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Abstract

Meta-learning aims at learning quickly
on novel tasks with limited data by
transferring generic experience learned
from previous tasks. Naturally, few-
shot learning has been one of the most
popular applications for meta-learning.
However, existing meta-learning algo-
rithms rarely consider the time and
resource efficiency or the generaliza-
tion capacity for unknown datasets,
which limits their applicability in
real-world scenarios. In this paper, we
propose MetaDelta, a novel practical
meta-learning system for the few-
shot image classification. MetaDelta
consists of two core components: i)
multiple meta-learners supervised by a
central controller to ensure efficiency,
and ii) a meta-ensemble module in
charge of integrated inference and
better generalization. In particular,
each meta-learner in MetaDelta is
composed of a unique pre-trained
encoder fine-tuned by batch training
and parameter-free decoder used for
prediction. MetaDelta ranks first in
the final phase in the AAAI 2021
MetaDL Challenge1, demonstrating
the advantages of our proposed sys-

1. https://competitions.codalab.org/competitions/
26638

tem. The codes are publicly available at
https://github.com/Frozenmad/MetaDelta.

1. Introduction

Despite the great success of machine learn-
ing, a clear gap between human and artificial
intelligence is the ability to learn from small
samples, e.g., learning to recognize objects
from limited examples. Inspired by human’s
ability of learning to learn from experience,
meta-learning (Vanschoren, 2018) aims to
transfer the generic experience learned from
multiple tasks of limited data to efficiently
complete new tasks. As one of the most suc-
cessful applications for meta-learning, few-
shot learning targets at learning from a lim-
ited number of labeled examples, which has
become a research trend recently. Few-shot
image classification is a task where the clas-
sifier must learn to accommodate new classes
not seen during training with limited exam-
ples.

Existing meta-learning algorithms can be
categorized into three groups: (1) Metric-
based methods (Vinyals et al., 2016; Snell
et al., 2017) that learn an encoder for the
examples and apply parameter-free infer-
ence (e.g., nearest neighbor) in the embed-
ding space, (2) Optimization-based meth-
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ods (Finn et al., 2017; Rusu et al., 2018;
Park and Oliva, 2019) that extract the meta-
knowledge of optimization algorithms for fast
adaption, and (3) Black-box - or Model -based
methods (Santoro et al., 2016; Mishra et al.,
2017; Munkhdalai and Yu, 2017) that di-
rectly learn to embed the datasets to model
parameters for prediction. Among them,
(1) and (2) have become the most popular
methodologies and have been proved effec-
tive in various few-shot settings. However,
there exist two challenges largely unexplored.
First, most existing methods do not consider
the time and resource efficiency or budget,
which limits their ability to meet the re-
quirement in many real-world applications.
Furthermore, the success of existing meth-
ods heavily relies on careful hyperparameter
designs (e.g., backbones, learning rates, etc.)
on each specific dataset. In real-world sce-
narios, the datasets and tasks may be un-
known, diverse, or even change over time,
making the manual design of the most suit-
able hyperparameters very laborious.

To tackle these challenges, we design a
novel practical meta-learning system (Meta-
Delta) for few-shot image classification tasks
in this paper. Following the metric-
based methods, MetaDelta firstly adopts pre-
trained convolutional networks as backbones
to project images to latent vectors and trains
the backbones with linear classifiers in a non-
episodic way on the training classes. To
improve the system’s generalization capac-
ity to any unknown datasets under time
and memory budgets, we employ multiple
meta-learning models with multi-processing,
while managing the time and resources with
a central controller in the main process at
the same time. Moreover, we implement
a late-fusion meta-ensemble mechanism to
improve the generalization ability by taking
the prediction from each model into account.
MetaDelta consistently outperforms compet-
itive baselines on various

datasets and ranks first in the final phase
of AAAI 2021 MetaDL Challenge, which
shows the superiority of our proposed meta-
learning system.

