43 £0.84  64.95 £ 0.73 53.45 £ 0.93 69.93 &+ 0.80
PRWN+ Semi-supervised inference (Ours) 97.86 + 0.22 53.61 + 0.22 67.45 £ 0.21 56.59 + 1.13  69.58 & 1.00
PRWN+ Semi-supervised inference + filter (Ours) 99.04 + 0.18 54.51 + 0.23 68.77 +£ 0.20 57.97 + 1.12  69.74 £ 1.10

currently classifying over. This ”labeled/ un-
labeled class mismatch” was found by Oliver
et al. (2018) to be quite a challenge for SSL
methods, sometimes even making the use of
unlabeled data harmful for the model. We
present our results in table 2, where the top
row is our model without test time adapta-
tion, and we can see that it already beats the
previous state-of-the-art below, which makes
use of test time unlabeled data, even by a
large margin in the 5-shot mini-imagenet with
a relative improvement of 3,8%, and 6,1% on
TPN-Semi (Liu et al., 2019), and PN+Soft

tractor points, and as such they are not mag-
netized towards our class prototypes; if any-
thing by learning to avoid them, the net-
work is structuring the latent space such that
points of each class are compact and well sep-
arated. This comes as a by-product of the
“prototypical magnetization” property that
our loss models.

To test this hypothesis, we take a PRWN
model trained with distractors, we sample
test episodes including distractors (Ng = N, =
5), construct our similarity graph, and com-
pute the probability that our random walker

K-Means (Ren et al., 2018), respectively. More-visits distractor versus non-distractor points.

over, it beats the MetaGAN (Zhang et al.,
2018) model trained without distractors on
all tasks, and in fact performs closely to our
own PRWN trained without distractors (cf.
Table 1).

When we add the semi-supervised adap-
tation step, with distractors present among
unlabeled data at test time, we see that our
model does not benefit well from that step,
and in the case of the 5-shot mini-imagenet,
the performance is slightly harmed. Next
subsection, we will explore why our model
is robust to distractors during training, and
how we can use the random walk dynamics
to make the semi-supervised inference step
useful when distractors are present.

DISTRACTOR ANALYSIS

We hypothesize that the reason our PRWN
is robust against distractors, is because our
random walker learns to largely avoid dis-
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Concretely, we compute P = NLC ZZN;O =)
where the summation is over the columns,
and an entry P; represents the probability of
visiting point ¢. We split P into P4, and
Pjist, containing the entries for non-distractor
and distractor points. respectively. Both
probabilities pejeqan and pgis¢ should sum up
to one. Whereas our baseline PN gets pcjean =
0.67, and PNy gets pejean = 0.76, our PRWN
gets Perean = 0.81. So we see our Ly is
not only an attractive force bringing points
closer to prototypes, but it also has a re-
pelling force driving irrelevant points away
from prototypes. Note this is not only a fea-
ture of the network, it is a property of the loss
function. For instance, the semi-supervised
inference step (Ren et al., 2018) involves all
points, distractor or not, equally in the pro-
totype update, regardless of the geometry of
the embeddings.
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Distractors at semi-supervised infer-
ence. We also performed an experiment to
further improve PRWN with the semi- su-
pervised inference step. We exploit our ran-
dom walk dynamics to order to filter out dis-
tractors. We compute the probability that
a point is part of a successful walk; a walk
which starts and ends at the same prototype.
This is given by S = ZzN:Co re—=e) o rE—=p),
where ® is the Hadamard product, and the
summation is over the columns of the re-
sulting matrix. Then we simply discard the
points that scored below the median. With
this little step, we see our PRWN + semi-
supervised inference, become more robust to
test time distractors, with 99.04% accuracy
on omniglot, 54.51% & 68.77% on mini - im-
agenet, and 57.97% & 69.74% on tiered - im-
agenet 1&5-shot, respectively. This simple
filtering step just improved on the distrac-
tor state-of-the-art as shown in Table 2 (last
row). Note that our approach also outper-
form Liu et al. (2019) by a significant margin
in 1-shot classification in all datasets and 5-
shot classification Mini-Imagenet, while achiev-
ing similar performance on 5-shot Tiered- Im-
agenet.

6. Conclusion

SS-FSL is a relatively unexplored yet chal-
lenging and important task. In this paper,
we introduced a state-of-the-art SS - FSL
model, by introducing a semi-supervised meta-
training loss, namely the Prototypical Ran-
dom Walk, which enforces global consistency
over the data manifold, and magnetizes points
around their class prototypes. We show that
our model outperforms prior art and rivals
its fully labeled counterpart in a wide range
of experiments and analyses. We contrast
the effects and performance of global ver-
sus local consistency, by training a PN with
VAT (Miyato et al., 2018) and comparing
it with our model. While the local consis-
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tency loss has an improvement on the per-
formance, we found out that our global con-
sistency loss significantly improves the per-
formance in SS-FSL. Finally, we show that
our model is robust to distractor classes even
when they constitute the majority of unla-
beled data. We show how this is related to
the dynamic of PRW. We even create a sim-
ple distractor filter, and show its efficiency
in improving semi-supervised inference (Ren
et al., 2018). Our experiments and results
set the state-of-the-art on most benchmarks.
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