2. AAAI 2021 MetaDL Challenge

In this section, we first introduce the work-
flow of a meta-learning system for the few-
shot image classification task in AAAI 2021
MetaDL Challenge and then review the de-
tails and challenges of this competition.

As illustrated in Fig. 1, the workflow of
such a meta-learning system is as follows. A
meta-learner is first trained on the episodes
or batches of data generated by the meta-
train data generator. An episode refers to a
K-way N -shot image classification task T =
{Dspt,Dqry}, where the support set Dspt and
the query set Dqry are the training set and
the test set of this task, respectively. Note
that |Dspt| = KN , and |Dqry| = KQ, where
K is the number of image categories of the
task, and allK,N,Q are manually adjustable
before meta-training. A batch refers to B ex-
amples {xi, yi} randomly sampled from the
meta-training data. The meta-learner out-
puts a learner, which is then trained on the
support set of each meta-test episode to out-
put a specific predictor for episodic evalua-
tion.

The AAAI 2021 MetaDL Challenge con-
sists of a feedback phase and a final phase.
During the feedback phase, an offline public
dataset (the Omniglot dataset (Lake et al.,
2015)) and an online feedback dataset (i.e.,
the dataset is unknown/unavailable and only
used to evaluate submissions uploaded by
participants) are provided for the partici-
pants to develop their meta-learning sys-
tems. During the final phase, new online
feedback datasets are used to evaluate the
submissions. The evaluation metric is the
average classification accuracy on the query
sets of 600 meta-test episodes. All the meta-
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Figure 1: The workflow of the AAAI 2021 MetaDL Challenge on few-shot image classifica-
tion.

test episodes are defined as 5-way 1-shot
image classification tasks with an unknown
number of query examples in each class (i.e.,
K = 5, N = 1, Q is unknown).

As a challenge on meta-learning with few-
shot image classification settings and online
judge, this competition has the following
challenges.

Fast adaption without overfitting.
This is the core challenge of meta-learning
and is especially critical for few-shot learn-
ing settings. The 5-way 1-shot classifica-
tion problem in the competition requires
the meta-learners to learn generalized prior
knowledge from meta-training tasks and a
proper way for fast adaption on limited novel
data without overfitting.

Time and resource efficiency. An-
other challenging aspect of this competition
is the efficiency requirements for the submis-
sions: the whole meta-training and meta-
testing workflow should be finished within
2 hours on an Azure NV24 machine with 4
M60 Tesla GPU and 224 GB of RAM. A su-
perior meta-learning algorithm should thus
not only learn fast (fast adaption), but also
meta-learn fast.

Generalization across different
data- sets. During both the feedback and
final phases, the online feedback datasets
are unknown / unavailable to participants.

Therefore, a good submission must work well
on any unknown dataset without manually
tailored hyperparameters (e.g., learning
rate, backbone structure, etc.). This is
difficult since the image distribution of the
feedback dataset may differ heavily from
existing offline datasets with a different
number of query examples, image size, etc.
Furthermore, with the time and resource
limitations, common AutoML methods such
as hyperparameter optimization (HPO) and
neural architecture search (NAS) can be too
expensive to be applicable to automatically
specify the best hyperparameters on the
feedback/final dataset.

3. MetaDelta

In this section, we elaborate on our meta-
learning system (MetaDelta) for the AAAI
2021 MetaDL Challenge.

3.1. System Overview

The MetaDelta system is illustrated in Fig 2.
To tackle the challenge of time and re-
source efficiency, we adopt a central con-
troller in the main process to dispatch data
and decide when to start and stop the meta-
training/testing (top of Fig 2). Aiming to
achieve good and robust performances on un-
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Figure 2: The MetaDelta system for the AAAI 2021 MetaDL Challenge. The top part de-
picts the whole multi-processing system with a central controller to ensure time
and resource efficiency and a meta-ensemble module to improve generalization
capacity to unknown datasets. The bottom part shows the framework of the
Meta-Learners in MetaDelta, such that different Meta-Learners can be instan-
tiated with different compositions of their components. CNN = Convolutional
Neural Network.

known feedback datasets, a meta-ensemble
is learned to ensemble 4 different meta-
learners. The 4 meta-learners are derived by
training with different hyperparameters par-
allelly on 4 GPUs, which are managed by the
central controller.

A specific meta-learner in MetaDelta is
instantiated and used following the frame-
work illustrated at the bottom of Fig 2,
which is capable of fast adaption in the few-
shot image classification problem. During
the meta-training period, we leverage batch
training strategy to train a deep model to
classify all the meta-training classes (e.g., if

the meta-training set includes 500 classes,
then the model applies 500-way classifica-
tion). For the sake of time efficiency and gen-
eralization capacity to unknown datasets, we
leverage universal pre-trained CNN encoders
(e.g., ResNet50 pre-trained on ImageNet) to
embed images into features, and add a clas-
sifier head onto the encoder for fine-tuning.
During the meta-testing period, we discard
the classifier head and map the images to
embeddings with the fine-tuned encoder, and
apply an efficient parameter-free decoder to
predict the class labels of query images based
on the embeddings. The optimal meta-
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learner components are selected based on
experimental evaluations on various offline
datasets.

3.2. Meta-Learners

As aforementioned in Sec 1, Metric based
(e.g., Prototypical Networks, a.k.a. Pro-
toNet (Snell et al., 2017)) and Optimization
based (e.g., MAML (Finn et al., 2017)) meth-
ods are the most popular and effective meta-
learners in existing literature. Through ex-
tensive experiments on the 5-way 1-shot im-
age classification tasks, we find ProtoNet-like
methods outperform MAML-like methods on
various datasets, and thus select ProtoNet-
like frameworks as our meta-learners (the
bottom of Fig 2).

Different from ProtoNet, we apply non-
episodic (i.e., batch) training instead of
episodic training to learn a CNN encoder to
embed images to feature vectors, since we
find non-episodic training leads to more ef-
fective encoders in our experiment (See. Ta-
ble 2). Then a parameter-free decoder is
taken during meta-valid/testing periods to
decode the vectors of each episode to the pre-
dicted labels. In detail, we iteratively train
and evaluate the CNN encoder: First, the
encoder will be meta-trained r epochs using
a non-episodic training strategy. Then, the
episodic classification accuracy will be calcu-
lated using a parameter-free decoder on the
meta-valid dataset. The model with the best
meta-valid episodic accuracy will be saved
for further use.

3.2.1. Fine-tuned CNN Encoder

We select pre-trained CNN backbones (pre-
trained on ImageNet (Deng et al., 2009))
as the initialized encoder and then fine-
tune it on batches of meta-training data.
We use pre-trained deep backbones since
they have strong generalization capacity and
help the meta-learner to generalize to un-

known feedback datasets. To some de-
gree, the pre-trained models can also be re-
garded as a meta-knowledge collection of
ImageNet. Moreover, compared to learn-
ing from scratch, fine-tuning on pre-trained
CNNs also saves time and computing re-
sources, enabling effective training of power-
ful deep models within the time limit. In our
experiment, we select ResNet50 (He et al.,
2016), ResNet152 (He et al., 2016), WRN50
(Zagoruyko and Komodakis, 2016) and Mo-
bileNet (Sandler et al., 2018) for the four
meta-learners in MetaDelta.

To fine-tune the backbones, a linear clas-
sifier head (i.e., fully-connected layer) is
added to the final layer of the CNN en-
coder, and we randomly sample L-way Z-
shot batches from the meta-train classes for
training. Here, L-way Z-shot means each
batch consists of L classes with Z labeled
examples for each class, which is set to keep
class balance. To augment the image data
and learn a more robust encoder, we fol-
low (Chen et al., 2019) to apply the rotation
loss: First, we rotate each image in a batch
by 0, 90, 180, 270 degrees to get four images,
which should be classified into the same class
by the original classifier head. Then, another
4-way linear classifier head is added to the
top of the CNN encoder to predict the four
kinds of rotations. Finally, we optimize the
weights of encoders by minimizing the fol-
lowing loss:

L = Lcls + αLrot

where Lcls is the classification loss, Lrot is
the rotation loss, and α is a hyperparameter
for balance.

3.2.2. Parameter-free Decoder

With the feature vectors encoded by the
fine-tuned CNN encoder, we could further
predict the labels of query examples in
meta-valid/testing episodes with the help of
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parameter-free decoders. During the meta-
valid period, we use the decoder in Pro-
toNet (Snell et al., 2017) to make inference.
The models with the best few-shot classifica-
tion accuracy on the meta-valid dataset are
chosen as the encoder for further use.

Specifically, given a meta-valid episode of
N -way K-shot, we first compute the proto-
types from the support set Sj of the j-th
class:

cj =
1

K

∑
(xi,yi)∈Sj

fφ(xi), (1)

where fφ denotes the CNN encoder. Then,
the ProtoNet decoder produces a distribu-
tion over classes for each query example x
based on a softmax over the Euclidean dis-
tances between its embedding and theK pro-
totypes:

pφ(y = j|x) =
exp(−d(fφ(x), cj))∑
j′ exp(−d(fφ(x), cj′))

, (2)

where (x, y) is a query example, and d(a,b)
denotes Euclidean distance between vectors
a and b. The prediction is then made by
classifying the example to the most probable
class.

During meta-test period, we implement
the soft k-means based transductive decoder
in MCT (Kye et al., 2020) to build more ac-
curate prototypes by considering query em-
beddings. Concretely, the initial prototypes

{c(0)j } are the same as that in Eq. 1. The
MCT decoder iteratively updates the proto-
types for T steps. For each step t, we first

calculate the confidence scores q
(t−1)
j (x) for

each query example x belonging to class j in
the same way as Eqn. 2:

q
(t−1)
j (x) =

exp(−d(fφ(x), c
(t−1)
j ))∑

j′ exp(−d(fφ(x), c
(t−1)
j′ ))

. (3)

Then, we update the prototypes based on the
confidence scores for all query examples x in

episodic query set Q:

c
(t)
j =

∑
x∈Sj 1 · fφ(x) +

∑
x∈Q q

(t−1)
j (x) · fφ(x)∑

x∈Sj 1 +
∑

x∈Q q
(t−1)
j (x)

.

(4)

The predictions are finally made based on

q
(T )
j (x).2

We find in our experiments that the accu-
racy trendlines of the ProtoNet decoder and
MCT decoder are generally the same (see
Fig 4), while the latter leads to higher accu-
racies given the same CNN encoder. There-
fore, we take the ProtoNet decoder for meta-
valid to accelerate training without miss-
ing the best models, and the MCT decoder
for meta-test to make more accurate infer-
ences. Note that using a decoder during
meta-validation to calculate episodic accura-
cies (instead of batch-wise classification ac-
curacies as during meta-training) is reason-
able, since a CNN encoder that facilitates
low meta-training loss does not ensure high
episodic accuracy during meta-valid/test pe-
riods.

3.3. Meta-Ensemble

The meta-ensemble module is designed to
tackle the challenge of generalization ca-
pacity, i.e., to improve the performance of
MetaDelta on any unknown feedback/final
dataset. Ensemble methods have been em-
pirically proved to be effective in various su-
pervised classification tasks (Rokach, 2010).
In MetaDelta, the meta-ensemble module in-
tegrates the predicted probabilities of the
four meta-learners and outputs the final pre-
dictions, as illustrated in Fig. 2.

The meta-ensemble model is trained af-
ter finishing the meta-training of all meta-
learners. To train the meta-ensemble model,
we divide the meta-valid data into a train-
ing set Dtrval and a test set Dteval. Taking

2. We do not use the learnable distance metric pro-
posed in MCT, which brings no improvement in
our preliminary experiments.
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the concatenation of the predicted probabil-
ities from the four loaded best meta-learners
as input, several meta-ensemble models are
trained on Dtrval simultaneously and evalu-
ated on Dteval based on episodic accuracy. The
best meta-ensemble model is then saved for
the inference in the meta-test period. In our
experiments, we implement voting, Gradient
Boost Machine, General Linear Model, Naive
Bayesian Classifier, and Random Forest3 as
the meta-ensemble candidate models. Due
to the diversity of suitable scenarios of these
models, we argue that our meta-ensemble
module is capable of dynamically adapting
to the unknown feedback dataset by select-
ing the best ensemble model according to
the meta-valid data. This design further im-
proves the robustness of our system.

3.4. Central Controller

The central controller module aims at im-
proving the time and resource efficiency of
our system and avoiding timeout or mem-
ory overrun. All the multi-thread and multi-
processing designs in this module facilitate
our system to support a greater degree of
parallelism and make full use of the comput-
ing resources.

The design of central controller is illus-
trated in Fig. 3 (during meta-training pe-
riod). First, a timer is set in the main pro-
cess to measure and estimate the time cost
of meta-training/testing epochs, based on
which the whole meta-training/testing pro-
cedure is supervised. A subprocess may be
killed in advance by the central controller
if it is predicted to run out of time bud-
get. Under this framework, the main pro-
cess starts a data manager thread to load,
copy, and dispatch the episode/batch data.

3. We leverage the Gradient Boost Machine library
from a lib LightGBM (lightgbm.readthedocs.
io/en/latest/index.html). Naive Bayesian
Classifier and Random Forest models are imple-
mented based on sklearn (Pedregosa et al., 2011).

Data manager
threaddata

Data preprocessor
subprocess 1

Data preprocessor
subprocess 2

Data preprocessor
subprocess 3

Data preprocessor
subprocess 4

time limit Meta-Learner trainer
subprocess 1

data buffer training

Meta-Learner trainer
subprocess 2

data buffer training

Meta-Learner trainer
subprocess 3

data buffer training

Meta-Learner trainer
subprocess 4

data buffer trainingMeta-training

Figure 3: The central controller in
MetaDelta that leverages multi-
thread and multi-processing
techniques to improve time and
resource efficiency and support
meta-ensemble.

Then, four data preprocessor subprocesses
are started to receive and preprocess the data
copies according to the requirements of spe-
cific meta-learner trainer subprocesses. The
preprocessed data is sent to the correspond-
ing data buffer, which is designed to support
asynchronous meta-training in different sub-
processes. The data preprocessor subprocess
will not sleep until timeout or all the buffers
are full. Each meta-learner trainer subpro-
cess is run on one GPU, and the main pro-
cess and data preprocessor subprocesses are
run on CPU and the RAM.

During meta-valid and meta-test periods,
the same central controller framework is used
except for the training and inference of the
meta-ensemble module in the main process.

4. Experiments

In this section, we demonstrate our ranking
in the final phase and experimental results in
offline evaluations.

4.1. Final Phase Results

AAAI 2021 MetaDL Challenge consists of a
feedback phase and a final phase, in which
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phases take different unknown online feed-
back datasets to test the submissions of par-
ticipants. The ranks of the top 3 teams in
the final phase are shown in Table 1. Our
team ranks first with a meta-test accuracy
of 0.4042, which validates the effectiveness
and generalization capacity of MetaDelta.

Table 1: Rankings of the top 3 teams in
the final phase of the AAAI 2021
MetaDL Challenge.

Team Name Accuracy score

Meta Learners 0.4042
ctom 0.3573

Edinburgh 0.2889

4.2. Offline Evaluation Results

To evaluate the proposed MetaDelta in
an offline environment, we conduct experi-
ments on four public datasets for the few-
shot image classification task and compare
MetaDelta with several meta-learning base-
lines.

4.2.1. Datasets

Besides the public offline dataset Omniglot
(Lake et al., 2015) provided by the Chal-
lenge, we also select three popular few-shot
image classification datasets to evaluate the
generalization capacity of MetaDelta. The
datasets include CIFAR-100 (Krizhevsky
et al., 2009), miniImageNet (Vinyals et al.,
2016), and tieredImageNet (Ren et al., 2018).
For each dataset (except for the officially
provided Omniglot), we randomly partition
the classes into meta-train, meta-valid, and
meta-test sets according to the ratio of 5:1:4.
The statistics of the five datasets is demon-
strated in Table 3. Note that the images in
all datasets are reshaped to 28 × 28 to be
consistent with the official interface (not in-

cluded in the time budget, as the official im-
ages are claimed to always be of this size).

4.2.2. Baselines

Several representatives of optimization-
based and metric-based meta-learning
methods are adopted as our baselines.
For optimization-based methods, we select
MAML (Finn et al., 2017) and MetaCurva-
ture (Park and Oliva, 2019), an enhanced
version of MAML that transforms the
inner-update gradients to improve gener-
alization capacity. CifarCNN is chosen
as the backbone (base learner) in MAML
and MetaCurvature due to its effectiveness
and efficiency - larger backbones like (pre-
trained) ResNet50 cannot converge to good
optimum within the time limit of the compe-
tition. For metric-based methods, we select
ProtoNet (Snell et al., 2017) with Cifar-
CNN and pre-trained ResNet50 backbones
as our baselines, which applies episodic
training rather than batch training as in
MetaDelta. Moreover, the following variants
of MetaDelta are adopted as baselines to
show the impact of different components: 1)
Base: It fine-tunes a pre-trained ResNet50
by batch training and makes inference with
ProtoNet decoder during meta-testing. 2)
Base+MCT: It adopts MCT decoder for
accurate prediction during meta-testing.
3) Base+Rot+MCT: This baseline further
applies the rotation loss augmentation in
the batch training. 4) Meta- Delta: This is
our final system with meta-ensemble on the
predictions of four meta-learners.

4.2.3. Results

The performance comparison is listed in Ta-
ble 2. The proposed MetaDelta significantly
outperforms other baselines on all datasets
except Omniglot. However, we do not adopt
MAML-based methods in our system as one
of the meta-learners due to their low perfor-
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Table 2: 5-way 1-shot experiment results of different meta-learning methods on various
few-shot datasets. The ResNet50 backbones load the pretrained weights from
ImageNet.

Meta-learner Backbone Omniglot CIFAR-100 miniImageNet tieredImageNet

MAML CifarCNN 94.45 41.78 36.29 35.64
MetaCurvature CifarCNN 92.43 40.11 36.37 40.22

ProtoNet CifarCNN 63.26 35.47 30.48 31.05
ProtoNet ResNet50 68.35 41.28 34.16 39.78

Base ResNet50 91.54 49.59 41.32 48.41
Base+MCT ResNet50 92.77 50.61 42.79 49.27

Base+Rot+MCT ResNet50 89.95 52.72 43.31 49.72
MetaDelta (Ours) Multiple 93.56 56.83 47.52 51.74

Table 3: Statistics of the five datasets for
offline evaluation. The last three
columns refer to the number of
meta-train, meta-valid, and meta-
test classes, and the number in
brackets are the counts of super-
classes. Partitions based on super-
classes make the meta-learning
more challenging.

Dataset # Meta-tr # Meta-val # Meta-te

Omniglot 882 (25) 81 (5) 659 (20)
CIFAR-100 50 10 40

miniImageNet 50 10 40
tieredImageNet 350 (10) 56 (2) 167 (8)

mance on the majority of datasets. As shown
in Table 2, the meta-learner adopted in
MetaDelta (Base and the following variants)
surpasses the typical MAML- and Proto-
Net-based baselines by a large margin on
CIF- AR-100, miniImageNet, and tieredIm-
ageNet, and the MCT decoder with rotation
loss augmentation help to boost the perfor-
mance.

Why ProtoNet Better We notice in
our experiment that, in almost all the
datasets, our ProtoNet baseline (Base) and
its variants outperform MAML by a large
margin. We suspect that this superiority of

ProtoNet-like methods is derived from the
implicit utilization of the prior knowledge of
image data (e.g., locality, translation invari-
ance, etc.)
when combining pre-trained encoders with
distance-based decoders. In particular, most
ProtoNet-like methods are specifically de-
signed for few-shot image classification tasks,
projecting the images into latent vectors and
making inferences based on the pairwise dis-
tances. On the other hand, MAML-like
methods adopt a more general framework
without any assumption on the data or tasks,
being not capable of leveraging this prior
knowledge.

4.2.4. Ablation Study

We further conduct several ablation ex-
periments to demonstrate the functionality
of backbones and parameter-free decoders.
Concretely, we implement single meta-
learners with the backbones of ResNet50,
ResNet152, WRN50 and MobileNet, and ap-
ply decoders of ProtoNet (Snell et al., 2017)
(Euclidean), MCT (Kye et al., 2020), Lapla-
cian (Ziko et al., 2020), and Graph Propaga-
tion (Graph) (Rodŕıguez et al., 2020).

Table 4 lists the ablation results on the
pre-trained backbones, indicating that dif-
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Table 4: Comparison of different backbones
(pretrained CNN encoders). The
Meta-learner is Base+Rot+MCT.

Backbone CIFAR-100 tieredImageNet

ResNet50 52.72 49.72
ResNet152 51.06 49.25
MobileNet 51.48 45.93
WRN50 49.69 50.14

ferent backbones show superiority on differ-
ent datasets. This observation motivates our
design of taking different backbones in the
four meta-learners and applying the meta-
ensemble module, which aims at improving
the generalization capacity of MetaDelta to
unknown feedback datasets.

Table 5: Comparison of different decoders
on the meta-test accuracies of
CIFAR-100. The backbone is
ResNet50.

Decoder CIFAR-100

MCT 52.72
Euclidean 50.71

Graph 52.54
Laplacian 51.37
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Figure 4: Comparison of different decoders
on the meta-valid accuracies of
CIFAR-100 dataset.

Table 5 and Fig 4 demonstrates the ab-
lation results of different decoders in meta-
learners. We can observe that the trending
curves of the meta-valid accuracies of differ-
ent decoders are akin to each other, which in-
dicates that the best models saved according
to Euclidean decoder and MCT decoder dur-
ing meta-validation are the same with high
probability. Therefore, we apply the Eu-
clidean decoder during meta-validation for
acceleration and the MCT decoder during
meta-testing for higher accuracies (as shown
in Table 5).

5. Conclusion

In this paper, we propose MetaDelta, a meta-
learning system for few-shot image classifica-
tion, which tackles two challenges of practical
significance: 1) time and resource efficiency,
and 2) generalization to unknown feedback
datasets. For meta-learners in MetaDelta,
we adopt a pre-trained CNN encoder fine-
tuned by batch training and a parameter-
free decoder for inference. The meta-training
of multiple meta-learners is arranged by a
central controller with multi-processing tech-
niques and a meta-ensemble module is ap-
plied to integrate the predictions. The re-
sulting system ranks first in the final phase of
the AAAI 2021 MetaDL Challenge. For fu-
ture work, we plan to apply the domain gen-
eralization techniques (Carlucci et al., 2019;
Li et al., 2019) in computer vision to fur-
ther enhance the generalization capacity of
MetaDelta to any unknown datasets.
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